DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

	Minor in Computer Science											
			نې	Tea	ching H	ours/We	ek		Exam	ination		
SI. No.	Course and Course code	Course Title	Feaching Dep	Theory Lecture	Tutorial	Practical/ Drawing	PBL	Duration in hr	CIE Marks	SEE Marks	Fotal Marks	Credits
	1			L	Т	Р	J	_			-	
1	CS1006-1	Fundamentals of C Programming	CS	2	0	2	0	04	50	50	100	3
	CS2005-1	Introduction to Object oriented programming										
2	CS2006-1	Fundamentals of Data Structures	CS	2	0	2	0	04	50	50	100	3
3	CS3006-1	Introduction to the Design and Analysis of Algorithms	CS	2	0	2	0	04	50	50	100	3
4	CS2009-1	Fundamentals of Database Management Systems	CS	2	0	2	0	04	50	50	100	3
5	CS2104-1	Overview of Operating Systems	CS	3	0	0	0	03	50	50	100	3
c	CS2007-1	Introduction to Machine Learning	CS.	2	0	n	0	04	FO	FO	100	3
υ	CS3007-1	Fundamentals of Computer Network and communication	CS	2	U	2	U	04	50	50	100	
	TOTAL 13 0 10 0 23 300 300 600 18											

MINOR SCHEME

FUNDAMENTALS OF C PROGRAMMING												
Cou	rse Code:	CS1006-1										
Tea	ching Hours/Week (L: T: P)	2:0:2	Credits:	03								
Tota	al Teaching Hours:	25+0+26	CIE + SEE Marks:	50+50								
Prer	requisites	Nil										
Teaching Department: Computer Science & Engineering												
Course Objectives:												
1.	Make students learn the basics	of C programmi	ng language including the l	basic data types,								
2	2 Apply the concepts of decision making and looping in problem solving to demonstrate its											
2. Apply the concepts of decision making and looping in problem solving to demonstrate its usage using simple programs.												
3.	Apply the concepts of Arrays,	User-defined f	unctions and code reusab	ility in problem								
	solving along with parameter passing and returning with the help of user defined											
4.	Demonstrate the usage of Strir	ngs and Structur	es									
5.	Demonstrate the usage of Poir	nters, and File ha	andling that are essential fo	r understanding								
	the concepts with simple exam	ples.										
		UNIT-I		Γ								
Intro	duction To C Programming La	nguage		10 Hours								
Basic	C DataTypes, operators, Operato	or precedence, A	Arithmetic expressions and	type conversion.								
Decis	sion Making and Branching:											
Decis	ion making with if statement,	Nesting of ife	lse statements, ternary op	erator, the switch								
state	ment, the go to statement, break	and continue s	tatements.,									
Decis	sion Making and Looping:											
The v	while statement, the dowhile sta	atement, the for	statement, Jumps in Loops	5.								
		UNIT-II		Ι								
Arra	ys			10 Hours								
Array	vs (1-D, 2-D) Initialization and De	claration.										
User	-Defined Functions											
Argu	ment Passing – call by value, ca	ll by reference,	Category of Functions. Mai	naging Command								
line a	arguments			- N A A A								
Exam	iples: Linear Search, Binary Searc	ch, Bubble sort,	Selection Sort, Trace and	Transpose, Matrix								
Dock	igs aring and Initializing strings. Strin	a manipulation	functions									
Decla	Declaring and Initializing strings, String manipulation functions.											
Struc	tures			05 Hours								
Struc	tures and Unions: Usage and nes	sting		<u> </u>								
Pointe	Pointers and File Handling:											
Access	sing of variables using Pointers, a	rray of pointers		1								

Basic fi	Basic file operations: Open, Close, Read, Write, Append and concatenate														
		S	ugg	este	d Lis	st of	f Exp	beri	men	ts					
					P	ART	Α								
1.	Write a C program to fir	nd th	ne ro	ots	of a	qua	drat	ic eo	quat	ion a	x²+b	x+c=	:0		
2.	Write a C program to fir	nd th	ne su	ım c	of all	the	digi	ts ar	nd o	ccur	rence	of a	digit	in th	e number.
3.	Write a C program to fir	nd th	ne G	CD a	and I	CM	of	giver	n two	o nu	mber	s usii	ng Eu	clid's	s method.
4.	Write a C program to pr	rint t	he p	prime	e nu	mbe	ers ir	n a g	iven	ran	ge.				
5.	Write a C program to fi	nd if	a gi	ven	strir	ng is	а р	alino	drom	ne or	not	using	ı strin	ig ma	anipulation
	functions.														
6.	Write a C program to	inpu	it N	real	nui	nbe	rs ir	ו 1-	D ar	ray.	Com	pute	mea	n, va	riance and
	Standard Deviation.	, .		_	00		<u>، م</u>			-		,		,	
-	$\frac{1}{1}$														
1.	pointers														
Q	 pointers. 8 Write a C program to copy contents of one file to another file 														
0. Q	 o. vvrite a C program to copy contents of one file to another file. 9. Write a C program to perform a linear search for a given key integer in a single dimensional. 														
<i>J</i> .	array of numbers and report success or failure in the form of a suitable message using														
	functions.														
10.	10. Write a program to demonstrate the use of pointers and files.														
11.	Write a C program to enter the information like name, register number, marks in 6 subjects														
	of N students into an a	rray	of s	struc	ture	s, ar	nd fi	nd	the a	avera	age 8	k dis	olay g	grade	e based on
	average for each studer	ıt.													
	Average				6	irad	le								
	80-100					<u>)istir</u>	nctic	n							
	60-79					irst		S 'la a a							
	40-59				2	ail	na C	lass							
12	Write a C program to re	ad t	hov	میاد	c int	all 0 2 ·	two	dim	anci	onal	arra	/Δ fi	nd th		n of all the
12.	elements of a row, sum	of al	l the	eler	ment	ts of	acc	blum	n. fi	nd th	ne tot	al su	mof	all th	e elements
	of the two dimensional	arra	v A a	and	print	the	res	ults.	,			ur su			e elements
Cours	se Outcomes Mapping v	vith	Pro	grar	່ກ Oເ	ıtco	mes	8	PSO						
	• -				<u> </u>		r –								
P	rogram Outcomes→	1	2	3	4	5	6	7	8	9	10	11	12	ł	200↓
↓ Co	ourse Outcomes													1	2
	CS1006-1.1	3	-	-	-	-	-	-	-	-	-	-	-	-	2
	CS1006-1.2	2	3	-	-	-	-	-	-	-	-	-	-	-	3
	CS1006-1.3	2	3	-	-	-	-	-	-	-	-	-	-	-	3
	CS1006-1.4	2	2	3	-	-	-	-	-	-	-	-	-	-	3
	CS1006-1.5	2	3	-	-	-	-	-	-	-	-	-	-	-	3
	1: Low 2: Medium 3: I	ligh													
TEXT	BOOKS:														

