

Scheme & Syllabus for Minor Degree in

Robot Technology

Offered by

B. Tech. (Robotics & Artificial Intelligence)

DEPARTMENT OF ROBOTICS & ARTIFICIAL INTELLIGENCE

2023-24

REGULATIONS FOR OBTAINING A MINOR DEGREE

1.1.1 Minor Degree

- i. Students have to earn a min of 18 additional credits from the courses focused on discipline other than his/her major program discipline entitles a student to get a 'Minor' credential.
- ii. Students have to pay additional fees for all the courses registered for 'Minor'.
- iii. Students with a minimum of 5.0 CGPA and no backlog at the end of the 3rd semester will only qualify for registering for the course under the 'Minor' credential.
- iv. Students shall register for 'Minor' degree courses from the 4th semester onwards.
- v. All Departments will offer 'Minors' in their varied disciplines and will prescribe what set of courses and/or projects is necessary for earning a minor in that discipline.
- vi. Students should register for additional courses and plan to take courses that are prescribed under that 'Minors' list as per 'pre-requisite' courses to earn the 'Minor' credential
- vii. If any of the courses listed under the 'minor' option is a course listed under his/her curriculum as PCC then the student cannot opt for that 'Minor', since all minor courses need to be earned as additional courses to his/her program curriculum and depts decision is final and binding
- viii. Students who wish to acquire a 'Minor' can register for 'Minor' courses along with their regular semester course registration.
 - ix. Also, the student should have a minimum CGPA of 5.0 in the 'Minor' courses registered to become eligible for the Minor credential. This fact will also be reflected in the Consolidated Grade Sheet under a separate heading 'Minor in (specialization)'.
 - x. If the course requirements for a particular 'Minor' are met within the prescribed minimum time limit of the program, the minor will be awarded along with the degree, and it will be mentioned in the **Degree Certificate as "Bachelor of Technology in (Major discipline) with Minor in (specialization)."**
 - xi. In case a student withdraws from the 'Minor', the 'Minor' courses completed, will be converted to 'Audit' courses and indicated accordingly in subsequent Grade Sheets and Consolidated Grade Sheets.
- xii. The grades obtained in the courses credited towards the 'Minor' award are not counted and shall not influence the GPA/ CGPA of the program the student has registered for.

1.1.2 Additional norms for Minors

- i. Students shall register for additional courses to earn Minors in consultation with their Class Advisor from the list of courses suggested by the DUGC.
- ii. DUGC may recommend Massive Open Online Courses (MOOCs)/SWAYAM/NPTEL courses

to students who wish to register for Minors after justifying and establishing the equivalence of the curriculum. The decision of DUGC should be communicated to the Dean of Academics and Controller of Examinations for seeking approval.

- iii. A maximum of 40% credits prescribed for Minors may be earned through MOOCs/SWAYAM/NPTEL
- iv. Students may choose to take up additional course work, from the MOOCs courses list suggested by various departments (which can be from SWAYAM/NPTEL) with proctored examinations as approved by the University and complete the same before the last working day of the VIII semester with a final score (online assignments: 25 % + Proctored examination: 75 %) leading to the following certificates: Completed the course (40-59)– ELITE (60 to 75 %) or ELITE + SILVER (76 to 89 %) or ELITE + GOLD (≥ 90 %)
- v. In case, in MOOCs (ex: Coursera), there is no proctored examination, the University will conduct a SEE as deemed to be fit for the award of Credits
- vi. The Credit equivalence for online courses shall be as follows -
 - 4 weeks of online course duration 1 credit (approx. 13-14 hours)
 - 8 weeks of online course duration 2 credits (approx. 26-28 hours) and
 - 12 weeks of online course duration 3 credits (approx. 39-42 Hours)

	Minor Degree in Robot Technology												
				Ŀ.	Теас	hing Ho	urs/We	ek		Exan	nination		
SI. No.	Course and Course code		Course Title		_ Theory Lecture	H Tutorial	ط Practical/ Drawing	- PBL	Duration in hr	CIE Marks	SEE Marks	Total Marks	Credits
1.	IPCC	RI2009-1	Fundamentals of Robotics	RI	3	0	2	0	03	50	50	100	04
2.	PCC	RI2606-1	Automation using PLC Lab	RI	0	0	2	0	03	50	50	100	01
3.	IPCC	RI2010-1	Robot Motion Analysis	RI	3	0	2	0	03	50	50	100	04
4.	PCC	RI2112-1	Wheeled Mobile Robots	RI	2	0	2	0	03	50	50	100	03
5.	PCC	RI2607-1	Robot Programming Lab	RI	0	0	2	0	03	50	50	100	01
6.	IPCC	RI2011-1	Micro Aerial Vehicles	RI	3	0	2	0	03	50	50	100	04
7.	PCC	RI2608-1	Control System Lab for Robotics	RI	0	0	2	0	03	50	50	100	01
			TOTAL		11	0	14	-	21	350	350	700	18

Fundamentals of Robotics											
Course Code:	RI2009-1	Course Type:	IPCC								
Teaching Hours/Week (L: T: P: S):	(3:0:2:0)	Credits:	04								
Total Teaching Hours:	40+0+26	CIE + SEE Marks:	50+50								
Prerequisite	MA1001-1										

Teaching Department: Robotics & AI Engineering

Course Objectives:

1.	Familiarize with the Anatomy of robot and 3D homogeneous transformations.
2.	To study the different sensors and actuators used in robotics
3.	Study the application of robot technology in wheeled mobile robots, medical robots,
	unmanned aerial vehicles, service robots, underwater robots
4.	To study the linear and rotary motion control using sensors and actuators
5.	To understand the robot programming and 3D homogeneous transformations
	applied to robotics

Unit-I

Definitions- Robots, Robotics; Types of Robots- Manipulators, Mobile Robots-wheeled & Legged Robots, Aerial Robots; Anatomy of a robotic manipulator-links, joints, actuators, sensors, controller; open kinematic vs closed kinematic chain; degrees of freedom; Robot considerations for an application- number of axes, work volume, capacity & speed, stroke & reach, Repeatability, Precision and Accuracy, Operating environment, point to point control or continuous path control. **Robotic configurations and end effectors, Human factors in Robotics.**

Robot configurations-PPP, RPP, RRP, RRR; features of SCARA, PUMA Robots; Classification of robots based on motion control methods and drive technologies; 3R wrist.

Classification of End effectors - mechanical grippers, special tools, Magnetic grippers, Vacuum grippers, adhesive grippers, Active and passive grippers, selection, and design considerations of grippers in robot.

3D Homogeneous transformations: 3D homogeneous rotation Matrix, 3D Homogeneous translation Matrix, Composite rotation Matrix, Rotation Matrix about an Arbitrary Axis, Application of 3D homogeneous transformations in robotics, numerical Problems **15 Hours**

Unit- II

Sensors for Robots

Sensor classification- Proprioceptive and Exteroceptive sensors, active and passive sensors, characteristics of sensors, touch, force, range, proximity, vision sensors. **Internal sensors**-Linear and rotary position sensors, velocity sensors, acceleration sensors, Force sensors; **External sensors**-contact type, noncontact type; Vision - Elements of vision sensor, image acquisition, image processing; Selection of sensors.

