Regulations and Curriculum for Bachelor of Technology (B.Tech.) in Electrical and Electronics Engineering

For aritulation details of PSU 2+2 program (Refer page number 11)

(Established under Section 3 of UGC Act, 1956) Placed under Category 'A' by MHRD, GoI | Accredited with 'A+' Grade by NAAC Regulations and Curriculum for

Bachelor of Technology (B. Tech.)

in

Electrical and Electronics Engineering Choice Based Credit System (CBCS)

Effective from AY 2023-24

(Deemed to be University under Section 3 of UGC Act, 1956) (Placed under Category 'A' by MHRD, Govt. of India, Accredited with 'A+' Grade by NAAC) University Enclave, Medical Sciences Complex, Deralakatte, Mangaluru – 575 018, Karnataka INDIA Tel: +91-824-2204300/01/02/03, Fax: 91-824-2204305 Website: www.nitte.edu.in E-mail: info@nitte.edu.in

VISION

To build a humane society through excellence in the education and healthcare

MISSION

To develop Nitte (Deemed to be University) As a center of excellence imparting quality education, Generating competent, skilled manpower to face the scientific and social challenges with a high degree of credibility, integrity, ethical standards and social concern Regulations and Curriculum B. Tech. Degree Programme Choice Based Credit System (CBCS)

> Effective from Academic Year 2023 – 2024

Curriculum for Acquiring Professional Skills (CAPS)

With Scheme of Teaching & Examination

REGULATIONS: 2023

B.Tech. DEGREE PROGRAMME

CHOICE BASED CREDIT SYSTEM

(CBCS)

Version 2023.01-PSU

Choice Based Credit System (CBCS)

- 1. Choice for the selection of courses during each semester.
- 2. Choice in planning the academic activities by selecting desired number of courses per semester.
- 3. Balanced curriculum with engineering, science, humanities, and management courses.
- 4. Project based learning (PBL) which focusses on experiential learning.
- 5. Opportunities to study inter-disciplinary courses.
- 6. Enabling slow learners by offering important courses in all semesters.
- 7. Optional Summer semester.
- 8. Opportunity to get associated in research projects to acquire research experience.
- 9. Value addition with Honors / Minor credentials.

Curriculum for Acquiring Professional Skills (CAPS)

- 1. Practicing outcome-based education (OBE) where Courses made student-centric rather than teacher-centric.
- 2. Provisions for courses integrated with Lab/ PBL component.
- 3. Focus on experiential learning.
- 4. Ability enhancement and skill development courses as per National Education Policy (NEP) 2020.
- 5. Focus on Industry Internship and Research Internship.
- 6. Students to work on real world/interdisciplinary problems in major project.
- 7. Importance is given to creativity, innovation, and development of entrepreneurship skills.

Program Title	Bachelor of Technology		
	Abbreviated as B.Tech. in Electrical and Electronics Engineering		
Short description	Four-year, eight semester Choice Based Credit System (CBCS)		
	type of Undergraduate Engineering Degree Programme taught in		
	English		
Program Code	14ENGR07D2		
Revision version	2023.01-PSU		
	These regulations may be modified from time to time as mandated		
	by the policies of the University. Revisions are to be recommended		
	by the Board of Studies for Electrical and Electronic		
	Engineering and approved by the Academic Council.		
Effective from	01-08-2023		
Approvals	Approved in the 54th Academic Council meeting of NITTE		
	(Deemed to be University), held on 24.06.2023 and vide		
	Notification of Ref: N(DU)/REG/AC-NMAMIT/2022-23/1264		
	dated 18.07.2023.		
Program offered at	NMAM Institute of Technology,		
	Off -Campus Centre, Nitte, 574110, Karkala Taluk		
Grievance and	All disputes arising from this set of regulations shall be addressed		
dispute resolution	to the Board of Management. The decision of the Board of		
	Management is final and binding on all parties concerned. Further,		
	any legal disputes arising out of this set of regulations shall be		
	limited to jurisdiction of Courts of Mangalore only.		

Key Information

CONTENTS

1.	INTRODUCTION	;
2.	ELIGIBILITY FOR ADMISSION	ł
3.	PROGRAM PATHS, EXIT OPTIONS AND DURATION OF THE B. TECH. PROGRAMME5	ý
4.	DEGREE PROGRAMMES	/
5.	CREDIT SYSTEM:	/
6.	REGISTRATION	;
7.	ADD/DROP/AUDIT OPTIONS)
8.	COURSE STRUCTURE:)
9.	ATTENDANCE REQUIREMENT:)
10.	WITHDRAWAL FROM THE PROGRAMME)
11.	EVALUATION SYSTEM)
12.	EVALUATION OF PERFORMANCE	5
13.	COMMUNICATION OF GRADES	5
14.	REQUIREMENTS OF VERTICAL PROGRESSION	5
15.	AWARD OF CLASS	,
16.	APPEAL FOR REVIEW OF GRADES	3
17.	AWARD OF DEGREE	;
18.	GRADUATION REQUIREMENTS AND CONVOCATION	,
19.	AWARD OF PRIZES, MEDALS, & RANKS	2
20.	CONDUCT AND DISCIPLINE	;

PREAMBLE

NMAM Institute of Technology (NMAMIT) was established in 1986, is located at Nitte and offcampus of NITTE (Deemed to be University), accredited by National Assessment & Accreditation Council (NAAC) with 'A+' grade. NMAMIT is recognized by the All-India Council for Technical Education (AICTE), New Delhi.

The Bachelor of Technology (B. Tech.) Programs focus on Pursuing Excellence, Empowering people, and Partnering in Community Development. Out of fourteen UG Programs i.e., Artificial Intelligence & Machine Learning (AM), Artificial Intelligence & Data Science (AD), Biotechnology (BT), Computer & Communication Engineering (CC), Computer Science & Engineering (CS), Civil Engineering (CV), Electronics & Communication Engineering (EC), Electrical & Electronics Engineering (EE), Information Science & Engineering (IS), Mechanical Engineering (ME), Robotics & Artificial Intelligence (RI), Computer Science & Engineering - Cyber Security (CB), Electronics Engineering - VLSI Design and Technology (VT), and Electronics & Communication - Advanced Communication Technology (AC), all seven eligible UG Programs i.e., BT, CS, CV, EC, EE, IS and ME are accredited by NBA, New Delhi under Tier - I category till 30th June 2025.

The curriculum is jointly approved by members of Board of Studies (BoS) and Academic Council drawn from academia, Industry, Alumni and working professionals from Industry and has been designed to integrate hands-on practical training with the concepts of theory courses to enhance the learning experience.