1.	E. Balaguruswamy, "Programming in ANSI C", Tata McGraw Hill, 3 rd Edition, 2004.									
2.	Jacqueline A. Jones & Keith Harrow, "C Programming with Problem Solving", Pearson,									
REFEF	REFERENCE BOOKS:									
1	Kernighan & Ritchie, "The C Programming (ANSI C)", Prentice Hall; 2ndEdition, 1998.									
C	Rajiv Khanna, "Computer Concepts and C Programming", New Age International Pvt Ltd									
2	Publishers, 1st Edition, 2006.									
3	Yashwant Kanetkar, "Let Us C", 5 th Edition, BPB Publications, New Delhi, 2004.									
E Boo	ks / MOOCs/ NPTEL									
1	http://www.lysator.liu.se/c/bwk-tutor.html#introduction									
2	http://www.acm.uiuc.edu/webmonkeys/book/c_guide/									
2	C programming Tutorial by Mark Burgers <u>http://markburgess.org/CTutorial/C-Tut-</u>									
3	<u>4.02.pdf</u>									
4	http://nptel.ac.in/courses/106105085/4									
5	https://www.lynda.com/C-training-tutorials/1249-0.html									

	INTRODUCTION TO OF	BJECT ORIEN	TED PROGRAMMING	j						
Cour	se Code:	CS2005-1								
Teac	hing Hours/Week (L: T: P):	2:0:2	Credits:	03						
Total	Teaching Hours:	25+0+26	CIE + SEE Marks:	50+50						
Prere	equisite	CS1001-1/CS1	004-1							
Teaching Department: Computer Science & Engineering										
Course Objectives:										
1. Learn fundamental features of object-oriented language and JAVA programming constructs.										
2. Develop and run simple Java programs using OOPS concepts of java.										
3.	3. Create multi-threaded programs and event driven Graphical User Interface (GUI) programming									
	using swing package.									
		UNIT-I								
INT										
RODU	CTION:			10 Hours						
I ntrod	ucing Classes–Class Fundamentals,	Declaring Objec	ts, Assigning Object Referen	ce Variables,						
Introd	ucing Methods, Constructors, this ke	yword, Method	overloading, using objects as	; parameters,						
Argument passing, returning objects, Access control, static, final, Using command line arguments,										
variabl	le length arguments.									
Inheri	tance – Inheritance Basics, using sur	her creates a Mi	ultilevel Hierarchy, when con	structors are						

Inheritance – Inheritance Basics, using super, creates a Multilevel Hierarchy, when constructors are called? Method Overriding, using abstract classes, Using final with Inheritance.

(Te	(Textbook 1, Chapter – 6-9)																
	UNIT-II																
Pac	Packages & Exception Handling: 10 Hours																
Pac	Packages and Interfaces – Packages, Access protection, Importing Packages, Interfaces.																
Exc	Exception Handling – Exception-Handling Fundamentals, Exception Types, Uncaught Exceptions,																
Usir	Using try and catch, multiple catch Clauses, Nested try statements, throw, and throws, finally.																
(Te	(Textbook 1, Chapter – 10-11, 19, 22)																
	UNIT-III																
Filo	UNIT-III File Handling & String Handling 5 Hours																
Eilo	Handling Sorial Accoss File	9 x E	ila N	lath	odc										51	iouis	
File Handling – Serial Access Files, File Methods.																	
Java basic string handling(Basic Wethods)																	
		Sı	igge	ested	d Lis	t of	Exp	perin	men	ts							
1.	Use java program to dem	ons	trate	the	00	Рсо	nce	ots.									
2.	Demonstrate the file hand	dling	g usi	ng Ja	ava												
3.	Implement the java progr	ams	tha	t use	es th	e co	nce	pts (of ex	сер	tion l	nand	ing.				
4.	Develop Java program to	sto	re ar	nd re	trie	/e da	ata f	rom	dat	abas	se.						
5.	5. Java programs to establish network connectivity																
6.	Demonstrate the web app	olica	tion	dev	elop	mer	nt us	sing	serv	lets	and .	JSP					
7.	Mini Project																
<u>Coι</u>	Course Outcomes: At the end of the course student will be able to																
1.	Develop classes and apply	y ob	ject	-orie	nteo	l fea	ture	es to	sol	/e re	al wo	orld p	oroble	ems.			
2.	Develop robust Java pr	ogra	ams	usir	ng e	exce	ptio	n h	and	ling	feat	ures,	imp	leme	nt m	nultipl	е
	inheritance using interfac	es a	nd c	rgar	nize	the a	app	icat	ion d	lass	es us	ing p	acka	ges.			
3.	Develop programs that ca	in ru	in co	oncu	rren	t tas	ks u	sing	mu	ltith	readi	ng ar	nd pe	rform	ו bas	ic file	
	operations.		I.									4					_
4.	interactions with the LI u	usii cina	ng Ja	ava s nt h	swin	gs a ing i	na i moc	nan bani	age	vario	ous e	event	s gen	erate	ea by	user	
5		sing st.cl				nig i nonc	ricc	Ch			d apr	slv +b	o rial	at da	ta ct	auctur	
J.	to manage collection of d	lata	asse ucin	s usi a th		lloct	ions	frai	now	ork	r aht	Jiy tii	engi	n ua	ia si	uctui	e
		αια	usin	y un		neet	10113	nai	new	UIK.							
Соц	rse Outcomes Mapping wit	h P	roar	am	Out	com	es 8	V PS	50								
	Program Outcomes→	1	2	3	4	5	6	7	8	9	10	11	12		PSO		1
	Course Outcomes					-		_						1	2	3	1
	CS2005-1.1	3	1	3		1							2	2	3	-	1
	CS2005-1.2	3	1	3		2							2		3		1
	CS2005-1.3	3	1	3		3							2		3		1
	CS2005-1.4	3	1	3		3							2	2	3		
	CS2005-1.5	3	1	3		3							2	_	3		1
	1: Low 2: Medium 3: H	liah				-			1		I			I			1
TEX	TEXTBOOKS:																
1.	1. Herbert Scheldt, Java the Complete Reference, 7th Edition, Tata McGraw Hill, 2007.																
2.	 Jan Graba, An Introduction to Network Programming with Java, 2007, Springer Publications. 																
REF	EFERENCE BOOKS:																

1.	Mahesh Bhave and Sunil Patekar, "Programming with Java", First Edition, Pearson Education,
	2008, ISBN:9788131720806
2.	Rajkumar Buyya,SThamarasiselvi, xingchen chu, Object oriented Programming with Java, Tata
	McGraw Hill education private limited.
3.	Richard A Johnson, Introduction to Java Programming and OOAD, CENGAGE Learning.
4.	E Balagurusamy, Programming with Java A primer, Tata McGraw Hill companies.
E Boo	ks / MOOCs/ NPTEL
1.	Online course material by Oracle : http://docs.oracle.com/javase/tutorial/index.html
2.	https://www.udemy.com/courses/search/?q=java&price=pricefree&view=grid
3.	Oracle: www.oracle.com/events/global/en/java/java-a-beginners-guide-1720064.pdf
4.	NPTEL:www.nptelvideos.com/java/java_video_lectures_tutorials.php