Actuators for Robots: classification-Electric, Hydraulic, Pneumatic actuators; their advantages and disadvantages; Electric actuators- Stepper motors, DC motors, DC servo motors and their drivers, AC motors, Linear actuators, selection of motors; Hydraulic actuators- Components

and typical circuit, advantages, and disadvantages; Pneumatic Actuators- Components and typical circuit, advantages and disadvantages. **15 Hours**

Unit-III

Application of Robot: Industrial Robots, aerial robots-Fixed wing unmanned aerial vehicle, helicopters, Multi rotor UAV, Flapping wing/Bio inspired UAV, wheeled mobile robots, smarm robots, Legged robots, medical/healthcare robots-Surgical Robot, Exoskeleton robot, Rehabilitation robot, hospital robot, space robots, service robots, Underwater and floating robots, Military Robots.

10 Hours

	10 110013
	Suggested List of Experiments
1.	Experiments on:
	i. Linear and rotary displacement sensors
	ii. Proximity Sensors
	iii. Range Sensors-Ultrasonic, IR and laser range sensors
	iv. Force and Torque sensors
С	v. Vision Sensors
Ζ.	i Stopper motor controlled linear clide
	ii Servo motor controlled linear slide
3	Experiments on sequence control using hydraulic and pneumatic circuits
4.	Experiments on Quadcopter micro air vehicle
5.	Experiments on 3D Homogeneous transformations using 3D Coordinate frame models
6.	Experiments on Robot for demonstrating.
	i. Pick and Place operation
i	ii. Drawing Artwork
ii	ii. 3D Printing
יו ד	v. Accept/Reject part based on output from machine vision system
7. 8	Experiments on Meccanum Wheel mobile robot
Cours	Experiments on Meccandin Wheel mobile robot
1	Define describe and classify the different types of rebots and identify the different
1.	benne, describe, and classify the different types of fobots, and identify the different
	components of a robotic manipulator, such as links, joints, actuators, sensors, and
	controllers.
2.	Classify, select, and design end effectors for robots, and apply 3D homogeneous
	transformations to robot motion.
3.	Identify the different types of sensors and their applications, and use them to collect
	data for robotics applications
4.	Identify the different types of actuators and their applications and use them to
	control the motion of robots.
5.	Gain a comprehensive understanding of the diverse applications of robots, including
	industrial robots, aerial robots, wheeled mobile robots, legged robots,
	medical/healthcare robots, space robots, service robots, underwater and floating
	robots and military robots and their respective functions, advantages, and impact in
	various domains
Course	valious domains.
Lours	be outcomes wapping with Program Outcomes & PSO

	Program Outcomes \rightarrow	1	2	3	4	5	6	7	8	9	10	11	12		PSO,	ļ	
	↓ Course Outcomes													1	2	3	
	RI2009-1.1	3	1	-	-	-	-	-	-	-	-	-	-	2	-	1	
	RI2009-1.2	3	1	-	-	-	-	-	-	-	-	-	-	2	-	-	
	RI2009-1.3	3	1	-	-	-	-	-	-	-	-	-	-	2	1	-	
	RI2009-1.4	3	1	-	-	-	-	-	-	-	-	-	-	2	1	-	
	RI2009-1.5	2	1	-	-	-	-	-	-	-	-	-	-	2	-	2	
	1: Low 2: Medium 3	B: H	igh														1
Т	TEXTBOOKS:																
1	. "Robotics and Contro	⊳ / ′ I	R. K	. м	itta	l, I.	J. I	٧ag	ratł	n, Ta	ata-N	/lcGr	aw-⊦	Hill P	ublic	atior	۱S,
	2007																
2	. "Robotics: Control, Se	<i>"Robotics: Control, Sensing, Vision, Intelligence"</i> Fu K. S., Gonzelez R. C., Lee C. S.															
	G., McGraw Hill Book Co., 2008																
RE	ERENCE BOOKS																
1	 "Advances in Rehabilitation Robotics", Z. Zenn BienDimitar Stefanov, Springer Publications, Year-2004, ISBN: 978-3-540-44396-4. 																
	 Publications, Year-2004, ISBN: 978-3-540-44396-4. "Army of None: Autonomous Weapons and the Future of War", Paul Scharre, 																
2	Publisher: W. W. Norton & Company; 1st edition, Year- 2018, ISBN-978-0393608984.																
3	"Design of Dynamic Legged Robots" Sanghae Kim Patrick M Wensing Publisher:																
5	Now Foundations and Trends, Vear-2017, ISBN: 9781680832570																
4	"Introduction to Multiconter Design and Control" Quan Quan Springer																
-	Publications, Year-2017	' ISE	3N: 9	978-	-981	-10	-338	32-7	7.		, ,	Qui		Laan		Jing	CI
5	· "Introduction to the	M	echa	anic	s o	f S	pace	e R	obo	ots",	Gia	ncai	rlo (Gent	a , Si	oring	er
	Publications, Year-2012	2, IS	BN:	978	-94-	007	'-37	85-3	3.						· 1	5	
6	. "Service Robots and	I R	obo	tics	: D	esi	gn	anc	A	ppli	icatio	on",	Ма	rco	Cec	care	lli,
	Published by Engineering	ng S	Scier	nce	Refe	eren	ce,	Yea	r-20	12,	ISBN	: 978	3146	6602	915.		
7	. "Small Unmanned F	ixe	d-W	'ing	Ai	rcra	aft	Des	sign	",	Andı	rew	J. I	Kean	e, /	Andr	ás
	Sóbester, James P. Sca	anla	an, ∖	Nile	γ Ρι	Iblic	atic	ons `	Year	-20	17, IS	SBN:	9781	1194	063	03.	
8	• "Surgical Robotics: S	Syst	tem	s A	ppl	icat	ion	s a	nd	Visi	ions'	', Ja	icob	Ro	sen,	Bla	ke
	Hannaford, Richard N	И. S	Sata	va,	Spr	inge	er P	ubli	catio	on,	Year	-201	1, IS	BN:9	78-1	-441	9-
_	1126-1.					-1-//		•1 -						1.1.	- 1	V.	
9		orm	1 ai #	۹pp، ۲	roa	; n	не	ΙΚΟ	Har	nan	n , Sp	bring	er Pi	JDIIC	atior	i, rea	ir-
1	0 "Underwater Pobots I	Mot	./ <u>9-</u> .	ן. סיי		rco	Cor	tro	lof	Vak	niclo.	Ma	ninu	lator	Sve	toma	
-	Gianluca Antonelli Sc	rind	ner F	Puhl	icat	ion	Yea	ar-20	006	ISB	N· 97	78-3-	-642	-068	59_1	tems	, ,
1	1. "Wearable Exoskeleto	n S	vste	ems	Des	sian	. co	ontro	ol a	nda	appli	catio	ons"	. Sha	nopi	na Ba	ai.
	Gurvinder S. Virk, Th	om	as G	G. SI	uga	r, P	ubli	sher	r: Th	ne Ir	nstitu	ition	of E	ngin	eerii	ng ar	nd
	Technology, Year-2018	, ISE	3N: 9	978-	178	561	.302	9.						5		5	
1	2. "Wheeled Mobile Rob	oti	cs: F	ron	n Fu	nda	ame	enta	ls T	owa	ards	Auto	onon	nous	Sys	tems	s″,
	Gregor Klancar , And	rej 🛛	Zde	sar,	Sas	o B	lazi	ic, I	gor	Skr	janc	, Puł	olish	er: B	utter	wort	h-
	Heinemann, Year-2017,	ISE	3N: 9	978-	012	804	204	5.									
EE	Books / MOOCs/ NPTEL																