The Curriculum focusses students for Acquiring Professional Skills (CAPS) through rigorous theoretical training using innovations in pedagogy, experiential learning, active learning, collaborative learning, critical thinking, project planning, Project Based Learning (PBL), Ability enhancement courses for skill-building, effective communication, professional practice, creativity & innovation and developing entrepreneurial skills.

The focus of Institution is to impart Quality Education to generate competent, Skilled and Humane Manpower to face emerging Scientific, Technological, Managerial and Social Challenges with Credibility, Integrity, Ethics and Social Concern.

In the present scenario, students wish to make their own plan for bright future. However, student aspirations and the industry demands are highly diverse. Employers expect the graduates possess multi-disciplinary competency, Information and Communication Technology (ICT) and leadership skills. In this context, NMAMIT offers opportunity to the students to select the courses of their choice and helps them in grooming to have well-rounded personality and become industry ready.

The efforts have been made to make the syllabus compliant with international professional societies. As part of providing quality engineering education, at NMAMIT, Nitte has initiated the Choice Based Credit System (CBCS) into its academic curriculum. By this, the students can register courses of their choice and alter the pace of learning within the broad framework of

academic course and credit requirements. CBCS allows students to plan for their academic load and alter it as they progress in learning. Students also have the option of choosing courses from a pool of courses within each classification. Ample options are given to choose interdisciplinary courses from other programs which will help the student to develop additional skills. Slow learners will also be benefitted since important courses are offered in all semesters. This arrangement helps the students to re-register the course and clear the backlog courses in the subsequent semester. Suitable provisions are made for fast learners to associate them with research activities of faculty members and contribute to research beyond the working hours.

A faculty advisor helps the student in identifying the courses to be studied in each semester based on programme requirement, course prerequisites, student's interest in various disciplines, past academic performance and courses offered by the departments.

Learning becomes more 'experiential' by carrying out labs associated with theory, mini-projects and Project Based Learning (PBL) as a part of many courses which enhances capability of students in understanding and apply the Engineering /Technology concepts to solve real life-problems. Hence students will develop the ability to apply the gained knowledge in multi-disciplinary projects and able to take up major projects based on real world problems and come up with better solutions while addressing social concerns.

Table of Core and Major Specific Courses to be completed at NMAMIT

1. NMAMIT Bachelor of Electrical and Electronical Engineering (B.Tech EE) Program to the PSU Bachelor of Science in Electrical Engineering Technology (EET_BS)

General Option in Electrical Engineering Technology.

https://bulletins.psu.edu/undergraduate/colleges/capital/electrical-engineeringtechnology-bs/

NMAMIT	Subject	NMAMIT	PSU Course Equivalent	PSU
Number		Credits		Credits
MA1009-1	Engineering	4	MATH 140: Calc with	4
	Mathematics-I		Analytical Geometry-I	
CY1001-1	Engineering Chemistry	3	CHEM 110: Chemical	3
			Principles	
CY1001-1	Engineering Chemistry	1	CHEM111: Experimental	1
	Lab		Chemistry	
CV1003-1:	Elements of Civil	4	PHYS211: General	4
	Engineering and		Physics: Mechanics	
	Engineering Mechanics			
HU1508-1	Principles of Physical	3	Health and Wellness	3
	Education			
CS1001-1	Problem Solving through	4	CMPSC 131:	3
	Programming		Programming and	
			Computation I:	
			Fundamentals	
MA1010-1	Engineering	4	MATH 141: Calc	4
	Mathematics - II		with Analytical	
			Geometry II	
ME1008-1	Computer Aided	3	EDSGN100:	3
	Engineering Graphics &		Introduction to	
	Practice		Engineering Design	
PH1001-1	Engineering Physics	4	PHYS 212: General	4
			Physics- Electricity and	
			Magnetism	
HU1510-1	Indian Culture-Music	3	Art - GA	3
HU1506-1	Overview of Indian	3	Humanities GH	3
	Culture			
HU1511-1	Engineering Ethics	3	ENGR 320Y Design for	3
			Global Society GS	
HU1509-1	Indian	3	Art – GA	3
	Culture-		Interdomain	
	Yakshagana/			

EC1003-1	Digital Logic Design	3	CMPEN271:	3
			Introduction to Digital	
			Systems	
EC1004-1	Digital Logic Design	1	CMPEN275: Digital	1
	Laboratory		Design Laboratory	
MG1507-1	Engineering Economics	3	Social and Behavioral	3
			Science GS	
MA2011-1	Engineering	4	MATH Elective	4
	Mathematics- III			
MA1003-1	A1003-1 Differential Equations 3 SET Elective		SET Elective	3
	and Laplace Transform			
	Any other transfer	13	General Elective –	13
	credits		Needed to meet	
			minimum program	
			requirements of 128	
			credits (includes extra	
			credits from CS1001-1 &	
			MA2013-4)	
Total Credits	NMAMIT	69	PSU	68

Assumes that the student receives credit toward one Interdomain requirement in addition to IL.

2. NMAMIT Bachelor of Electrical and Electronical Engineering (B.Tech EE) Program to the PSU Bachelor of Science in Electrical Engineering (EENG_BS)

NMAMIT	Subject	NMAMIT	PSU Course	PSU
Number		Credits	Equivalent	Credits
CY1001-1	Engineering Chemistry	3	CHEM 110:	3
			Chemical	
			Principles	
CY1001-1	Engineering Chemistry	1	CHEM111:	1
	Lab		Experimental	
			Chemistry	
MA1009-1	Engineering	4	MATH 140: Calc	4
	Mathematics-I		with	
			Analytical	
			Geometry-I	
CV1003-1:	Elements of Civil	4	PHYS211:	4
	Engineering and		General Physics:	
	Engineering		Mechanics	
	Mechanics			
HU1508-1	Principles of Physical	3	Health and	3
	Education		Wellness	
CS1001-1	Problem Solving through	4	CMPSC 131:	3
	Programming		Programming	
			and	
			Computation I:	
			Fundamentals	
MA1010-1	Engineering	4	MATH 141: Calc	4
	Mathematics - II		with	
			Analytical	
			Geometry II	
ME1008-1	Computer Aided	3	EDSGN100:	3
	Engineering Graphics &		Introduction to	
	Practice		Engineering	
			Design	
PH1001-1	Engineering Physics	4	PHYS 212:	4
			General	
			Physics-	
			Electricity and	
			Magnetism	
HU1510-1	Indian Culture-Music	3	Art - GA	3

https://bulletins.psu.edu/undergraduate/colleges/capital/electrical-engineering-bs/