	FUNDAMENTAL	S OF DATA	STRUCTURES						
Cou	rse Code:	CS2006-1							
Teac	ching Hours/Week (L: T: P):	2:0:2	Credits:	03					
Total Teaching Hours:25+0+26CIE + SEE Marks:50+5									
Prerequisite CS1001-1/CS1004-1									
	Teaching Department: Computer Science & Engineering								
Cours	se Objectives:								
1.	Outline the concepts of data struct	ure, it's operati	ons, Memory allocation fun	ctions and					
	design the programs using arrays and	d structures, poi	nters, pointer to structure.						
2.	Implement linear data structure stack	and usage of st	tacks in various applications.						
3.	Implement linear data structure Ordin	nary Queue, Circ	cular Queue and priority que	ues					
4.	Implement the operations of singly lin circular doubly lists.	nked lists and ci	rcular linked lists, doubly link	ed list and					
5.	Identify and differentiate different	types of binary	/ trees and binary search	trees data					
	structures and also implement them	and illustrate t	hreaded binary trees, expres	sion trees,					
	graph representation and techniques of hashing.								
		UNIT-I							
				10 Hours					
Intro	duction: Data Structure Definition, Cla	assification (Prin	nitive and non-primitive), da	ta structure					

operations.

Arrays and Structures: Array of Structures and Pointer to Structure, Programming Example. **Linear Data structures-Stack:** Introduction and Definition, **Representation of stack:** Representation of stacks, Primitive operations on stacks

Applications of Stack: Conversion of Expressions

Algorithms and C programs with tracing Examples: For evaluating postfix expression, infix to postfix conversion.

Recursion: Definition, Implementation, Examples on Recursion with tracing: Factorial function, Fibonacci sequence.

UNIT-II

Linear Data structures-Queue: Introduction and Definition, Representation of Queue, circular queue, priority queue.

Dynamic Memory Allocation functions with programming examples

Linear Data structures-Linked List: Singly Linked List Using dynamic variables ,Inserting and deleting nodes, Other list Operations on singly Linked List, Header Nodes,

Circular Linked List, Doubly Linked List and Circular doubly Link list : Representation and Operations **UNIT-III**

Non linear Data structures – Tree data structures:

Introduction: Tree definition, Terminology, **Binary Trees:** Definition, Types, Properties, **Representation of Binary Tree**: Array representation, Linked representation, Binary Tree traversals-Preorder, Inorder and postorder. **Binary Search Tree**: Definition, Construction- Searching, Insertion operations, deletion process, Traversal examples

	Suggested List of Experiments							
1.	Programs on arrays and structures using Pointers							
2	Stack and Ordinary Queue implementation using array and structure.							
3	Application of stack data structure-							
	(i) Evaluation of post fix and Tower of Hanoi problem using recursion.							
	(ii) Conversion infix to postfix							
4	Circular queues.							
5	Operation on Singly Linked list implementation using dynamic variables.							
6	Dynamic implementation of stack and Queue data structure.							
7	Circular linked list							
8	Doubly linked list implementation.							
9	Binary Search Tree Construction and Tree traversal operations.							

Cours	e Outcomes: At the end of the course student will be able to
1.	Acquire the fundamental knowledge of various types of data structures, dynamic memory
	allocation and designthe programs using arrays, structures and pointers
2.	Apply the fundamental knowledge of data structures to design stack and use them for
	solving problems.
3.	Apply the fundamental knowledge of data structures to design queues and use them for
	solving problems.
4.	Design and develop singly linked lists, circular linked lists and doubly linked list.
5.	Acquire theknowledge of trees and employ binary trees and binary search tree data

10 Hours

5 Hours

	structure, advanced trees, representation of graphs and hashing techniques.																
С	Course Outcomes Mapping with Program Outcomes & PSO																
		Program Outcomes→	1	2	3	4	5	6	7	8	9	10	11	12		PSO.	Ļ
	↓ Coi	urse Outcomes													1	2	3
		CS2006-1.1	3	1	3									1	3		
		CS2006-1.2	3	1	3									1	3		
		CS2006-1.3	3	1	3									1	3		
		CS2006-1.4	3	1	3									1	3		
	CS2006-1.5 3 1 3 1 3																
	1: Low 2: Medium 3: High																
TI	TEXTBOOKS:																
	1.	Aaron M. Tenenbaum,	Yedi	dyal	nLan	igsai	m&	Mos	she J	. Au	gen	stein	"Dat	ta Str	uctu	res us	sing C",
	-	Pearson Education/PHI	, 200)9.	• •	_				<u> </u>		_					
	2.	Ellis Horowitz and Sal	rtaj	Sah	ni, "	Fun	dam	enta	als c	of D	ata	Stru	cture	s in	C", 2	2nd	edition,
		Universities Press, 2014	•														
K		NCE BOOKS:					1		<u> </u>	•	// D	•	11.1				1.1.11
	L.	Seymour Lipschutz, "Da	ita S	truc	ture	s, Sc	nau	ms	Outi	ines	, Rε	evised	a Tet	eaitio	on, iv	icGra	w Hill,
F	Book																
-	1	Data Structures Using (121	א חא	irou	n Ta	ata N	AcG	raw	Hill	200	6					
	2	Data Structures Using (- Re	ema	Tha	areia	2n	d ed	litior	ייי <i>ו</i> יוווי,	200 (for	u. Univ	versit	v Pre	ss 21	014	
	<u>-</u> . 3.	Introduction to Data St	ruct	ures	bv e	dx	UR	: ht	tps:/	., O/ //ww	W.e	dx.or		urse/	55, 20		
	4.	Data structures by Berk	lev.	URL	: htt	ns://	'peo	ple.	eecs	ber	kele	V	9/ 000	<u></u>			
	5.	Advance Data Structure	es by	/ MI	г ос	:W.	URL	: htt	:ps://	/ww	w.m	, oocla	b.clu	b/			
	6.	Data Structure by Harva	ard I	Exter	nsior	n Scl	hool	, UR	L: ht	ttp://	/ww	w.ext	ensic	on.ha	rvard	•	
	_ /	,						,								-	