1.	Introduction to Robotics https://ocw.mit.edu/courses/mechanical-engineering/2-12-
	introduction-to-robotics-fall-2005/syllabus/
2.	INTRODUCTION TO ROBOTICS https://nptel.ac.in/courses/107/106/107106090/
3.	Robotics Specialization https://www.coursera.org/specializations/robotics

Automation using PLC											
Co ι	ırse Code:	RI2606-1	Course Type	PCC Lab							
Теа	ching Hours/Week (L: T: P: S)	0:0:2:0	Credits	02							
Tot	al Teaching Hours	25	CIE + SEE Marks	50+50							
Pre	requisite	RI2009-1									
Teaching Department: Robotics and Artificial Intelligence											
Cou	Course Objectives:										
1.	1. To control Stepper motor with PLC program and DC motor with PLC program										
2.	2. To control AC motor with PLC program and To understand HMI programing and										
	interfacing.										
	UNIT-I										
Step	per Motor Control using PLC			05 Hours							
Unde	erstanding the construction and	lead identific	ation of stepper motors	s, rating checking							
step	stepper motor driver selection and connection.										
DC N	DC Motor Control using PLC 05 Hours										
cons	construction and working of a DC motor, meaning of pulse width modulation, understanding										
relat	ionship between duty cycle and s	peed of the r	notor. Establishing a rela	tionship between							
duty	cycle and speed experimentally.										
	Notor Control using PLC			05 Hours							
Cons moto	struction and working of AC ind ors and PLC.	uction moto	rs, its different types ar	nd interfacing AC							
		UNIT-II									
HMI	programming and Interfacing			05 Hours							
Need	d for human machine interfacing	, creation of	an interface for control	lling an industrial							
mach	nine linking of control switches ar	nd data regist	ters to the ladder instruc	tion through HMI							
tools	5.										
Mini	Project			05 Hours							
Appl	Application of PLC control and HMI to and actual machine, testing the correctness of the										
instr	instruction, and reiterating after improvements.										
Course Outcomes: At the end of the course student will be able to											
1.	Control of Stepper motor, DC n	notor, AC mot	or with PLC								
2.	Operate various devices using	HMI through	programing and interfa	icing, Interface							
	PLC circuit, write programs in	PLC to contr	ol motion in different m	notors and use							
	HMI for easier operations of ma	achines.									

Cours	Course Outcomes Mapping with Program Outcomes & PSO																
Р	rogram Outcomes→	1	2	3	4	5	6	7	8	9	10	11	12	P	'SO	\downarrow	T
↓ Co	ourse Outcomes													1	2	3	
	RI2606-1.1	1	2	1	-	-	-	1 3 3 3									
	RI2606-1.2	RI2606-1.2 2 2 1 1 3 3 3															
1: Lo	1: Low 2: Medium 3: High																
TEXT	TEXTBOOKS:																
1.	Control of electrical machines by S.K.Bhattacharya Birjindersingh, New Age International.																
2.	Robotics and Industria	al A	uto	mat	ion	by	R.K.	Raj	put	, S.	CHAN	ID PU	BLISH	ING.			
3.	Introduction to PLC b	y G	ary	Dur	nin	g, C	eng	jage	e Le	arni	ng.						
4.	PLC, Principles and Ap	opli	cati	ons	by .	Johr	ו W	. W	ebb	and	d Ron	ald A.	Reis				
Web	links and Video Lectu	res	(e-	Res	our	ces)):										
1.	https://www.udemy.com/course/siemens-s71200-motion-control-training/																
	https://www.udemy.co	<u>om</u> ,	<u>/coι</u>	urse	<u>/plc</u>	-pro	ogra	amn	ning	<u>g-1(</u>)0/						

Robo	t Motion An	alysis								
Course Code:	RI2010-1	Course Type:	IPCC							
Teaching Hours/Week (L: T: P: S):	(3:0:2:0)	Credits:	04							
Total Teaching Hours:	50	CIE + SEE Marks:	50+50							
Prerequisite	RI2009-1									
Teaching Department: Robotics and Artificial Intelligence										
Course Objectives:										
1. To study the direct kinematics solutions for the different robot configurations										
2. To study the Inverse kinematics	2. To study the Inverse kinematics solutions for the different robot configurations									
3. To study the Jacobian Matrix for	3. To study the Jacobian Matrix for the different robot configurations									
4. To identify the singular configur	ations for diffe	rent robot configurations								
5. To study the dynamic equation	of motion and	trajectory planning of a rol	oot							
	UNIT-I									
Direct Kinematics and Inverse kinem	atics		15 Hours							
Links joints and their parameters, Kinematic Modeling of the manipulator, Denavit – Hartenberg notation, Kinematic relationship between adjacent links, Manipulator transformation matrix, Problems, Manipulator workspace, Solvability of inverse kinematic model, Existence of solution, Multiple solutions, Solution technique, Closed form solution, Guidelines to obtain closed form solutions, Problems. UNIT-II										
Manipulator Differential Motion and Statics 15 Hours										

Linear and angular velocity of rigid body, Linear velocity, Angular velocity, Linear velocity due to angular motion, Combined linear and angular motion, Relationship between transformation matrix and angular velocity, Mapping velocity vector, Velocity propagation of a link, Angular velocity of a link, Manipulator Jacobian, Jacobian computation, The prismatic joint Jacobian, The rotary joint Jacobian, Jacobian inverse, Jacobian singularity, Computation of singularities, Wrist singularities, Arm singularities and singular configurations.

	UNIT-III
Robo	t Dynamics 05 Hours
Lagra	ngian mechanics, Two degree of freedom manipulator – dynamic model, Lagrange –
Euler	formulation, Velocity of a point on the manipulator, The inertia tensor, the kinetic
energ	jy, The potential energy, Equation of motion, The LE dynamic model algorithm, $^{ m I}$
Deriva	ation of Dynamic equation of motion for 2DOF robot configuration.
Robo	t Trajectory Planning and Control 04 Hours
Defin	itions and planning tasks, Terminology, joint space techniques, Use of a p- Degree
polyn	omial as interpolation function, Cubical polynomial trajectories, Linear function with
parab	olic blends, Cartesian space techniques, A straight –line path, A circular path, Position
path,	Orientation path, Joint-space versus Cartesian space, trajectory planning, problems.
	Suggested List of Experiments
1.	Experiments on direct kinematics using pipe models of 3R, SCARA, RPY robots
2.	Experiments on inverse kinematics using pipe models of 3R, SCARA, RPY robots
3.	Experiments on Linear joint Jacobian
4.	Experiments on Rotary joint Jacobian
5.	Experiments on Estimation of Jacobian for
	(a) 2R robot
	(b) 3R robot
	(c) RPY wrist
6.	Experiments on Robot Singularities for
	(a) 2R robot
	(b) 3R robot
	(c) RPY wrist
7.	Experiments on simulation of cubic polynomial trajectory
8.	Experiments on simulation of trapezoidal velocity trajectory
9.	Dynamic simulation of 2R robot
Cours	se Outcomes: At the end of the course student will be able to
1.	Calculate the direct kinematic solution for a given robot configuration
2.	Calculate the inverse kinematic solution for given robot configuration
3.	Calculate the Jacobian matrix for the given robot configuration
4.	Identify the singular configurations for the given robot configuration
5.	Calculate the dynamic equation of motion and to perform the trajectory planning
	for the given robot configuration
-	
Cours	se Outcomes Mapping with Program Outcomes & PSO
	Program Outcomes→ 1 2 3 4 5 6 7 8 9 10 11 12 $PSO\downarrow$