HU1506-1	Overview of Indian	3	Humanities GH	3
HU1511-1	Engineering Ethics	3	ENGR 320Y Design for Global Society GS	3
HU1509-1	Indian Culture- Yakshagana/	3	Art - GA	3
EC1003-1	Digital Logic Design	3	CMPEN271: Introduction to Digital Systems	3
EC1004-1	Digital Logic Design Laboratory	1	CMPEN275: Digital Design Laboratory	1
MG1507-1	Engineering Economics	3	Social and Behavioral Science GS	3
MA2012-1	Engineering Mathematics-IV	3	MATH 220: Matrices	2
MA1003-1 + MA2011-1	Differential Equations and Laplace Transform + Engineering Mathematics-III	3 + 4	MATH 250: Ordinary Differential Equations	3
MA2013-1	Engineering Mathematics V	4	MATH 230: Calculus and Vector Analysis	4
CV1004-1	Statics	3	EMCH 211: Statics	3
MA2001-1	Statistics and Probability Theory	3	STAT 318: Elementary Probability	3
ME1105-1	Fluid Mechanics	2	PHYS213: General Physics: Fluids and Thermal Physics	2
PH1002-1	Engineering Physics III	3	PHYS 214: General Physics: Wave Motion & Quantum Physics	2
Total Credits	NMAMIT	74	PSU	67

REGULATIONS

COMMON TO ALL B.Tech. (CBCS) DEGREE PROGRAMMES OF NITTE (Deemed to be University)

1. INTRODUCTION

- **1.1** The general regulations are common to all B.Tech.(CBCS) Degree Programmes conducted at the NMAM Institute of Technology (NMAMIT), off-campus of NITTE (Deemed to be University) and shall be called "B.Tech. Regulations".
- **1.2** The provisions contained in this set of regulations govern the policies and procedures on the Registration of students, imparting instructions of course, conduct of the examination & evaluation, certification of student performance and all amendments related to the said Degree programme(s).
- **1.3** This set of Regulations, on approval by the Academic Council and Governing Council, shall supersede all the corresponding earlier sets of regulations of the B. Tech Degree program of NITTE (Deemed to be University) along with all the amendments thereto, and shall be binding on all students undergoing the Graduate Degree Programme(s) (Choice Based Credit System) conducted at the NMAMIT, Nitte with effect from its date of approval. This set of Regulations may evolve and get modified or changed through appropriate approvals from the Academic Council/ Governing Council from time to time and shall be binding on all stake holders (The Students, Faculty, Staff of Departments of NMAMIT, Nitte). The decision of the Academic Council/ Governing Council/ Governing Council shall be final and binding.
- **1.4** To guarantee fairness and justice to the parties concerned in view of the periodic evolutionary refinements, any specific issues or matters of concern shall be addressed separately, by the appropriate authorities, as and when found necessary.
- **1.5** The Academic Council may consider any issues or matters of Concern relating to any or all the academic activities of Engineering courses for appropriate action, irrespective of whether a reference is made here in this set of Regulations or otherwise.
- **1.6** The program shall be called **Bachelor of Technology**, abbreviated as B.Tech. (Program Specialization).

Sl.	Programme	Duration	Eligibility	
No				
1	B. Tech.	4 years	Passed 10+2 examination with Physics/ Mathematics / Chemistry/ Computer Science/ Electronics/ Information Technology/ Biology/ Informatics Practices/ Biotechnology/Technical Vocational subject as per Table-1 Obtained at least 45% marks (40% marks in case of candidates belonging to reserved category) in the above subjects taken together.	
2	B.Tech. (Lateral Entry to Second year)	3 years	 of candidates belonging to reserved category) in the above subjects taken together. Passed Minimum THREE years / TWO years (Lateral Entry) Diploma examination with at least 45% marks (40% marks in case of candidates belonging to reserved category) in relevant branch of Engineering and Technology. (The University will offer suitable bridge courses such as Mathematics, Physics, Engineering drawing, etc., for the students coming from diverse backgrounds to prepare Level playing field and desired learning 	

2. ELIGIBILITY FOR ADMISSION

Table-1

P	Academic Level and Credit Framework for admission to Bachelor of Technology (B.Tech.) degree program					
Sl. No.	Academic Level	Desired Entry Qualifications at different levels.	NHEQF / NSQF Level at Exit	Unified Credit Level (UCF) at Exit		
1	12th Std.	-	4	4		
2	First Year B.Tech. Degree	12th Completed (NHEQF /UCF level 4 completed)	5	4.5		
3	Second Year B.Tech. Degree	A candidate with a Diploma in the appropriate branch of Engineering /Equivalent Vocational or Technical Program with NHEQF level 5/UCF level 4.5 completed	6	5		

2.1 Qualifications from foreign countries:

Candidates with qualifications from educational institutions outside of India, may be admitted to the program(s) subject to establishment of equivalence by the university. The Program Committee will evaluate and establish the eligibility of such candidates. ٦

3. PROGRAM PATHS, EXIT OPTIONS AND DURATION OF THE B. TECH. PROGRAMME

Sr. No	Academic Level	Entry Level Qualifications	Qualifications at Exit	NCrF Level
1	1st yr. of UG Degree	A candidate completing 10+2 years with Diploma of Vocation or passed 12th std. or equivalent vocational training with NCrF level 4	UG Certificate*	4.5
2	2nd yr. of UG Degree	A candidate with Diploma in appropriate branch of Engineering/ UG Certificate/ Equivalent Vocational or Technical Program NCrF level 4.5		5.0
3	3rd yr. of UG Degree	A candidate with 10+3+1/12+2/ UG Diploma (Engg.) in appropriate domain with NCrF level 5	B. Sc (Engg.)*	5.5
	Final yr. of UG Degree	A candidate with 3 yrs. Bachelor degree in Vocation / B.Sc. (Engg.) with NCrF level 5.5	B. Tech (on completion of 160 credits with a minimum CGPA of 5)	6
4	Final yr. of UG Degree with Honours	A candidate with 3 yrs. Bachelor degree in Vocation / B.Sc. (Engg.) with NCrF level 5.5	B. Tech (Honors) 178 credits (Additional 18 credits over and above 160 credits in the same discipline	6
	Final yr. of UG Degree with a minor in (Other Discipline).	A candidate with 3 yrs. Bachelor degree in Vocation / B.Sc. (Engg.) with NCrF level 5.5	B. Tech with Minor 178 credits. Additional 18 credits over and above 160 credits in other disciplines	6

3.1 Program paths, exit options.

* It is mandatory to earn 10 credits through internship/ Training/ Specialized courses before the award of Qualifications at Exit.