INTRODUCTION TO THE DESIGN AND ANALYSIS OF ALGORITHMS												
Cou	rse Code:	CS3006-1										
Теас	ching Hours/Week (L: T: P):	2:0:2	Credits:	03								
Tota	al Teaching Hours:	25+0+26	CIE + SEE Marks:	50+50								
Prer	equisite	CS2006-1										
	Teaching Department: Computer Science & Engineering											
Course Objectives:												
1.	1. Understand the notion of algorithms, Algorithm design and analysis process, asymptotic notations and Analyze the non-recursive and recursive algorithms and to represent efficiency of these algorithms in terms of the standard asymptotic notations.											
2.	2. Devise the Brute Force and Divide and Conquer techniques to design the algorithms and apply these methods in designing algorithms to solve a given problem.											
3.	Apply the Decrease and Conquer, Tran given problem.	nsform and Conq	uer algorithm design techniqu	es to solve a								
4.	Get idea of Time versus Space Transmethods in designing algorithms to s	ade-offs and Ap solve a given prol	ply and Analyse dynamic p olem.	rogramming								
5.	Describe and illustrate the idea of Green design techniques to solve a given pro-	eedy method, Bac oblem and to des	ktracking and Branch and Bour cribe P, NP and NP Complete	nd algorithm problems.								
	·	UNIT-I										
	10 Hours											
INTRODUCTION: What is an Algorithm? Fundamentals of Algorithmic Problem Solving												
FUNE efficie	DAMENTALS OF THE ALGORITHMS EFF ency classes, Mathematical Analysis of N	FICIENCY: Analys	is Framework, Asymptotic Nota Recursive Algorithms,	tions and Basic								

BRUTE FORCE: Background, Selection Sort and Bubble sort, Brute-Force String Matching algorithms

DIVIDE AND CONQUER: General Method, Merge sort, Binary Search algorithms with Complexity analysis **(Text Book-1: Chapter 4: 4.1 to 4.3)**

UNIT-II

DECREASE & CONQUER: General method, Insertion Sort algorithm, **Graph algorithms:** Depth First Search, Breadth First Search.

TRANSFORM AND CONQUER: General method, **Balanced Search Trees:** AVL trees, Heaps and Heap sort algorithms with complexity analysis

TIME AND SPACE TRADEOFFS: Input Enhancement in String Matching: Horspool's algorithm and analysis **DYNAMIC PROGRAMMING:** General method, The Floyd-Warshall Algorithm,

UNIT-III

5 Hours

GREEDY TECHNIQUE:

General method of Greedy technique, **Minimum Spanning Trees:** Prim's Algorithm, Huffman Trees **BACKTRACKING:** General method, State space trees and algorithms for N-Queens problem

BRANCH AND BOUND: General method, Travelling Salesman problem,

		Sι	igge	este	d Lis	st of	^F Exp	perir	nen	ts							
1	Various Sorting/Searching algorithms																
2	Graph traversals – DFS and BFS, Connectivity and Reachability of graphs																
3	Descending Priority Queue using Heap																
4	Horspool string matchin	ig al	gori	thm													
5	Binomial coefficient, Wa	rsha	all's a	algo	rithn	n, Fl	oyď	s alg	gorit	hm,							
6	Prim's,																
7	N-Queens problem.																
Cours	se Outcomes: At the end of the	ne c	ours	e sti	uder	nt wi	ll be	e abl	e to								
1.	Analyze the performance of	f the	e alg	orith	nms,	sta	te th	e ef	ficie	ncy	using	g asyr	npto	tic n	otatio	ons ar	nd
	analyze algorithms mathem	natio	ally	for t	the	com	plex	kity d	of th	e al	goritl	nm.					
2.	Apply Brute force method,	divio	de a	nd c	onq	uer	арр	roac	hes	in s	olvin	g the	prol	olem	s and	ana	lyze
	the same.																
2	Apply the appropriate alg	orith	nmic	do d	cian	tor	hnic		liko	do	cross			nauo	r ani	aroac	hos
5.	transform and conquer and	vroa	chac	anc	sign 1 coi	mna	nn t	luc ho o	ffici	anci	/ of a	laorit	thme	tos		ho a'	iven
	nrohlem	104	ciies	and		mpe	ii e t		men	ency	010	igoin		10 3	onve	ine gi	IVCII
	problem.																
4.	Apply and analyze dynamic	pro	ograi	mmi	ng a	appr	oacl	nes	to so	olve	som	e pro	blem	is. Ar	nd im	prove	e an
	algorithm time efficiency by	, sac	rifici	ing s	space	e.											
_										<u> </u>						<u> </u>	
5.	Apply and analyze greedy r	neth	nod,	bac	ktra	ckin	g, b	ranc	h ar	nd b	ound	met	hods	to s	olve	oroble	ems
	and to describe P, NP and N	NA C	omp	olete	pro	bler	ns.										
Cours	se Outcomes Mapping with	Pro	gran	n Oı	utco	me	s &	PSO									
	Program Outcomes→	1	2	3	4	5	6	7	8	9	10	11	12		PSO	 .	1
-	Course Outcomes			-							_			1	2	3	-
_	CS3006-1.1	2	3	2	2								1	_	2		-
_	CS3006-1.2	2	2	2	2								1		3		-
	CS3006-1 3	2	- 3	2	2								1		3		-
_	C\$3006-1.4	2	2	2	2								1		3		-
_	CS3006-1 5	2	- 3	2	2								1		2		-
L	1: Low 2: Medium 3: Hig		0							1		1			-	<u> </u>	1
TEXT	BOOKS:																
1.	Anany Levitin, "Introduction	to t	the D	Desid	an &	د An	alvsi	s of	Ala	orith	nms",	2 nd E	ditio	n, Pe	arsor		
	Education, 2011.				, ,	-	J		J		- 1			, -			
2.	Thomas H. Cormen, Charles	E.Le	eiser	son,	Ror	nald	L. R	vest	, Cli	ffor	d Stei	n, "In	trod	uctio	n to		
_,	Algorithms", 3 rd Edition, PHI	, 20	14.	,								,					
REFE	RENCE BOOKS:	-															
1.	Horowitz E., Sahni S., Raiase	kara	n S,	"Co	mpu	iter	Alac	orith	ms",	Ga	lgotia	Publ	licatio	ons, 2	2001.		
<u> </u>	R.C.T. Lee, S.S. Tsena, R.C. C	han	-، a &۱	(.T.T	sai. "	'Intr	odu	ctior	י ד <u>י</u> ו to	the	Desic	in an	d An	alvsi	s of A	laorit	thms
-•					1							,				33.10	

	A Strategic Approach", Tata McGraw Hill, 2005.
E Boo	ks / MOOCs/ NPTEL
1.	http://www.facweb.iitkgp.ernet.in/~sourav/daa.html
2.	http://nptel.ac.in/courses/106101060/https://www.coursera.org/specializations/algorithms
3.	http://nptel.ac.in/courses/106101060/https://www.coursera.org/specializations/algorithms
4.	http://elearning.vtu.ac.in/econtent/courses/video/CSE/06CS43.html
5.	http://elearning.vtu.ac.in/econtent/courses/video/FEP/ADA.html
6.	http://openclassroom.stanford.edu/MainFolder/CoursePage.php?course=IntroToAlgorithms