	↓ C	ourse Outcomes													1	2	3	
		RI2010-1.1	3	2	1	1	1	-	-	-	-	-	-	-	3	2	-	
		RI2010-1.2	3	2	1	1	1	-	-	-	-	-	-	-	3	2	-	
		RI2010-1.3	3	2	1	1	1	-	-	-	-	-	-	-	3	2	-	
		RI2010-1.4	3	2	1	1	1	-	-	-	-	-	-	-	3	2	-	
		RI2010-1.5	3	3	2	1	1	-	-	-	-	-	-	-	3	2	-	
-		1: Low 2: Medium 3: Hi	gh															
T	EXT	BOOKS:																
	1.	Robotics and Control, R K Mithal and I J Nagrath , McGraw Hill																
	2.	Fu, K., Gonzalez, R. and Lee, C. S. G., Robotics: Control, Sensing, Vision and																
		Intelligence, McGraw- Hill, 2008																
	3.	Introduction to Roboti	c Ar	nalys	sis -	Nik	u, S	B., S	Syst	ems	5, Ap	plica	ation	s, Pe	arso	n		
		Education, 2008.																
R	EFEF	RENCE BOOKS:																
	1.	Introduction to Roboti	cs: N	Лесl	nani	cs a	nd (Con	trol	- 2n	d Eo	ditio	า - C	raig,	J. J.,	Add	ison-	
		Welsey, 2nd Edition198	39.															
	2.	Fundamentals of Robo	tics,	An	alysi	s ar	nd C	ont	rol-	Sch	illin	g R	J., P⊦	HI, 20	06.			
Ε	Boo	oks / MOOCs/ NPTEL																
	1.	https://onlinecourses.n	pte	l.ac.	in/n	oc2	0_m	e53	/pre	evie	W							
	2.	https://www.classcentr	al.co	om/	coui	rse/	swa	yam	n-me	echa	anic	s-and	d-coi	ntrol	-of-r	obot	ic-	
		manipulators-43637																
	3.	http://vlabs.iitkgp.ac.in/mr/#																

Wheeled Mobile Robots											
Course Code:	RI2112-1	Course Type:	PCC								
Teaching Hours/Week (L: T: P: S):	(2:0:2:0)	Credits:	03								
Total Teaching Hours:	40	CIE + SEE Marks:	50+50								
Prerequisite	RI2009-1										

Course Learning Objectives:

This Course will enable students to:

- 1. Introduce students to the fundamental concepts of mobile robotics, including various types of mobile robots, their key components, locomotion systems, and wheel configurations.
- 2. Teach students how to develop kinematic models for holonomic and nonholonomic mobile robots and understand their implications on robot motion and control.
- 3. Provide students with a thorough understanding of mobile robot dynamics, focusing on Lagrange-Euler and Newton-Euler methods, and instruct them on how to create computer-based dynamic simulations for wheeled mobile robots.

- 4. Equip students with the skills necessary to implement localization and mapping techniques, such as SLAM and EKF SLAM, and utilize various sensor technologies to enhance mobile robot navigation capabilities.
- 5. Enable students to apply mobile robot navigation competences, including path planning methods, graph construction and search algorithms, and obstacle avoidance techniques, in order to design and implement effective autonomous navigation strategies for mobile robots.

Unit I

Introduction: Introduction to mobile robots and mobile manipulators. Components of a mobile robot. Types of mobile robots.

Locomotion: Introduction, Key issues for locomotion, Types of land-based mobile robots, wheeled locomotion case studies.

Mobile Robot Kinematics: Introduction, Need of mathematical model, degree of freedom. Differential Kinematics: Representing robot position, forward differential kinematics, Inverse differential kinematics, Degree of manoeuvrability, Types of wheels for mobile robots. Kinematic simulation of a mobile robot. A generalized wheel model, Examples: Differential wheel drive mobile robot, Skid steering wheel drive mobile robot, Omni wheel drive mobile robot, Mecanum wheel drive mobile robot, Tricycle wheel drive mobile robot.

Types of Mobile Robots based on Wheel configuration: Holonomic and non-holonomic systems, kinematic model, Pseudo Inverse. Kinematic Simulation of Wheeled Mobile Robots **15 Hours**

Unit II

Dynamics of mobile robot: Lagrange-Euler and Newton-Euler methods. Computer based dynamic (numerical) simulation of different wheeled mobile robots.

Perception: Sensors for Mobile Robots, Sensor classification, characterizing sensor performance, Wheel/motor sensors, Heading sensors, Ground-based beacons, Active ranging, Motion/speed sensors, Vision-based sensors

Mobile Robots –Localisation and Mapping:Autonomy for Robots, Building Blocks ofNavigation, Challenges of Localization, Noise and Aliasing, Mobile robot localisation:Odometry, Dead reckoning, Map based localisation, Markov Localisation, Kalman Filter.Autonomous map building:SLAM, EKF SLAM.15 Hours

Unit-III

Mobile Robot Navigation: Competences for Navigation, Path Planning Methods, Graph Construction: Visibility graph, Voronoi diagram, Cell decomposition methods. Graph Search Methods and Algorithms: Deterministic Graph Search, Breadth-first search, Depth-first search, Grass fire, Dijkstra's algorithm. Path Planning- A* Algorithm and Potential Field methods. Obstacle Avoidance: Bug Algorithm. **10 Hours**

List of Simulation Experiments: ii. Kinematic simulation of a land based mobile robot using a MATLAB script along with Euler method iii. Kinematic simulation and motion animation of a land based mobile robot using MATLAB iv. Kinematic simulation of a Deferential wheel drive mobile robot using MATLAB v Kinematic simulation of a Deferential wheel drive mobile robot using MATLAB

v. Kinematic simulation of an Omni directional wheel drive mobile robot using MATLAB

vi. Kinematic simulation of a Mecanum wheel drive mobile robot using MATLAB

Cour	se Outcomes: At the end of the course student will be able to
1.	Develop a comprehensive understanding of the different types of mobile robots and their key components, including locomotion systems and wheel configurations.
2.	Build kinematic models of holonomic and nonholonomic mobile robots
3.	Apply and analyze the principles of mobile robot dynamics, including Lagrange- Euler and Newton-Euler methods, to design and develop efficient computer-based dynamic simulations of various wheeled mobile robots, accounting for their motion and control.
4.	Acquire skills in implementing localization and mapping techniques for mobile robots, including SLAM and EKF SLAM, and apply various sensor technologies for robot perception to enhance navigation capabilities.
5.	Apply mobile robot navigation competences, including path planning methods, graph construction and search algorithms, and obstacle avoidance techniques, to effectively design and implement autonomous navigation strategies for mobile robots.