3.2 Duration of the B. Tech. programme

- (a) The B. Tech Programme shall extend over a period of total duration of 4 years for students admitted during first year of the programme.
- (b) The total duration shall be 3 years for students admitted to second year under lateral entry scheme.
- (c) The maximum period which a student can take to complete a fulltime academic programme is eight years / Six years for Lateral entry diploma students for B.Tech.
- (d) Each year shall have the following schedule with 5 $\frac{1}{2}$ days a week. Suggested

1.	No. of Semesters /	There are three semesters in an academic year	ır.			
	Year	Two Main semesters (Odd, Even) followed b	y a summer semester.			
		Normally the Odd Semester will be from Au	gust to December and			
		Even Semester from January to May during a	a calendar year.			
		The optional summer semester is offered during the vacation period				
		of even semester.				
		The summer semester is offered considering the demand for such				
		courses of needy students, subject to the	availability of time,			
		faculty and other resources under a fast	-track mode as the			
		available instructional days during even sen	nester vacation period			
		are less. However, the number of instruction	onal hours needed to			
		cover the syllabi shall be maintained (equ	ivalent to that in the			
		regular semester) with a greater number of	instruction hours per			
		week.				
		(Note: Summer semester is primarily to assist	st slow learners and / or			
		failed students in the main semesters. The su	immer semester may be			
		used to arrange Add-On courses for other	students and / or for			
		deputing them for practical training elsewher	re)			
2.	Semester Duration	Main semester (Odd, Even) each 20 Week	s; Summer Semester 8			
		Weeks				
3.	Academic	ODD / EVEN Semester				
	Activities (Weeks)	Registration of Courses & Course Work	(16)			
		Examination Preparation and Examination	(04)			
		Total	(20)			
		Summer Semester				
		Registration of Courses & Course Work	(05)			
		Examination Preparation and Examination	(03)			
		Total	(08)			
		Declaration of results:	02 weeks from			
		Deciaration of results.	the date of last			
			examination			
		Inter- Semester Recess:				
		After each Main Semester	(02)			
		Total Vacation: 10 weeks (for those who do not register for summer				
		semester) and 4 weeks (for those who register for summer semester)				

break down of Academic Year into Semesters.

(Note: In each semester, there will be provision for students for Registration of courses at the beginning, dropping of courses in the middle and withdrawal from courses towards the end, under the advice of faculty member. These facilities are expected to enhance the learning capabilities of students, minimizing their chances of failure in courses registered and ensure their better monitoring by Faculty Advisors).

A candidate shall be allowed a maximum duration of eight years from the first semester of admission to become eligible for the award of Bachelor degree.

The calendar of events in respect of the programme shall be fixed by the Institution from

time to time, but preferably in line with the suggested academic calendar of the NITTE (Deemed to be University).

4. DEGREE PROGRAMMES

4.1 Undergraduate B. Tech. Degree Programmes are offered in the following disciplines by the respective programme hosting departments listed below:

i)	Biotechnology Engineering	(BT)
ii)	Computer Science & Engineering	(CS)
iii)	Computer Science & Engineering (Cyber Security)	(CB)
iv)	Civil Engineering	(CV)
v)	Electronics & Communications Engineering	(EC)
vi)	Electronics Engineering (VLSI Design and Technology)	(VT)
vii)	Electronics & Communication (Advanced Communication	(AC)
	Technology)	
viii)	Electrical & Electronics Engineering	(EE)
ix)	Information Science & Engineering	(IS)
x)	Mechanical Engineering	(ME)
xi)	Artificial Intelligence and Machine Learning Engineering	(AM)
xii)	Computer and communication Engineering	(CC)
xiii)	Robotics and Artificial Intelligence Engineering	(RI)
xiv)	Artificial Intelligence and Data Science	(AD)
Other te	aching departments are –	
i)	Chemistry	(CY)
ii)	Humanities	(HU)
iii)	Management and Social Sciences	(MG)
iv)	Mathematics	(MA)
v)	Physics	(PH)

4.2 The provisions of these regulations shall be applicable to any new discipline that may be introduced from time to time and appended to the above list.

5. CREDIT SYSTEM:

In the Credit System, the course work of students is unitized, and each unit is assigned one credit after a student completes the teaching-learning process as prescribed for that unit and is successful in its assessment.

- **5.1 Credit Definition:** The following widely accepted definition for credit can provide the good flexibility to the students and strengthens CBCS under the University. Here, one unit of course work and its corresponding one credit (while referring to a main semester) shall be equal to:
 - Four-credit theory courses shall be designed for 50 hours of the Teaching-Learning process.
 - Three-credit theory courses shall be designed for 40 hours of the Teaching-Learning process.
 - Two-credit theory courses shall be designed for 25 hours of the Teaching-Learning process.

• One credit theory course shall be designed for 15 hours of the Teaching-Learning process.

The above figures shall also be applicable in the case of summer semester. Other student activities which are not demanding intellectually, or which do not lend to effective assessment, like practical training, study tours, attending guest lectures shall not carry any credit.

5.2 Credit Assignment and Lower & Upper Limits for Course Credits Registration in a Semester

All courses comprise of specific Lecture/Tutorial/Practical/Project (L-T-P-J) schedule. The course credits are fixed based on the following norms. Lecture / Tutorials / Practical:

- 1-hour Lecture per week is assigned 1.0 Credit.
- 2-hour Tutorial session per week is assigned 1.0 Credit.
- 2-hour Lab. Session/project work per week is assigned 1.0 credit. For example,
- A theory course with L-T-P schedule of 3-2-0 hours will be assigned 4.0 credits.
- A laboratory practical course with L-T-P schedule of 0-0-2 hours will be assigned 1.0 credit.
- Calculation of Contact Hours / Week A Typical Example
- As advised by faculty advisor, a student may register, between a minimum of 16 credits and up to a maximum of 28 credits.

The maximum number of credits a student can register during a summer semester shall be 16. However, in special cases, the student may be permitted to register additional credits with the approval of the Department Undergraduate Committee (DUGC). There is no minimum number of credits fixed for course registration during summer semester.

Example:

An LTP-C of 2-2-2-4 means 2 instructional units based on classroom lecture (L), one instructional unit of tutorial (T), one laboratory (P) based instructional unit all delivered during a calendar week and repeated for the entire duration of the semester to earn 4 credits (C) after passing the course.

6. **REGISTRATION**

- 6.1 Every student after consulting his/ her Faculty Advisor in the parent department shall register for the approved courses (core and elective) to earn credits for meeting the requirements of a degree program at the commencement of each Semester on the days fixed for such registration and notified in the academic calendar. Students who fail to register on or before the specified date will be allowed to register within one week of the last date by paying a late fee. Such courses together with their grade and credits earned will be included in the grade card issued by the University at the end of each semester, like ODD, EVEN, and summer and it forms the basis for determining the student's performance in that semester.
 - 6.1.1 Each course will be identified by a unique Course Code of seven alphanumerals (two alphabets followed by 5 digits). The alphabets reflect the discipline to which the course belongs. The first numeral (after the alphabet)

indicates the learning level (based on prerequisites) of the course, and the rest of the three numerals indicate a running serial number. Each course also has its version to track the revisions carried out in its syllabus over time as represented by the last numerical separated by a hyphen (-). Example: EE1001-1 represents the course offered by EE Dept., Level-1, course serial number is 001 and the version is 1.