FUNDAMENTALS OF DATABASE MANAGEMENT SYSTEMS								
Cou	rse Code:	CS2009-1						
Teac	hing Hours/Week (L: T: P):	2:0:2	Credits	03				
Tota	I Teaching Hours	25+0+26	CIE + SEE Marks	50+50				
Prer	equisite	CS1002-1						
Teaching Department: Computer Science & Engineering								
Cour	se Objectives:							
1.	1. Provide a strong foundation in database concepts, design and application.							
2.	Understand the concepts of relational model and relational algebra in database design.							
3.	Learn structured query language (SQL) to an intermediate/advanced level and evaluate the							
	result set.							
4.	Understand the use of normalization techniques for building effective database design. Learn							
	the concepts of NOSQL Systems to manage bigdata							
5.	Demonstrate the use of File organiz	ation andIndexi	ng,Concurrency Control and	l transactions				
	in databases.							
UNIT-I								
Databases and Database users, Database System Concepts 10 Hours								
Databases and Database Users: Introduction, An Example, Characteristics of the database approach.								
Database System Concepts and Architecture: Three-Schema Architecture and data Independence.								
Data Modeling Using the Entity–Relationship (ER) Model: Entity Types, Entity Sets, Attributes and								
Keys,	Keys, Relationship types, Relationship Sets, Roles and Structural Constraints, Weak Entity Types,							
Refin	Refining the ER Design for the COMPANY Database, ER Diagrams. The Relational Data Model and							

Relational Database Constraints: Relational Model Concepts, Relational Model Constraints and Relational Database Schemas, Update Operations, transactions, and dealing with constraint violations. **The Relational Algebra and Relational Calculus:** Unary Relational Operations: SELECT and PROJECT, set operations Binary Relational Operations: JOIN **Relational Database Design by ER-to-Relational Mapping:** Relational Database Design Using ER-to-Relational Mapping.

UNIT-II

Basic SQL:

Basic SQL:SQL Data Definition and Data Types, Specifying Constraints in SQL, Basic retrieval queries in SQL, Insert, Delete and Update Statements in SQL,

More SQL: Complex Queries, Views, and Schema Modification: More complex SQL retrieval queries, Specifying constraints as assertions and Actions as Triggers, Views in SQL

UNIT-III	
----------	--

5 Hours

10 Hours

Basics of Functional Dependencies and Normalization for Relational Databases: Functional Dependencies, Normal Forms Based on Primary Keys, general definitions of Second and Third Normal Forms.

Relational Database Design Algorithms and Further Dependencies: Inference Rules, Equivalence, Properties of Relational Decomposition

Introduction to transaction Processing and locks

Functional Dependencies and Normalization:

Course Outcomes: At the end of the course student will be able to

1. Illustrate the concepts of database objects for the given problem.

- **2.** Identify and enforce integrity constraints on a database using RDBMS.
- **3.** Apply structured query language for (SQL) for database manipulation.
- **4.** Model normalized database structures by creating simple database systems. Understan the concepts of NOSQL Systems to manage bigdata
- **5.** Illustrate the concepts of File organization and Indexing,Concurrency Control and transactions in databases.

Course Outcomes Mapping with Program Outcomes & PSO

Program Outcomes→	1	2	3	4	5	6	7	8	9	10	11	12		PSO.	Ļ
↓ Course Outcomes													1	2	3
CS2009-1.1	2									1		1			
CS2009-1.2	2	2								1		1			
CS2009-1.3	2	3								1		1		3	
CS2009-1.4	2	2	3							1		1		2	
CS2009-1.5	2									1		1		2	

1: Low 2: Medium 3: High

TEXTBOOKS:

- **1.** Database Systems Models, Languages, Design and Application Programming, RamezElmasri and Shamkant B. Navathe, 7th Edition, 2017, Pearson.
- **2.** Database Management Systems, Raghu Ramakrishnan, Johannes Gehrke, Indian Edition, Mc Graw Hill Education.

REFERENCE BOOKS:

- **1.** Database Systems: Models, Languages, Design and Application Programming, RamezElmasri and Shamkant B. Navathe, 6th Edition, 2017, Pearson.
- **2.** Database System Concepts, SilberschatzKorth and Sudharshan, 6thEdition, McGraw Hill, 2013.

E Books / MOOCs/ NPTEL

1.	https://www.udemy.com/course/introduction-to-basic-database-concepts/, Introduction to					
2	Basic Database Concepts (Udemy).					
Ζ.	<u>nttps://www.udemy.com/course/database-management-systems-mysqi/</u> , Database Management Systems – MySOL (Udemy).					
3.	https://swayam.gov.in/nd1_noc19_cs46/preview, Database Management System (Swayam).					
	Suggested List of Experiments					
1	Design and implementation of SQL queries involving various constructs of SQL as discussed in the Unit-III of the syllabus.					
	Note:					
	1. Create the tables by properly specifying the primary keys and the foreign keys.					
	2. Enter at least four tuples for each relation					
	Insurance Database					
	Consider the Insurance database given below.					
	PERSON (<u>driver – id #:</u> String, name: string, address: string)					
	CAR (<u>regno</u> : string, model: string, year: int)					
	ACCIDENT (<u>report-number</u> : int, <u>accd-date</u> : date, location: string)					
	OWNS (<u>driver-id #:</u> string, <u>regno</u> : string)					
	PARTICIPATED (<u>driver-id</u> : string, <u>Regno</u> : string, <u>report-number</u> : int, damage amount:					
	int)					
	1. Find the total number of people who owned cars that were involved in accidents in 1989.					
	2. Find the number of accidents in which the cars belonging to "John Smith" were in- volved.					
	3. Update the damage amount for the car with reg number "KA-12" in the accident with report number "1" to \$3000.					
	Order Database					
	Consider the following relations for an order processing database application in a company: CUSTOMER (<u>cust #:</u> int, cname: string, city: string)					
	ORDER (order #: int, odate: date, cust #: int, ord-Amt: int)					
	ORDER – ITEM (<u>order #:</u> int, <u>item #:</u> int, qty: int)					
	ITEM (<u>item #:</u> int, unit price: int)					
	SHIPMENT (<u>order #:</u> int, <u>warehouse#:</u> int, ship-date: date)					
	WAREHOUSE (<u>warehouse #:</u> int, city: string)					
	 Produce a listing: CUSTNAME, #oforders, AVG_ORDER_AMT, where the middle column is the total numbers of orders by the customer and the last column is the average order amount for that customer. 					