Program Outcomes→	1	n	C	4	Г	c	7	0	0	10	11	10		PSO,	Ļ			
↓ Course Outcomes	T	2	כ	4	כ	0	/	0	פ	10	ΤT	12						
RI2112-1.1	3	2	1	-	I	-	I	-	I	-	-	1	3	1	2			
RI2112-1.2	3	2	1	-	I	-	I	-	I	-	-	1	3	2	2			
RI2112-1.3	3	2	1	-	1	-	I	-	I	-	-	1	3	2	2			
RI2112-1.4	3	2	1	-	1	-	I	-	I	-	-	1	3	3	2			
RI2112-1.5	3	2	1	-	1	-	-	-	-	-	-	1	3	3 3 2				

1: Low 2: Medium 3: High

TEXTBOOKS:

- 1. R Siegwart, IR Nourbakhsh, D Scaramuzza, Introduction to Autonomous Mobile Robots, MIT Press, USA, 2011.
- 2. SG Tzafestas, Introduction to Mobile Robot Control, Elsevier, USA, 2014.
- 3. A Kelly, Mobile Robotics: Mathematics, Models, and Methods, Cambridge University Press, USA, 2013.
- 4. S Thrun, W Burgard, D Fox, Probabilistic Robotics, MIT Press, USA, 2005.
- 5. G Dudek, M Jenkin, Computational Principles of Mobile Robotics, Cambridge University Press, USA, 2010.

Web links and Video Lectures (e-Resources):

https://onlinecourses.nptel.ac.in/noc22_me38/preview

	Robe	ot Programn	ning												
Cou	ırse Code:	RI2607-1	Course Type:	PCC Lab											
Теа	ching Hours/Week (L: T: P: S):	0:0:2:0	Credits:	01											
Tot	al Teaching Hours:	15	CIE + SEE Marks:	50+50											
Pre	requisite	RI2009-1													
	Teaching Depart	ment: Robotics &	k AI Engineering												
Cour	se Objectives:														
1.	Understand the features of Dok	oot Magician and	Dobot Studio Software												
2.	Understand the concept of RAF	PID Programming													
3.	Understand the hardware confi	guration and abil	ities of ABB IRB 1600 Rob	ot											
4.	Understand the features of CO	GNIX camera and	its application												
	List of Experiments														
-	Experiment on pick and place operation using DOROT Magician (mini robot)														
1.	Experiment on pick and place operation using DOBOT Magician (mini robot) Using Suction Cup and b) Using Pneumatic Gripper														
2	Using Suction Cup and b) Using Pneumatic Gripper Experiment to perform different operations using DOBOT Magician (mini robot)														
۷.	Experiment to perform different operations using DOBOT Magician (mini robot) (a) Sorting operation														
	(a) Sorting operation(b) Stacking operation														
	(b) Stacking operation (c) Palletising operation														
3.	Experiment to Write and Dra	w with pen tool u	ising DOBOT Magician (m	nini robot)											
4.	Demonstration of 3D Printin	g an object using	DOBOT magician (mini ro	obot)											
5.	Software simulation in Rol	oot Studio Softw	vare: Introduction to Ro	bot Studio,											
	Programming concepts, Libr	aries, geometries,	and CAD files.												
6.	Introduction to RAPID progr	amming: - Basics	of RAPID Programming, L	oops, Rules.											
	and recommendations for R	APID syntax.		C											
	RAPID robot functionality: In	istructions, I/O sig	gnals, RAPID Programmin	g Structure:											
7	Simulation to perform pick	ata with Multiple	values: Arrays, Composite	e Data types											
/.	Software	and place oper													
8.	Simulation to perform conve	eyor tracking and	palletizing operation in R	obot Studio											
	Software	, ,													
9.	Simulation to perform sortin	g operation of an	object in Robot Studio S	oftware											
10.	Introduction to COGNEX C	Camera: basics o	f COGNEX camera, intro	oduction to											
	camera programming using	insight explorer s	oftware.												
11.	ABB IRB 1600 robot: Introduc	ction to ABB robo	t, IRC5 single cabinet cont	roller, teach											
10	pendent, hardware connection	on diagrams, end	effectors,	•											
12.	Demonstration of ABB IRB	1600 robot: Pick	and place operation usi	ng two jaw											
1२	Gripper, three Jaw gripper an	aramming in too	eluing operation.	of the came											
±	using ABB robot	gramming in teac	in periodina and execution	or the same											

(Course Outcomes: At the end of the course student will be able to																	
	1.	Develop ABB program f	or e	exect	uting	g an	y de	efine	ed ta	ask								
	2.	Perform process autom	atio	n us	ing	invc	lved	d wi	th R	obo	ots							
(Course Outcomes Mapping with Program Outcomes & PSO																	
Program Outcomes123456789101112PSO																		
	↓ Co	↓ Course Outcomes 1 2 3																
		RI2607-1.1 3 2 - 3 3 - - - 1 - 3 2																
		RI2607-1.2	3	1	-	3	3	-	-	-	-	-	-	1	-	3	2	
		1: Low 2: Medium 3	: Hi	gh														
	REFEF	RENCE BOOKS:																
	1. ROBOTICS Product specification IRB 1600/1660,ABB Robots																	
		2. ABB Robotics Operat	ing	Mar	nual	Rob	ots	tudi	0									