6.2 Mandatory Pre-Registration for higher semester

To facilitate proper planning of the academic activities of the Semester, the students must declare their intention to register for courses of higher semesters (3rd and above) at least two weeks before the end of the current semester choosing the courses offered by each department in the next higher semester which is displayed on the Department Notice Board at least 4 weeks before the last working day of the semester.

Registration to a higher semester is allowed only if the student fulfils the following conditions.

- Satisfied all the academic requirements to continue with the program of studies.
- Cleared all Institute, hostel, and library dues and fines, if any, of the previous semester.
- Paid all required fees of the Institute and the hostel for the current semester.
- Has not been debarred from registering on any specific grounds by the Institute.

6.3 Registering for Backlog Courses

- 6.3.1 Students who have not cleared a course (Theory/ Lab/ project) are shown with "F" grade. A course having an 'F' grade will be considered as a backlog and it has to be re-registered in the subsequent semesters. F-graded courses are eligible to register for the next level course (pre-requisite is met).
- 6.3.2 Re-registration fee will be as per the university norms existing at the time of re-registration. When a course is re-registered, the evaluation marks of that course shall be treated as canceled/ reset.
- 6.3.3 To provide an early opportunity for students to clear their backlog of courses, efforts will be made to offer as many courses as possible during Odd, Even and summer semesters.

7. ADD/DROP/AUDIT OPTIONS

7.1 Registration of courses

Each student shall have to register for course work at the beginning of a semester within 2 to 3 days of commencement after discussing with the course teacher and under faculty advice. The permissible course load is to be either average credits (20) or to be within the limits of minimum (16) and maximum (28) credits.

7.2 DROP-option

During a specified period in the middle of a semester student's performance in CIE is reviewed by the faculty advisor. Following a poor performance by a student, he/she can be facilitated to drop identified course(s) (up to the minimum credits specified for the semester). Such course(s) will not be mentioned in the Grade card.

Such courses are to be re-registered by these students and taken up for study at a later point in time.

7.3 Withdrawal from courses (Letter Grade "W")

During a specific period specified towards the end of the semester, a student's performance in CIE is reviewed by the faculty advisors. Following a poor performance by a student in the identified course (s) he/she is advised to withdraw from such course(s) (up to the minimum credits specified for the semester) with a mention in the Grade card (Grade "W"). Such courses to be re-registered by these students and taken up for study at a later point in time.

7.4 AUDIT-option (Letter Grade "U")

A student can register for courses for audit only, to supplement his/her knowledge and/or skills. The audit courses shall not be considered in determining the student's academic performance (SGPA and CGPA) in the semester. "U" grade is awarded to such courses and will be reflected in the grade card on satisfying the attendance requirements and CIE requirements. The candidate need not appear for SEE in such courses. However, CORE courses shall not be made available for audit.

8. COURSE STRUCTURE:

8.1 Types of courses

A "Course" is defined as a unit of learning that typically lasts one semester, led by one or more teachers, for a fixed roster of students. A course has identified course outcomes, modules/ units of study, specified teaching-learning methods and assessment schemes. A course maybe designed to include lectures, tutorial, practical, laboratory work, field work, project work, internship experiences, seminars, self-study components, online learning modules etc. in any combination.

The following types of courses are included in the B. Tech. program:

- a. Humanities, Social Sciences, and Management Courses (HSMC): These are common courses for all disciplines.
- b. Basic Science Courses (BSC): Physics, Chemistry and Mathematics: These are mandatory for all disciplines.
- c. Engineering Science Courses (ESC): Basics of Electrical/ Electronics/ Civil/ Mechanical/ Computer Engineering, etc. These are mandatory for all disciplines.
- d. Professional Core Courses (PCC): These are the professional Core Courses, relevant to the chosen specialization/ branch. The core courses shall be compulsorily studied by students, and it is mandatory to complete them to fulfill the requirements of a Program.
- e. Professional Elective Courses (PEC): These are professional Electives, relevant to the chosen specialization/branch and can be chosen from the pool of courses. It shall be supportive to the discipline providing extended scope/enabling exposure to some to other discipline /domain and nurturing student proficiency skills.
- f. Open Elective Courses (OEC): These are the Elective Courses from other technical areas and/ or from emerging fields. Students of other departments shall opt for these courses to fulfilling of eligibility and prerequisite mentioned in the syllabus.

- g. Integrated Professional Core Courses (IPCC): It refers to Professional Theory Core Course Integrated with Practical of the same course. Credit for IPCC shall be 04 considering L: T: P as 3:0:1 or L: T:P as 2:1:1, (where L, T and P represents credits not hours per week)
- h. Holistic Education Courses (HEC): These courses are designed to look into the emotional, social, ethical and academic needs of students in an integrated learning format. It helps in the engagement of all aspects of the learner including body, mind and spirit.
- i. Vocational Education Courses (VEC): These courses are designed to prepare students for jobs that are based on manual or practical activities, traditionally non-academic related to a specific trade, occupation or vocation.
- j. Emerging Technology Courses (ETC): These courses are designed to teach students about developing technologies that will be available within the next five to ten years and are expected to create significant social or economic effects.
- k. Programming Language Courses (PLC): These courses are designed to teach students languages that can be used to communicate with computers for developing and working on different applications.
- 1. University Core Courses (UCC): These are compulsory core courses with common course codes across all the disciplines.
 - i. Project Work (PROJ): Provide experiential learning opportunities for students. Students are required individually, or in a small group, to select and complete a project that may include review, design, development, curation, analysis, etc. with the application of skills and knowledge relevant to the area of study. Mini-project and Project work carried out at the parent Institution, or any university / Government recognized organization without affecting the regular class work.
 - ii. Internship (INT): The internship (a form of experimental learning) program is a workplace-based professional learning experience that offers supervised exposure to real-life work experience in an area related to the field of study or career interest. An internship may be undertaken at a workplace such as an industry/R&D organization/Government organization, or any other reputed organization/ institution recognized for the purpose by the University. The internship program not only helps fresh pass-outs in gaining professional know-how but also benefits corporate sectors. The internship also enhances the employability skills of the student passing out from Technical Institutions.
- 8.2 Mandatory Non-Credit Courses (MNC): These courses are mandatory, without the benefit of a grade or credit, passing each mandatory course is required to qualify for the award of a degree.
 - Assessment of these courses is conducted in the college and will include Continuous Internal Evaluation (CIE). University Semester End Evaluation (SEE) may not be necessary for these courses.
 - A minimum of 40% of the prescribed marks of CIE and SEE (If any) are required to secure a passing grade in these courses.
 - The 'PP' grade is awarded for a Pass in the course and the 'NP' grade is awarded

for a Fail in the course. In case an 'NP' grade is awarded, the student has to reregister for the same course wherein he has no alternative options.