2. For each item that has more than two orders , list the item, number of orders that are
3. List the customers who have ordered for every item that the company produces
Consider the following database of student enrollment in courses & books adopted for each
course:
STUDENT (<u>regno:</u> string, name: string, major: string, bdate: date)
COURSE (<u>course #:</u> int, cname: string, dept: string)
ENROLL (<u>regno:</u> string, <u>course#:</u> int, <u>sem:</u> int marks: int)
BOOK _ ADOPTION (<u>course#</u> : int, <u>sem:</u> int, book-ISBN: int)
TEXT (book-ISBN: int, book-title: string, publisher: string, author: string)
 Produce a list of text books (include Course #, Book-ISBN,Book-title) in the alphabet- ical order for courses offered by th 'CS' department that use more than two books. List any department that has all its adopted books published by a specific publisher List the bookISBNs and book titles of the department that has maximum number of students
The following tables are maintained by a book dealer:
AUTHOR (author-id: int, name: string, city: string, country: string)
PUBLISHER (publisher-id: int, name: string, city: string, country: string)
CATALOG (book-id: int, title: string, author-id: int, publisher-id: int, category-id: int, year: int,
price: int)
CATEGORY (category-id: int, description: string)
ORDER-DETAILS (order-no: int, book-id: int, quantity: int)
 Find the author of the book which has maximum sales. Increase the price of the books published by a specific publisher by 10% Find the number of orders for the book that has minimum sales.
Consider the following database for a banking enterprise:
BRANCH (branch-name: string, branch-city: string, assets: real)
ACCOUNT (accno: int, branch-name: string, balance: real)
DEPOSITOR (<u>customer-name:</u> string, <u>accno:</u> int)
CUSTOMER (customer-name: string, customer-street: string, customer-city: string)
LOAN (loan-number: int, branch-name: string, amount: real)
BORROWER (<u>customer-name:</u> string, <u>loan-number:</u> int)
 Find all the customers who have atleast 2 accounts at all the branches located in a specific city. Find all the customers who have accounts in atleast 1 branch located in all the cities

	3. Find all the customers who have accounts in atleast 2 branches located in a specific city.
2	Implementation of a mini project that involves a user interface design, database design and
	design of SQL queries to suit the need of the designed application.

OVERVIEW OF OPERATING SYSTEMS

Course Code:	CS2104-1						
Teaching Hours/Week (L: T: P)	3:0:0	Credits	03				
Total Teaching Hours	40+0+0	CIE + SEE Marks	50+50				
Prerequisite	CS1004-1/ C	CS1004-1/ CS2006-1					

Teaching Department: Computer Science & Engineering

Course Objectives:

1.	Explain the concepts, principles and services of operating system.						
2.	Identify fundamental operating system concepts such as processes, inter-process						
	communication, threads, CPU scheduling and demonstrate them.						
3.	Assess the need of concurrency and synchronization and apply them to write concurrent						
	programs and analyze the cause for the occurrence of deadlocks and determine solutions to						
	overcome the deadlocks.						
4.	Study the concepts of main memory and virtual memory allocation methods and demonstrate them.						
5.	Analyze the need for file system concepts, directory implementation and disk scheduling algorithms						
	and demonstrate them.						

UNIT-I

Operating System structure:

15 Hours

Operating System structure: Operating System Services, User and Operating System interface, System calls, System Services, Linkers and Loaders, **Process Management:** Process concept; Process scheduling; Operations on processes; Inter-process communication. **Threads:** Multithreading Models. **CPU Scheduling:** Basic concepts, Scheduling criteria, Scheduling algorithms, Thread scheduling

UNIT-II

Process Synchronization:	15 Hours
Process Synchronization: The Critical section problem, Peterson's solution, Synchronization	on hardware,
Semaphores, Monitors, Classical problems of synchronization. Deadlocks: System mod	el; Deadlock
characterization, Methods for handling deadlocks, Deadlock prevention, avoidance, detection	and recovery

from deadlock. Main Memory: Paging, Structure of page table, Swapping.

UNIT-III	
Virtual Memory:	10 Hours
Virtual Memory: Demand paging, Copy-on-write, Page replacement, Allocation of frames. Impl	ementing File
System: File system Concepts, File System Structure, Operations and implementation, Directory imp	plementation,
Allocation methods, Free space management. disk scheduling algorithms	

Course Outcomes: At the end of the course student will be able to

1.	Recognize the structural components of operating system
2.	Demonstrate the creation and termination of the processes, threads and CPU scheduling algorithms.
3.	Ilustrate critical section problem and demonstrate the Peterson's solution. Investigate the Deadlock condition and determine the solution to avoid.
4.	Summarize Main memory and Virtual Memory allocation methods and prepare a page replacement schedule to the given set of page requirement request.
5.	Classify file systems based on operations and implementations and illustrate the disk scheduling algorithms.

Course Outcomes Mapping with Program Outcomes & PSO

Program Outcomes→	1	2	3	4	5	6	7	8	9	1	1	1	PS	O↓	
↓ Course Outcomes													1	2	3
CS2104-1.1	3	2													2
CS2104-1.2	3	2											1	2	3
CS2104-1.3	3	2											1	2	3
CS2104-1.4	3	2											1	2	3
CS2104-1.5	3	2											1	2	3

1: Low 2: Medium 3: High

TEXTB	OOKS:
1.	Operating System Concepts, Abraham Silberschatz, Greg Gagne, Peter B. Galvin, 10th Edition, John Wiley & Sons, 2018, ISBN: 9781119320913.
REFER	ENCE BOOKS:
1.	D.M Dhamdhere: Operating systems - A concept based Approach, 2nd Edition, Tata McGraw- Hill, 2002.
2.	P.C.P. Bhatt: Operating Systems, 2nd Edition, PHI, 2006.
3.	Harvey M Deital: Operating systems, 3rd Edition, Addison Wesley, 1990.
E Book	cs / MOOCs/ NPTEL
1.	http://www.uobabylon.edu.iq/download/M.S%2020132014/Operating_System_Concepts,_8th_
	ition%5BA4%5D.pdf
2.	http://iips.icci.edu.iq/images/exam/Abraham-Silberschatz-Operating-System-Concepts
	<u>9th2012.12.pdf</u>
3.	http://www.uobabylon.edu.iq/download/M.S%2020132014/Operating_System_Concepts, 8th_Edition
	BA4%5D.pdf

4.	https://freevideolectures.com/university/iit-bombay/
5.	https://www.cse.iitb.ac.in/~mythili/os/

INTRODUCTION TO MACHINE LEARNING								
Cou	rse Code:	CS2007-1						
Теас	ching Hours/Week (L: T: P):	2:0:2	Credits:	03				
Total Teaching Hours:25+0+26CIE + SEE Marks:50+50								
Prerequisite CS1005-1								
Teaching Department: Computer Science & Engineering								
Course Objectives:								
1.	1. Understand the need and basics of machine learning and learn the Decision Tree model.							
2.	2. Learn ANN and Genetic Algorithm along with its applications.							
3.	Explore the various learning algorithms using Supervised Learning.							
4.	Understand the important aspects of Analytical Learning and difference between Analytical							
	and Inductive Learning Algorithm	S.						
5.	Explore the difference between Analytical and Inductive Learning Algorithms and analyse the							
	techniques related to reinforcement learning.							
UNIT-I								
Introd	Introduction: Machine learning: what and why?- Types of machine learning, Supervised learning and							
Unsu	Unsupervised learning.							
Decis	ion tree: Representation, Appropriate	problems for de	cision tree learning and basic	decision tree				
learni	ng algorithm.							
Artific	ial Neural Networks: Introduction, N	eural Network R	epresentations, Appropriate	problems for				

neural network learning, Perceptrons and basics of back propagation algorithm. *(Text Book-1: Chapter 1- 1.1-1.3 Text Book-2: Chapter 3 and 4 -- 4.1-4.5.2)*

10 Hours

UNIT-II

Bayesian Learning: Bayes theorem, Bayes theorem and concept Learning, Minimum Description Length, Bayes Optimal Classifier, Naive Bayes Classifier.