Course Code:RI2011-1Course Type:IPCCTeaching Hours/Week (L: T: P: S):(3:0:2:0)Credits:04Total Teaching Hours:50CIE + SEE Marks:50+50PrerequisitePH 1001-1, RI2009-1Teaching Department: Robotics and Artificial IntelligenceCourse Objectives:1.Comprehend the basic aviation history and UAV systems.2.Acquire the knowledge of basic aerodynamics and performance.3.Understand the stability and control air vehicles4.Understand the propulsion, loads and structures.5.Develop and test the remote controlled, autonomous aerial vehiclesUNIT-IThe Air VehicleOf HoursBasic aerodynamics of UAV systems, classes and missions of UAVs, definitions and terminology, UAV fundamentals, examples of UAV systems-very small, small, medium and large UAVBasic aerodynamicsOtherwareOtherwareOtherwareOtherwareOtherwareOtherwareUNIT-IIStability and ControlUNIT-II	Micro Aerial Vehicles														
Teaching Hours/Week (L: T: P: S):(3:0:2:0)Credits:04Total Teaching Hours:50CIE + SEE Marks:50+50PrerequisitePH 1001-1, RI2009-1Teaching Department: Robotics and Artificial IntelligenceCourse Objectives:1.Comprehend the basic aviation history and UAV systems.2.Acquire the knowledge of basic aerodynamics and performance.3.Understand the stability and control air vehicles4.Understand the propulsion, loads and structures.5.Develop and test the remote controlled, autonomous aerial vehiclesUNIT-IThe Air Vehicle06 HoursIntroduction aviation history and overview of UAV systems, classes and missions of UAVs, definitions and terminology, UAV fundamentals, examples of UAV systems-very small, small, medium and large UAVBasic Aerodynamics05 HoursBasic aerodynamics equations, aircraft polar, the real wing and airplane, induced drag, the boundary layer, flapping wings, total air-vehicle dragPerformance04 HoursOverview, climbing flight, range and endurance – for propeller-driven aircraft, range- a jet-driven aircraft, guiding flight.UNIT-IIStability and Control15 Hours	Cou	rse Code:	RI2011-1	Course Type:	IPCC										
Total Teaching Hours:50CIE + SEE Marks:50+50PrerequisitePH 1001-1, RI2009-1Teaching Department: Robotics and Artificial IntelligenceCourse Objectives:1.Comprehend the basic aviation history and UAV systems.2.Acquire the knowledge of basic aerodynamics and performance.3.Understand the stability and control air vehicles4.Understand the propulsion, loads and structures.5.Develop and test the remote controlled, autonomous aerial vehiclesUNIT-IThe Air Vehicle06 HoursIntroduction aviation history and overview of UAV systems, classes and missions of UAVs, definitions and terminology, UAV fundamentals, examples of UAV systems-very small, small, medium and large UAV05 HoursBasic Aerodynamics05 HoursBasic aerodynamics equations, aircraft polar, the real wing and airplane, induced drag, the boundary layer, flapping wings, total air-vehicle drag04 HoursOverview, climbing flight, range and endurance – for propeller-driven aircraft, range- a jet-driven aircraft, guiding flight.15 Hours	Tea	ching Hours/Week (L: T: P: S):	(3:0:2:0)	Credits:	04										
Prerequisite PH 1001-1, RI2009-1 Teaching Department: Robotics and Artificial Intelligence Course Objectives: 1. Comprehend the basic aviation history and UAV systems. 2. Acquire the knowledge of basic aerodynamics and performance. 3. Understand the stability and control air vehicles 4. Understand the propulsion, loads and structures. 5. Develop and test the remote controlled, autonomous aerial vehicles UNIT-I The Air Vehicle O6 Hours Introduction aviation history and overview of UAV systems, classes and missions of UAVs, definitions and terminology, UAV fundamentals, examples of UAV systems-very small, small, medium and large UAV Basic Aerodynamics 05 Hours Basic Aerodynamics equations, aircraft polar, the real wing and airplane, induced drag, the boundary layer, flapping wings, total air-vehicle drag Performance 04 Hours Overview, climbing flight, range and endurance – for propeller-driven aircraft, range- a jet-driven aircraft, guiding flight. UNIT-II	Tota	al Teaching Hours:	50	CIE + SEE Marks:	50+50										
Teaching Department: Robotics and Artificial Intelligence Course Objectives: 1. Comprehend the basic aviation history and UAV systems. 2. Acquire the knowledge of basic aerodynamics and performance. 3. Understand the stability and control air vehicles 4. Understand the propulsion, loads and structures. 5. Develop and test the remote controlled, autonomous aerial vehicles UNIT-I The Air Vehicle Of Hours Introduction aviation history and overview of UAV systems, classes and missions of UAVs, definitions and terminology, UAV fundamentals, examples of UAV systems-very small, small, medium and large UAV Basic Aerodynamics OS Hours Basic aerodynamics equations, aircraft polar, the real wing and airplane, induced drag, the boundary layer, flapping wings, total air-vehicle drag Performance OVerview, climbing flight, range and endurance – for propeller-driven aircraft, range- a jet-driven aircraft, guiding flight. UNIT-II Stability and Control	Prer	requisite	PH 1001-1, R	12009-1											
Course Objectives: 1. Comprehend the basic aviation history and UAV systems. 2. Acquire the knowledge of basic aerodynamics and performance. 3. Understand the stability and control air vehicles 4. Understand the propulsion, loads and structures. 5. Develop and test the remote controlled, autonomous aerial vehicles UNIT-I The Air Vehicle 06 Hours Introduction aviation history and overview of UAV systems, classes and missions of UAVs, definitions and terminology, UAV fundamentals, examples of UAV systems-very small, small, medium and large UAV Basic Aerodynamics 05 Hours Basic aerodynamics equations, aircraft polar, the real wing and airplane, induced drag, the boundary layer, flapping wings, total air-vehicle drag Performance Overview, climbing flight, range and endurance – for propeller-driven aircraft, range- a jet-driven aircraft, guiding flight. UNIT-II Stability and Control		Teaching Department:	Robotics and	Artificial Intelligence											
1. Comprehend the basic aviation history and UAV systems. 2. Acquire the knowledge of basic aerodynamics and performance. 3. Understand the stability and control air vehicles 4. Understand the propulsion, loads and structures. 5. Develop and test the remote controlled, autonomous aerial vehicles UNIT-I The Air Vehicle 06 Hours Introduction aviation history and overview of UAV systems, classes and missions of UAVs, definitions and terminology, UAV fundamentals, examples of UAV systems-very small, small, medium and large UAV Basic Aerodynamics 05 Hours Basic Aerodynamics equations, aircraft polar, the real wing and airplane, induced drag, the boundary layer, flapping wings, total air-vehicle drag Performance Overview, climbing flight, range and endurance – for propeller-driven aircraft, range- a jet-driven aircraft, guiding flight. UNIT-II Stability and Control	Cour	Course Objectives:													
2. Acquire the knowledge of basic aerodynamics and performance. 3. Understand the stability and control air vehicles 4. Understand the propulsion, loads and structures. 5. Develop and test the remote controlled, autonomous aerial vehicles UNIT-I The Air Vehicle 106 Hours Introduction aviation history and overview of UAV systems, classes and missions of UAVs, definitions and terminology, UAV fundamentals, examples of UAV systems-very small, small, medium and large UAV Basic Aerodynamics 05 Hours Basic Aerodynamics 05 Hours Basic aerodynamics equations, aircraft polar, the real wing and airplane, induced drag, the boundary layer, flapping wings, total air-vehicle drag 04 Hours Overview, climbing flight, range and endurance – for propeller-driven aircraft, range- a jet-driven aircraft, guiding flight. 15 Hours UNIT-II Stability and Control	1. Comprehend the basic aviation history and UAV systems.														
3. Understand the stability and control air vehicles 4. Understand the propulsion, loads and structures. 5. Develop and test the remote controlled, autonomous aerial vehicles UNIT-I The Air Vehicle O6 Hours Introduction aviation history and overview of UAV systems, classes and missions of UAVs, definitions and terminology, UAV fundamentals, examples of UAV systems-very small, small, medium and large UAV Basic Aerodynamics O5 Hours Basic aerodynamics equations, aircraft polar, the real wing and airplane, induced drag, the boundary layer, flapping wings, total air-vehicle drag Performance Overview, climbing flight, range and endurance – for propeller-driven aircraft, range- a jet-driven aircraft, guiding flight. UNIT-II Stability and Control	 Acquire the knowledge of basic aerodynamics and performance. 														
4.Understand the propulsion, loads and structures.5.Develop and test the remote controlled, autonomous aerial vehiclesUNIT-IThe Air Vehicle06 HoursIntroduction aviation history and overview of UAV systems, classes and missions of UAVs, definitions and terminology, UAV fundamentals, examples of UAV systems-very small, small, medium and large UAVBasic Aerodynamics05 HoursBasic Aerodynamics equations, aircraft polar, the real wing and airplane, induced drag, the boundary layer, flapping wings, total air-vehicle drag04 HoursPerformance04 HoursOverview, climbing flight, range and endurance – for propeller-driven aircraft, range- a jet-driven aircraft, guiding flight.15 Hours	3.	 Acquire the knowledge of basic aerodynamics and performance. Understand the stability and control air vehicles 													
5. Develop and test the remote controlled, autonomous aerial vehicles UNIT-I The Air Vehicle 06 Hours Introduction aviation history and overview of UAV systems, classes and missions of UAVs, definitions and terminology, UAV fundamentals, examples of UAV systems-very small, small, medium and large UAV Basic Aerodynamics 05 Hours Basic Aerodynamics equations, aircraft polar, the real wing and airplane, induced drag, the boundary layer, flapping wings, total air-vehicle drag Performance 04 Hours Overview, climbing flight, range and endurance – for propeller-driven aircraft, range- a jet-driven aircraft, guiding flight. UNIT-II Stability and Control	4. Understand the propulsion, loads and structures.														
UNIT-IThe Air Vehicle06 HoursIntroduction aviation history and overview of UAV systems, classes and missions of UAVs, definitions and terminology, UAV fundamentals, examples of UAV systems-very small, small, medium and large UAV05 HoursBasic Aerodynamics05 HoursBasic aerodynamics equations, aircraft polar, the real wing and airplane, induced drag, the boundary layer, flapping wings, total air-vehicle drag04 HoursPerformance04 HoursOverview, climbing flight, range and endurance – for propeller-driven aircraft, range- a jet- driven aircraft, guiding flight.15 Hours	5.	Develop and test the remote cor	ntrolled, autono	omous aerial vehicles											
The Air Vehicle06 HoursIntroduction aviation history and overview of UAV systems, classes and missions of UAVs, definitions and terminology, UAV fundamentals, examples of UAV systems-very small, small, medium and large UAV05 HoursBasic Aerodynamics05 HoursBasic aerodynamics equations, aircraft polar, the real wing and airplane, induced drag, the boundary layer, flapping wings, total air-vehicle drag04 HoursPerformance04 HoursOverview, climbing flight, range and endurance – for propeller-driven aircraft, range- a jet- driven aircraft, guiding flight.15 Hours			UNIT-I		I										
Introduction aviation history and overview of UAV systems, classes and missions of UAVs, definitions and terminology, UAV fundamentals, examples of UAV systems-very small, small, medium and large UAV Basic Aerodynamics 05 Hours Basic aerodynamics equations, aircraft polar, the real wing and airplane, induced drag, the boundary layer, flapping wings, total air-vehicle drag 04 Hours Performance 04 Hours Overview, climbing flight, range and endurance – for propeller-driven aircraft, range- a jet-driven aircraft, guiding flight. 15 Hours	The /	Air Vehicle			06 Hours										
Basic Aerodynamics 05 Hours Basic aerodynamics equations, aircraft polar, the real wing and airplane, induced drag, the boundary layer, flapping wings, total air-vehicle drag 04 Hours Performance 04 Hours Overview, climbing flight, range and endurance – for propeller-driven aircraft, range- a jet-driven aircraft, guiding flight. jet-driven aircraft, for the set of t	Intro defini medi	duction aviation history and overv itions and terminology, UAV funda um and large UAV	view of UAV sy amentals, exam	stems, classes and mission ples of UAV systems-very s	ns of UAVs, small, small,										
Basic aerodynamics equations, aircraft polar, the real wing and airplane, induced drag, the boundary layer, flapping wings, total air-vehicle drag Performance Overview, climbing flight, range and endurance – for propeller-driven aircraft, range- a jet-driven aircraft, guiding flight. UNIT-II Stability and Control 15 Hours	Basic	Aerodynamics			05 Hours										
boundary layer, flapping wings, total air-vehicle drag Performance Overview, climbing flight, range and endurance – for propeller-driven aircraft, range- a jet- driven aircraft, guiding flight. UNIT-II Stability and Control 15 Hours	Basic	aerodynamics equations, aircraft	polar, the real	wing and airplane, induce	d drag, the										
Performance 04 Hours Overview, climbing flight, range and endurance – for propeller-driven aircraft, range- a jet- driven aircraft, guiding flight. jet- UNIT-II Stability and Control 15 Hours	boun	dary layer, flapping wings, total ai	r-vehicle drag												
Overview, climbing flight, range and endurance – for propeller-driven aircraft, range- a jet- driven aircraft, guiding flight. UNIT-II Stability and Control 15 Hours	Perfo	ormance			04 Hours										
UNIT-II 15 Hours	Overv drive	view, climbing flight, range and en n aircraft, guiding flight.	durance – for p	propeller-driven aircraft, ra	nge- a jet-										
Stability and Control 15 Hours			UNIT-II												
	Stabi	lity and Control			15 Hours										