- The "PP" and "NP" grades do not carry grade points and are hence not included in the Semester Grade Point Average (SGPA) and Cumulative Grade Point Average (CGPA) computations. However, such non-credit mandatory courses are required to be included in the students' performance records (transcript) with Pass or Fail (PP or NP).
- Courses that come under this category are the following.
 - Engineering Visualization, Employability Skill Development, Environmental Science, Kannada etc.
- **8.3** Ability Enhancement Courses (AEC): These courses are designed to help students to enhance their skills in language, communication, personality development, etc. They also promote a deeper understanding of courses like social sciences, ethics, culture, human behaviour human rights, and the law. Ability Enhancement Courses are based upon the content that leads to Knowledge enhancement.

Sl. No.	Course Category	Credit Range	Suggested Credits
1.	Basic Science Courses (BSC)	18-23	22
2.	Engineering Science Courses (ESC)	10-15	13
3.	Emerging Technology Courses (ETC)	03-05	03
4.	Programming Language Courses (PLC)	03-05	03
5.	Professional Core Courses (PCC)	52 - 58	55
6.	Professional Elective Courses (PEC)	12-18	15
7.	Open Elective Courses (OEC)	6	6
8.	Humanities, Social Sciences and Management courses (HSMC)	09-15	12
9.	Ability Enhancement Courses (AEC)	9	9
10.	Mandatory Non-credit Courses (MNC)	Non-Credit	0
11.	Holistic Education Courses (HEC)	2	1
12.	Vocational Education Courses (VEC)	1	1
13.	Project Work (PROJ) (UCC)	10-12	10
14.	Internship (INT) (UCC)	8-12	10
15.	Note: Student can register between 16 to 28 credits per sen	nester	1(0
	Total minimum Credits to be earned: 160		

8.4 Typical Breakdown for the B.Tech. Degree Curriculum

The Department Undergraduate Committee (DUGC) will discuss and recommend the exact credits offered for the program for the above components, the semesterwise distribution among them, as well as the syllabi of all undergraduate courses offered by the department from time to time before sending the same to the Board of Studies (BOS). The BOS will consider the proposals from the departments and make recommendations to the Academic Council for consideration and approval.

8.5 The earned Credit Requirements for the B.Tech. Degree is 160.

Degree is awarded by prescribing the total number of credits to be earned, rather than by using the program duration, giving flexibility to a student to plan their career.

8.6 Program structure and suggested Course offerings

			I/II SE	MEST	ER							
Sl. No.	Cor Cor	urse and urse code	Course Title		Те Ног	eachir 1rs/W	ng eek		Exam	inatio	n	
				Teaching Dept.	Theory Lecture	Tutorial	Practical/Drawing	Duration in hr	CIE Marks	SEE Marks	Total Marks	Credits
					L	Т	Р					
1	BSC	MA1001-2	Matrix Algebra and Calculus	MAT	4	0	0	3	50	50	100	4
2	BSC	CY1005-1	Chemistry of Energy Storage and Display Devices	CHE	3	0	2	3	50	50	100	4
3	ESC	EE1001-2	Basic Electrical Engineering	EE	2	0	2	3	50	50	100	3
4	ESC	ME1003-2	Elements of Mechanical Engineering	ME	3	0	0	3	50	50	100	3
5	ETC	IS1101-1	Fundamentals of Cyber Security	EC	3	0	0	3	50	50	100	3
6	AEC	CS1002-1	IT Skills	Any Dept.	1	0	2	3	50	50	100	2
7	AEC	BT1651-1	Biology for Engineers	BT	1	0	0	1	50	50	100	1
8	MNC	CV1002-1	Environmental Studies	CV	1	0	0	1	50	0	50	0
9	ESC	ME1004-1	Engineering Visualization	ME	0	0	2	0	50	0	50	1
	Loc Williou Visualization		T	OTAL	18	0	8	20	450	350	800	21

			I/II S	EMEST	'ER							
Sl. No.	Cou Cou	rse and rse code	Course Title		T Ho	'eachi urs/W	ng /eek]	Exami	natio	n	
				Teaching Dept.	Theory Lecture	Tutorial	Practical/Drawing	Duration in hr	CIE Marks	SEE Marks	Total Marks	Credits
					L	Т	Р					
1	BSC	MA1003-1	Differential Equations and Laplace Transforms	MAT	3	0	0	3	50	50	100	3

6 7	HSMC MNC	HU1001-1 HU1002-1	Technical English Constitution of India Mathematics with	HU HU	1	0 0	2 0	3	50 50	50 0	100 50	2 0
5	ESC	EC1002-2	Applied Digital Logic Design	EC	2	0	2	3	50	50	100	3
4	PLC	CS1004-1	Introduction to C Programming	EC	3	0	0	3	50	50	100	3
3	ESC	EC1001-1	Basic Electronics	EC	3	0	0	3	50	50	100	3
2	BSC	PH1006-1	Semiconductor Physics and Photonics	РНҮ	3	0	2	3	50	50	100	4

Man	datory	v Internship	-I*				
9	INT	UC1001-1	Internship – I	Mandatory Intra Institutional Internship of duration (80 - 90 Hours) to be completed during I & II Semesters. *The grades will be included in the IV semester grade card (Refer 11.5.2 for details)	100	 100	2

			Ι	II SEM	ESTE	R							
Sl.	Cou	rse and	Course Title			Teac	hing			Exami	inatior	l	
No.	Cou	rse code				Hours	/Week						
				Teaching Dept.	Theory Lecture	Tutorial	Practical/Drawing	PBL	Duration in hr	CIE Marks	SEE Marks	Total Marks	Credits
					L	Т	Р	J					
1	BSC	MA2004-1	Vector Calculus, Transform Techniques	MA	3	0	0	0	03	50	50	100	3
2	IPCC	EE2003-1	Microcontroller	EE	3	0	2	0	03	50	50	100	4
3	IPCC	EE2005-1	Network Analysis	EE	3	0	2	0	03	50	50	100	4
4	PCC	EE2101-1	Analog Signal Processing	EE	3	0	0	0	03	50	50	100	3
5	PCC	EE2104-1	Generation Transmission & Distribution	EE	3	0	0	V	03	50	50	100	3
6	PCC	EE2601-1	Analog Signal Processing Laboratory	EE	0	0	2	0	03	50	50	100	1
7	HSMC	HU1004-2	Universal Human Values	Any Dept.	1	0	0	0	01	50	50	100	1
8	AEC	ME1654-2	Innovations and Design Thinking	ME	1	0	0	0	01	50	50	100	1