Instance Based Learning: k-nearest neighbour learning and Locally Weighted Regression. *A*nalytical Learning: Inductive and Analytical learning problems, PROLOG-EBG.

(Text Book-2: Chapter 6 -- 6.2 - 6.3, 6.6-6.7, 6.9, Chapter 8 and Chapter 11)

10 Hours

UNIT-III

Combining Inductive and Analytical Learning: Motivation, Inductive –Analytical Approaches to Learning and Using Prior Knowledge to Initialize the Hypothesis. Reinforcement Learning:

Introduction Learning Tools OL

Introduction, Learning Task, Q Learning.

(Text Book-2: 12 and Chapter 13 --13.1-13.2, 13.3.1-13.3.3)

5 Hours

	Suggested List of Experiments
	PART-A
1.	Implement and demonstrate the FIND-S algorithm for finding the most specific hypothesis
	based on a given set of training data samples. Read the training data from a .CSV file.
2.	For a given set of training data examples stored in a .CSV file, implement and demonstrate
	the Candidate-Elimination algorithm to output a description of the set of all hypotheses
	consistent with the training examples.
3.	Develop a program to demonstrate the working of the decision tree based ID3 algorithm.
	Use an appropriate data set for building the decision tree and apply this knowledge to
	classify a new sample.
4.	Build an Artificial Neural Network by implementing the Backpropagation algorithm and test
	the same using appropriate data sets.
5.	Develop a program to implement the naïve Bayesian classifier for a sample training data set
	stored as a .CSV file. Compute the accuracy of the classifier, considering few test data sets.
6.	Apply EM algorithm to cluster a set of data stored in a .CSV file. Use the same data set for
	clustering using k-Means algorithm. Compare the results of these two algorithms and
	comment on the quality of clustering. You can add Java/Python ML library classes/API in the
	program.
7.	Implement and demonstrate the working of k-Nearest Neighbour algorithm and apply it to
	classify the iris data set.
8.	Implement the non-parametric Locally Weighted Regression algorithm in order to fit data
	points. Select appropriate data set for your experiment and draw graphs.
9.	Build a model to classify email as spam or ham. First, download examples of spam and ham
	from Apache SpamAssassin's public datasets and then train a model to classify email.
	PART-B
Mini Pr	oject on Machine Learning:

The main goal is to prepare students to apply machine learning algorithms to real-world tasks, or to leave students well-qualified to start machine learning or AI research. The mini project is intended to start in these directions.

Students shall carry out either one of the following three kinds of projects:

1. Application project. Pick an application that is of interest and explore how best to apply learning algorithms to solve it.

2. Algorithmic project. Pick a problem or family of problems, and develop a new learning algorithm, or a novel variant of an existing algorithm, to solve it.

3. Theoretical project. Prove some interesting/non-trivial properties of a new or an existing learning algorithm. (This is often quite difficult, and so very few, if any, projects will be purely theoretical.)

Course Outcomes: At the end of the course student will be able to

- **1.** Explain the fundamental concept and importance of machine learning, identify, analyze and categorize applications using decision tree algorithm.
- **2.** Demonstrate the application of ANN and Genetic algorithm for real world problems.
- **3.** Design and implement algorithms for supervised learning system.
- 4. Design and implement algorithms for Analytical and Inductive Learning.

5. Develop machine learning algorithm and reinforcement techniques for real world problems.

Course Outcomes Mapping with Program Outcomes & PSO

Program Outcomes→	1	2	3	4	5	6	7	8	9	10	11	12		PSO.	Ļ
↓ Course Outcomes													1	2	3
CS2007-1.1	2	2	3										3	3	
CS2007-1.2	2	2	3										3	3	
CS2007-1.3	2	2	3										3	3	
CS2007-1.4	2	3											1	3	
CS2007-1.5	2	2	3										2	3	

1: Low 2: Medium 3: High

TEXTBOOKS:

1. T. M. Mitchell, "Machine Learning", McGraw Hill, 2017.

REFERENCE BOOKS:

1.	EthemAlpaydin, "Introduction to Machine Learning", Second Edition, The MIT Press, 2004.
2.	C. M. Bishop, "Pattern Recognition and Machine Learning", Springer, 2006.
3.	R. O. Duda, P. E. Hart and D. G. Stork Pattern Classification, Wiley Publications, 2001
4.	T. Hastie, R. Tibshirani, J. Friedman. The Elements of Statistical Learning, 2e, 2008.
5.	P. Flach, "Machine Learning: The art and science of algorithms that make sense of data",
	Cambridge University Press, 2012.
6	K. P. Murphy, "Machine Learning: A probabilistic perspective", MIT Press, 2012.
7.	M. Mohri, A. Rostamizadeh, and A. Talwalkar, "Foundations of Machine Learning", MIT Press,
	2012.
8.	S. Russel and P. Norvig, "Artificial Intelligence: A Modern Approach", Third Edition, Prentice
	Hall, 2009.
E Book	rs / MOOCs/ NPTEL
1.	https://in.mathworks.com/
2.	https://www.kdnuggets.com/

3.	https://blog.cambridgespark.
4.	https://www.udemy.com/topic/
5.	https://www.mooc-list.com/
6.	https://peltarion.com

FUNDAMENTALS OF COMPUTER NETWORK AND COMMUNICATION

Course Code:	CS3007-1		
Teaching Hours/Week (L: T: P):	2:0:2	Credits:	03
Total Teaching Hours:	25+0+26	CIE + SEE Marks:	50+50
Prerequisites	CS2006-1		·

Teaching Department: Computer Science & Engineering

Course Objectives:

1. Outline the principles of computer networks and its application	1.	Outline the prin	ciples of computer	networks and its	applicatior
---	----	------------------	--------------------	------------------	-------------

- **3.** Identify the issues in network layer and solution for it
- **4.** Analyze the process of congestion control algorithms.
 - **5.** Illustrate IP Packets and fragmentation process.