Overview, stability, longitudinal, lateral, dynamic stability, aerodynamics control, pitch control, lateral control, autopilots, sensor, controller, actuator, airframe control, inner and outer loops, flight-control classification, overall modes of operation, sensors supporting the autopilot.

Propulsion overview, thrust generation, powered lift, sources of power, the two-cycle engine, the rotary engine, the gas turbine, electric motors, and sources of electrical power. Loads and structures loads, dynamic loads, materials, sandwich construction, skin or reinforcing materials, resin materials, core materials, construction techniques.

UNIT-III

Mission Planning and Control09 HoursAir vehicle and payload control, reconnaissance/surveillance payloads, weapon payloads,
other payloads, data-link functions and attributes, data-link margin, data-rate reduction,
launch systems, recovery systems, launch and recovery trade-offs.09 Hours

	Suggested List of Experiments
1.	Study on development and integration of Drones.
2.	Study on development and integration of Unmanned Aerial Systems.
3.	Integration and testing Remote Controlled Fixed Wing UAV
4.	Integration and testing Remote Controlled Vertical Take-off and Landing UAV
5.	Integration and testing Autonomous Fixed Wing UAV
6.	Integration and testing Autonomous Vertical Take-off and Landing UAV
7.	Integration and testing of Hybrid UAV
8.	Application of UAV in Remote sensing
9.	Application of UAV in Disaster management
10.	Image processing using Raspberry Pi for agricultural applications

Course Outcomes: At the end of the course student will be able to

1.	Explain the basic of aerodynamics performance and apply the basic concepts of
	UAV systems and experimentally study the integration of drones.

- **2.** Explain the stability and control required for UAV and Select the propulsion system, materials for structures. Experimental studies on disaster management.
- **3.** Develop and test the remote controlled autonomous aerial vehicles. Experimental study on remote controlled and autonomous UAV.
- **4.** Design air vehicles for different payloads and design standards. Experimental study on autonomous and remote-controlled Vertical Take-off and Landing UAV
- **5.** Develop and test the rotary wing, fixed wing aerial vehicles. Experimental study on Unmanned aerial vehicles and fixed wing UAV.

Course Outcomes Mapping with Program Outcomes & PSO

Program Outcomes \rightarrow	1	2	3	4	5	6	7	8	9	10	11	12		PSO.	Ļ
↓ Course Outcomes													1	2	3
RI2011-1.1	2	2	3	2	2	-	-	-	-	-	-	2	2	-	2
RI2011-1.2	2	2	3	2	2	-	-	-	-	-	-	2	2	-	2

		RI2011-1.3	2	2	3	2	2	-	-	-	-	-	-	2	2	-	2	
		RI2011-1.4	2	2	3	2	2	-	-	-	-	-	-	2	2	-	2	
		RI2011-1.5	2	2	3	2	2	-	-	-	-	-	-	2	2	-	2	
		1: Low 2: Medium 3: Hi	gh															-
Т	EXTE	BOOKS:																
	1.	Paul Gerin Fahlstrom, Thomas James Gleason, Introduction to UAV Systems, Wiley																
		Publication, 4th Edition, 2012.																
	2. Landen Rosen, Unmanned Aerial Vehicle, Alpha Editions																	
R	EFER	ENCE BOOKS:																
	1.	Unmanned Aerial Veh	icles	5: D(DD's	Ac	quis	itio	n, A	lpha	a Ed	ition	s					
	2.	Valavanis, Kimon P, Ur	nma	nne	d Ae	erial	Vel	nicle	es, S	prir	nger	, 201	.1					
	3.	Valavanis, K., Vachtse	evan	IOS,	Geo	orge	eJ,	Ha	ndb	ook	of	Unr	nanr	ned	Aeria	al Ve	hicle	s,
		Springer, 2015.				-												
Ε	Boo	ks / MOOCs/ NPTEL																
	1.	https://onlinecourses.	npte	el.ac	.in/r	noc2	2_n	ne38	8/pr	evie	ew							