9	MNC	HU1003-2	Kannada (Balake / Samskrithika)	Any Dept.	1	0	0	0	-	50	-	50	0
			T	OTAL	18	0	6		20	450	400	850	20

Co	ourse pre	escribed to la	ateral entry Diploma holders	admitt	ed to	III se	emeste	er of I	Engiı	neerin	g pro	ogram	S
10	MNC	MA1011-1	Bridge Course - Calculus Laplace Transforms	MA	3	0	0	0	3	100	0	100	0

			IV S	SEME	ESTEF	R I							
Sl. No	Cou Cou	rse and rse code	Course Title		H	Teacl Iours/	ning Week			Exam	inatio	n	
				Teaching Dept.	Theory Lecture	Tutorial	Practical	PBL	Duration in hr	CIE Marks	SEE Marks	Total Marks	Credits
					L	Т	Р	J					
1.	BSC	MA2009-1	Probability Theory and Numerical Methods	MA	3	0	0	0	03	50	50	100	3
2.	IPCC	EE2002-1	Instrumentation and Measurements	EE	3	0	2	0	03	50	50	100	4
3.	IPCC	EE3002-1	Linear Control Systems	EE	3	0	2	0	03	50	50	100	4
4.	PCC	EE2102-1	Electrical Machines I	EE	3	0	0	0	03	50	50	100	3
5.	PCC	EE2103-1	Electromagnetic Fields	EE	3	0	0	\checkmark	03	50	50	100	3
6.	PCC (Lab)	EE2602-1	Electrical Machines I Laboratory	EE	0	0	2	0	03	50	50	100	1
7.	HSMC	HU2001-2	Enhancing Self Competence	HU	2	0	0	0	03	50	50	100	2
8.	HEC	HU1005-1	Essence of Indian Culture	HU	1	0	0	0	-	50	-	50	0
9.	VEC	EEx5xx-1	Department specific Vocational Education Course	EE	0	0	2	0	03	50	50	100	1
10.	D. UCC UC1001-1 Internship - I Mandatory Intra Institutiona Activity based Internship of weeks duration (80 - 90 h) to be completed during the vacations of I & II Semesters Lateral entry students have to complete the Internship - I during the vacation of III semester								nal f 2 to rs. to I	100	-	100	2
			ТО	TAL	18	0	8		24	550	400	950	23

Co	urse pr	escribed to l	ateral entry Diploma	a holders a	ıdmit	ted to	lII s	emes	ter of	Engi	ineerii	ng pr	ogran	ıs
11	MNC	MA1013-1	Bridge Course – Pr and Differential Equa	robability ations	MA	3	0	0	0	3	100	0	100	0

			V SEM	ESTEF	2								
Sl. No.	Cou Cou	urse and 1rse code	Course Title] He	Feac ours/	hing /Week			Exam	inatio	n	
				Teaching Dept.	Theory Lecture	Tutorial	Practical	PBL	Duration in hr	CIE Marks	SEE Marks	Total Marks	Credits
					L	Т	Р	J					
1	IPCC	EE2001-1	Electrical Machines II	EE	3	0	2	0	3	50	50	100	4
2	IPCC	EE2004-1	Modern Switchgear and Protection	EE	3	0	2	0	3	50	50	100	4
3	PCC	EE3101-1	Power Electronics	EE	3	0	0	0	3	50	50	100	3
4	PCC (Lab)	EE3602-1	Power Electronics Laboratory	EE	0	0	2	0	3	50	50	100	1
5	PEC	EExxxx-1	Professional Elective-I	EE	3	0	0	0	3	50	50	100	3
6	HSMC	HU1006-1	Intellectual Property Rights	Any Dept.	1	0	0	0	1	50	50	100	1
		HU1010-1	Research Methodology	Any Dept	2	0	0	0					
7	AEC	XXx6xx-2	Program Specific Ability Enhancement Course	EE	1	0	2	0	3	50	50	100	2
8	AEC	HU1007-1	Social Connect & Responsibility	Any Dept.	1	0	0	0	1	50	50	100	1
9	AEC	UM1003-2	Employability Skill Development	EE	1	0	0	0	-	50	-	50	1
			Т	OTAL	17/16	0	8	-	20	450	400	850	20

			VI SEN	IESTE	R								
Sl. No.	Con Con	urse and urse code	Course Title		Н	Teac ours	hing /Weel	٢		Exam	inatio	n	
				Teaching Dept.	Theory Lecture	Tutorial	Practical	PBL	Duration in hr	CIE Marks	SEE Marks	Total Marks	Credits
					L	Τ	Р	J					
1.	IPCC	EE3003-1	Signal Analysis and Processing	EE	3	0	2	0	3	50	50	100	4
2.	PCC	EE3102-1	Power System Analysis and Stability	EE	3	0	0	0	3	50	50	100	3
3.	PCC (Lab)	EE3603-1	Power System Analysis and Stability Laboratory	EE	0	0	2	0	3	50	50	100	1
4.	PEC	EEx2xx-1	Professional Elective – II (Group -I)	EE	3	0	0	0	3	50	50	100	3

N

Regulations and curriculum for B. Tech. Electrical and Electronics Engineering

5.	PEC	EEx3xx-1	Professional Elective - III (Group-II)	EE	3	0	0	0	3	50	50	100	3
6.	OEC	XXX5XX- 2	Open Elective –I	Any Dept.	3	0	0	0	3	50	50	100	3
7.	HSMC	MG1003-2	Management & Entrepreneurship	Any Dept.	3	0	0	0	3	50	50	100	3
8.	AEC	HU1008-1	Life Skills for Engineers	HU	1	0	0	0	1	50	50	100	1
		Engineers TOT					4	0	22	400	400	800	21