UNIT-I

Network Layer (Part-I):

10 Hours

Network layer design issues: Store and Forward packet Switching, Services Provided to the Transport Layer, Implementation of Connectionless Service, Implementation of Connection-Oriented Service, Comparison of Virtual Circuit and Datagram Subnets; **Routing algorithms**: The Optimality Principal, Shortest Path Routing, Flooding. Distance Vector Routing, Link state Routing, Hierarchical Routing, Broadcast Routing,

Multicast Routing, Anycast Routing, Routing for Mobile Hosts, Routing in Ad hoc Networks.

Congestion Control Algorithms: Approaches to Congestion Control, Traffic-AwareRouting,AdmissionControl,TrafficThrottling,LoadShedding;

UNIT-II								
Network layer (Part – II):	10 Hours							
Quality of Service: Application Requirements, Traffic Shaping, Packet Scheduling, Admission								

Control, Integrated Services, Differentiated Services								
Internetworking: How networks differ, How Networks Can Be Connected, Tunneling, Internetwork								
Routing, Fragmentation;								
The Network Layer in the Internet: The IP Version 4 Protocol, IP Addresses, IP Version 6, Internet								
Control Protocols, OSPF, BGP, Internet Multicasting, Mobile IP.								
The Transport Laver:								
The Transport Service: Services Provided to the Upper Lavers Transport Service Primitives								
Elements of Transport Protocols : Addressing, Connection Establishment, Connection Release.								
Error	Control and Flow Control, Multiplexing, Crash Recovery;							
	UNIT-III							
The Ir	nternet Transport Protocols (TCP)/UDP	05 Hours						
The I	nternet Transport Protocols (UDP): Introduction to UDP							
The Ir	nternet Transport Protocols (TCP): Introduction to TCP, The TCP Service Model, The TCP	P Protocol,						
The TO	CP Segment Header, TCP Connection Establishment, TCP Connection Release, TCP Conne	ection						
Mana	gement Modeling, TCP Sliding Window, TCP Timer Management, TCP Congestion Contro	ol.						
The A	Application Laver:							
Princi	inles of Network Applications:							
Notwo	ork Application Architectures, Processes Communicating, Transport Services Availab	hle to						
Appli	sations. Transport Services Provided by the Internet:							
Арріі	cations, transport services Fronded by the Internet,							
	Suggested List of Experiments							
PART-A								
1	Write a program for simple RSA algorithm to encrypt and decrypt the data.							
2	Write a program for error detecting code using CRC-CCITT (16-bits).							
3	Write a program for Hamming Code generation for error detection and correction.							
4	Write a program for frame sorting technique used in buffers.							
5	Using TCP/IP sockets, write a client-server program to make client sending the file name and the							
	server to send back the contents of the requested file if present.							
6	Write a program for distance vector algorithm to find suitable path for transmission.							
7	Write a program for congestion control using Leaky bucket algorithm.							
	PART-B							
1	Simulate a three nodes point-to-point network with duplex links between them. Set the qu	ueue size vary						
	the bandwidth and find the number of packets dropped.							
2	Simulate a four node point-to-point network, and connect the links as follows: n0-n2, n	1-n2 and n2-						
	n3. Apply TCP agent between n0-n3 and UDP n1-n3. Apply relevant applications over	TCP and UDP						
	agents changing the parameter and determine the number of packets by ICP/UDP.							
3	Simulate the different types of Internet traffic such as FIP a TELNET over a network and	d analyze the						
Л	throughput.							
4	Simulate the transmission of ping messaged over a network topology consisting of 6 no	baes and find						
г	The number of packets dropped due to congestion	compose the						
С	simulate an Ethernet LAN using N-hodes (6-10), change error rate and data rate and	compare the						
6	Cimulate an Ethernet LAN using N nodes and set multiple troffic nodes and determine as							
Ö	Simulate an Ethemet LAN using N houes and set multiple traffic houes and determine co	JUISION ACTOSS						

	different nodes.																
7	Simulate an Ethernet LAN using N nodes and set multiple traffic nodes and plot congestion window																
	for different source/destination.																
Course Outcomes: At the end of the course student will be able to																	
1.	Express the basic concept of computer network.																
2.	Design the network layer and the related issues.																
3.	Explain the congestion control, and prevention methods.																
4.	Explain different type of networks and protocols.																
5.	Explain network applications and describe application layer protocols.																
Course Outcomes Mapping with Program Outcomes & PSO												۹					
	Program Outcomes→	1	2	3	4	5	6	7	8	9	10	11	12	PSC	D↓		_
	↓ Course Outcomes													1	2	3	_
	CS3007-1.1	3	2			1					1			2			
	CS3007-1.2	3	2	1							2		1	2			
	CS3007-1.3	3	1			1		1			1		1	3			
	CS3007-1.5	3	2	1		1		1			2		1	3	1]
	CS3007-1.5	3	1			1	1				1		2	2	1		
	1: Low 2: Medium 3: High																
TEXTBOOKS:																	
1	Computer Networks, AndrewS. TanenbaumDavidJ. Wetherall, 5th Edition, Pearson, ISBN 10: 1292024224, 2014																
2	Computer Networking. A Top-down Approach, James F. Kurose, Keith W. Ross, Pearson, ISBN: 1292153598.2017																
REFER	ENCE BOOKS:																
1	Computer Networking. ATop-Down Approach, Kurose & Ross, 5th Edition, Mc Graw Hill, ISBN: 9780073376226 2013																
2	Data and Computer Commun	nicat	ion,	8th	Editi	on, '	Will	amS	Stalli	ngs	, Prer	tice l	Hall, (01324	4331	09,20	07
3	An Introduction to Computer Networks, Peter L Dordal, OpenBook, http://intronetworks.cs.luc.edu/, 2020																
E Books / MOOCs/ NPTEL																	
1	Computer Networks web	cou	rse	by	Pro	f. A	jit	Pal,	IIT	Kŀ	nargp	ur, ł	nttps:	//npt	tel.ac	.in/cc	ourses/
2	Computer Networks Fall 201	9 h		or F	ord	ما اد	aval	⊃ I Ir		city	Chic		Jont	ofCo	mnu	tor S	cience
~	http://pld.cs.luc.edu/courses/	443	/nov	v/	Joru	ат, с (JyOI		iivel	sity	CHIC	JYU L	ept		mpu		
3	Computer Networks Lecture	Not	es, l	, MIT	Ope	n Co	ours	e W	are.	Ma	ssach	uset	ts Ins	titute	e of ⁻	Techr	ioloav,
	https://ocw.mit.edu/courses/	elec	trica	l-en	gine	erin	g-ar	nd-co	omp	oute	r-scie	nce/6	5-829)-con	npute	er-	, (C
	networks-fall-2002/lecture-no	otes	/		-		-		•			-			•		