	Control Systems for Robotics Lab Course Code: RI2608-1 Course Type: PCC Lab														
Cou	rse Code:	RI2608-1	Course Type:	PCC Lab											
Teac	ching Hours/Week (L: T: P: S):	0:0:2:0	Credits:	01											
Tota	al Teaching Hours:	15	CIE + SEE Marks:	50+50											
Prer	equisite	RI2009-1													
Teaching Department: Robotics and Artificial Intelligence															
Cours	Course Objectives:														
1.	1. To determine the time and frequency domain reposes of a given second order														
system using software package or discrete components.															
2.	2. To design and analyze Lead, Lag and Lag – Lead compensators for given														
	specifications.														
3.	3. To draw the performance characteristics of ac and DC servomotors and synchro-														
	transmitter receiver pair.														
4.	To study the DC position & feed	back control s	system and to study th	e effect of P, PI,											
	PD and PID controller and Lead c	compensator of	on the step response o	f the system.											
5.	To write a script file to plot roo	ot locus, bode	e plot, to study the st	ability of the											
	system														
	List	t of Experime	ents												
1.	Speed control Experiments														
	 a) Speed control of DC mot 	tor													
	b) Speed control of AC mot	or													
	c) Speed control of Stepper	r motor													
	d) Speed control of BLDC m	notor													
2.	Experiment to determine frequer	ncy response c	of a second order syste	m											

		a) To design a pa	passive RC lead compensating network for the given															
		specifications,	viz,	the	max	imu	ım p	has	e le	ad a	and	the f	requ	ency	v at v	vhich	n it	
		occurs and to	obta	in t	he f	requ	lenc	y re	espo	nse	•							
		b) To design a pa	assiv	e Ro	C lag	g co	mp	ensa	ating	g ne	etwc	ork fo	or the	e giv	en			
		specifications,	viz,	the	max	κimι	ım p	bhas	sela	g ar	nd th	ne fre	eque	ncy a	at wh	ich i	t	
		occurs and to	obta	in tł	ne fr	equ	enc	y re	spo	nse.								
		c) To determine e	expe	rim	enta	lly t	he t	rans	sfer	funo	ctior	n of t	he la	ig co	mpe	nsat	ing	
		network															. I	
3.		To study a second ord	er sy	/stei	m ar	nd v	erify	' the	e eff	ect	of (a) P,	(b) F	РΙ, (с)	PD	and	(d) PI	D
4		controller on the step r	esp	onse	<u>e.</u>						•							
4.		I o simulate a typical se	ecor	nd o	rder	sys	tem	and	d de	terr	nıne	e step	o res	pons	se an	d ev	aluat	e
		timeresponse specifica	atior	۱S.											<i>.</i>			
		To evaluate the effect	01 6	addi	ng p		s ar	nd z	eros	s or	n tim	ne re	spor	nse c	of see	cond	orde	er
5		system. To evaluate the	e ett	ecto	от ро		oca	tion	on	star	Dility						- ا: ا: ا	
э.		open-loop frequency and closed loop transient response														у,		
6		open-loop frequency and closed loop transient response To study the effect of open loop poles and zeros on root locus contour Comparation														10		
0.		study of Bode, Nyquist and root locus with respect to stability.														/e		
7		study of Bode, Nyquistand root locus with respect to stability.To simulate a D.C. Position control system and obtain its step response.																
8		To simulate a D.C. Position control system and obtain its step response.To verify the effect of input waveform, loop gain and system type on steady state errors.																
9		To verify the effect of input waveform, loop gain and system type on steady state errors. Inverted Pendulum control Experiment																
10).	Inverted Pendulum control Experiment																
-		Experiments on Height and orientation control of a Quadcopter														_		
С	ours	e Outcomes: At the en	d of	the	ε ςοι	ırse	stu	den	t wi	ll be	abl	e to						
1	L.	Utilize software packad	ie ai	nd c	liscr	ete	com	por	nent	s in	ass	essin	a the	e tim	e an	d		Τ
		frequency domain resp	ons	e of	ag	iven	sec	onc	dor	der	syst	em.	5					
2	2.	Determine the perform	nanc	e ch	nara	cteri	istic	s of	AC	and	DC	mot	ors	used	in co	ontro	bl	
		systems.																
3	3.	Simulate the DC positi	on a	nd ⁻	feed	lbac	k cc	ontr	ol sy	/ste	m to	o stu	dy th	ne ef	fect	of P,	PI,	
		PD and PID controller	and	Lea	d cc	mp	ensa	ator	on	the	step	o res	pons	e of	the s	syste	m.	
4	1.	Develop script files to	plot	Ro	ot lo	ocus	, Во	de	plot	and	d Ny	/quis	t plo	ot to	stud	y the	2	
		stability of control syst	em.															
5	5.	Stabilization and contr	ol o	f the	e un	stak	ole ir	nver	ted	per	ndul	um s	syste	m wi	th a	close	<u>)</u> -	
		loop control system ar	nd D	esig	n a	Con	trol	ler f	or C	Qua	dco	oter	heigl	ht an	nd or	ienta	ation	
C	ours	urse Outcomes Mapping with Program Outcomes & PSO																
-	$\begin{array}{ c c c c c c } \hline Program Outcomes \rightarrow & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & PSO \\ \hline $													PSO,		-		
-	↓ C	ourse Outcomes																
		RI2608-1.1	3	3	2	2	2	-	-	-	-	-	-	2	2	-	2	
		RI2608-1.2	3	3	2	2	2	-	-	-	-	-	-	2	2	-	2	
		RI2608-1.3	3	3	2	2	2	-	-	-	-	-	-	2	2	-	2	
		RI2608-1.4	3	3	2	2	2	-	-	-	-	-	-	2	2	-	2	

		RI2608-1.5	3	3	2	2	2	-	-	-	-	-	-	2	2	-	2	
		1: Low 2: Medium	3: H	igh														-
R	EFEF	RENCE BOOKS:																
	1.	Katsuhiko Ogata (2004	I) ″ N	Лоd	ern	Cor	ntrol	Eng	gine	erir	ıg" l	Prent	ice F	lall c	of Inc	lia Lt	d.,	
		New Delhi																
	2.	I. J. Nagarath and M. G	іора	nl,(20)02)	"Co	ontro	ol sy	/stei	m" [Vew	/ Age	Inte	rnat	ional	Pub	lishe	٢
	3.	Harrison H.L. and Bolli	ngei	r J.G	. (19	968)	"Αι	iton	natio	с со	ntro	ols", 2	2Pnd	P ed	ition	,		
		Interna-tional Text Bo	ok (Co. l	J.S.A	۹.												
	4.	Gopal M (2005) " Mod	ern	Con	trol	Sys	tem	s", I	New	' Ag	e In	terna	ation	al Pu	ublish	ner		
	5.	Benjamin.Kuo.C. (1995) "Ai	utor	nati	c Co	ontro	ol S	yste	ms"	, EE	E, 7P	thP I	ditio	on Pr	entio	e Ha	all
		of India Ltd. New Delh	i															
	6.	Appukuttan K. K. Cont	rol E	ingi	neer	ing,	Ox	forc	l un	iver	sity	publ	icatio	on, 2	009			