VII SEMESTER													
Sl. No.	Course and Course code		Course Title		Teaching Hours/Week		Examination						
				Teaching Dept.	Theory Lecture	Tutorial	Practical	Self-Study	Duration in hr	CIE Marks	SEE Marks	Total Marks	Credits
					L	Т	P	S					
1.	IPCC	EE3001-1	Industrial Drives and Applications	EE	3	0	2	0	3	50	50	100	4
2.	PCC (Lab)	EE3601-1	High Voltage Engineering Laboratory	EE	0	1	1	0	3	50	50	100	1
3.	PEC	EEx2xx-1	Professional Elective – IV (Group-I)	EE	3	0	0	0	3	50	50	100	3
4.	PEC	EEx3xx-1	Professional Elective – V (Group-II)	EE	3	0	0	0	3	50	50	100	3
5.	OEC	XXX5XX-2	Open Elective –II	Any Dept.	3	0	0	0	3	50	50	100	3
6.	HSMC	MG1002-2	Financial Management	Any Dept.	3	0	0	0	3	50	50	100	3
7.	HEC	HU1009-1	Indian Knowledge Systems	HU	1	0	0	0	-	50	-	50	1
8.	UCC	UC2002-2	Major Project Phase I	EE	-	-	4	-	-	100	-	100	2
			Т	OTAL	16	1	7	-	18	450	300	750	20

VIII SEMESTER											
Sl.	. Course and b. Course code		Course Title	Teaching Hours/Week		Examination					
No.				Theory Lecture	Tutorial	Project/ Self study	uration in hr	JE Marks	EE Marks	otal Marks	Credits
				L	Т	J/S	Q	0	\mathbf{v}	Ĺ	
1.	UCC	UC2001-2	Internship- II (Societal internship and Research/Industry Internship)	Mandatory Societal internship for 2 weeks (80 – 90 h) and Research Internship / Industry Internship of 6 weeks (240 – 270 h) or Research Internship / Industry Internship for a total of 8 weeks (320 – 360 h)to be completed in one/two stretches during the vacation periods between IV to VII			3	50	50	100	8
2.	UCC	UC3001-2	Major Project Phase II	Student should carry out project in research institute/industry/intra institute Center of Excellences. Two contact hours /week for interaction between the project guide and students.			3	100	100	200	8
		·	TOTAL	-	-	-	6	150	150	300	16

8.7 Eligibility for submission of Project Work Report

- 8.7.1 Project work during the 8th semester shall be taken up batch-wise and report can be submitted for evaluation only on completion of a minimum of 122 credits and for Diploma lateral entry students (those who have joined the second year B.Tech.) the same is 88 credits.
- 8.7.2 Project work can be carried out as domain-specific /interdisciplinary under the guidance of faculty/ faculty members. They can also opt for an advanced Internship or research Internship in an Industry / Research Institution/Center of excellence.
- 8.7.3 Project viva-voce examination shall be conducted individually.

8.8 ELECTIVES

- 8.8.1 A candidate shall take electives in each semester from groups of electives, commencing from the 5th semester.
- 8.8.2 The minimum number of students to be registered for any Elective offered shall not be less than fifteen (15) and should not exceed forty (40).
- 8.8.3 A candidate shall opt for his/her choice of electives and register for the same at the beginning of each of the 5th to 7th semesters if pre-registration is not done. The candidate is permitted to opt for a change of elective within 15 days from the date of commencement of the semester as per the academic

calendar of the college.

9. ATTENDANCE REQUIREMENT:

- **9.1** Each semester is considered as a unit and the candidate has to put in a minimum attendance of 85% in each subject with a provision of condoning 10% of the attendance by the Principal for reasons such as medical grounds, participation in University level sports, cultural activities, seminars, workshops, and paper presentation.
- **9.2** The basis for the calculation of the attendance shall be the term prescribed by the institution by its calendar of events. For the first semester students, the same is reckoned from the date of admission to the course.
- **9.3** The students shall be informed about their attendance position in the first week of every month by the College so that the students shall be cautioned to make up for the shortage.
- **9.4** A candidate having a shortage of attendance (<75%) in any course(s) registered shall not be allowed to appear for SEE of such course(s). Such students will be awarded an 'N' grade in these courses.
- **9.5** He/she shall have to repeat those course(s) with an 'N' grade and shall re-register for the same course(s) core or elective, as the case may be when the particular course is offered next either in a main (odd/even) or summer semester.

9.6 Attendance in CIE and SEE:

Attendance in all examinations both CIE and SEE of each course registered shall be compulsory and there shall not be any provision for re-examinations. Any student against whom any disciplinary action is pending shall not be permitted to attend any SEE in that semester.

10. WITHDRAWAL FROM THE PROGRAMME

10.1 Temporary Withdrawal

- a) A student who has been admitted to a degree program of the college may be permitted once during the course to withdraw temporarily, for one semester, on the grounds of prolonged illness or grave calamity in the family, etc., provided:
 - i. The student applies to the College within 6 weeks of the commencement of the college stating fully the reasons for withdrawal together with supporting documents and endorsement from his parent/guardian.
 - ii. The College is satisfied with the genuineness of the case and that even by considering the expected period of withdrawal, the student can complete the program requirements (160 credits) within the time limits specified by the university.
 - iii. The student does not have any dues or demands at the College / University including tuition and other fees as well as library material.
 - iv. A student availing of temporary withdrawal shall be required to pay such fees and/or charges as may be fixed by the college until his/her name appears on the student's roll list. The fees/charges once paid shall not be refunded.
 - v. A student will be entitled to avail of the temporary withdrawal facility

only once during his/her studentship. However, any other concession for the concerned student shall have to be approved by the academic council.

10.2 Permanent Withdrawal

Any student who withdraws the admission before the closing date of admission for the Academic Session is eligible for the refund of the deposits only. Fees once paid will not be refunded on any account.

Once the admission for the year is closed, the following conditions govern withdrawal of admissions.

- **10.3** A student who wants to leave the College for good will be permitted to do so (and take a Transfer Certificate from the College, if needed), only after clearing all other dues if any.
- **10.4** Those students who have received any scholarship, stipend, or other forms of assistance from the College shall repay all such amounts.
- **10.5** The decision of the Principal of the College regarding the withdrawal of a student is final and binding.

11. EVALUATION SYSTEM

- **11.1** The Academic Performance Evaluation of a student shall be according to a Letter Grading System, based on the Class Performance Distribution.
- **11.2** The Letter grades O, A+, A, B+, B, C, P and F indicate the level of academic achievement, assessed on a decimal (0-10) scale.
- **11.3** The Letter grade awarded to a student in a course, for which he has registered shall be based on his performance in quizzes, tutorials, assignments etc., as applicable, in addition to two mid- semester examinations and one semester end examination. The distribution of weightage among these components may be as follows.

Sem	ester End Examination (SEE)	:	50% (50 marks)			
Cont	tinuous Internal Evaluation (CIE)	:	50% (50 marks)			
CIE	for Non-PBL Courses					
i)	Quizzes, Tutorials, Assignments,	:	10 marks			
	Seminars, etc.					
ii)	Mid-semester Examinations	:	40 marks			
CIE	CIE for PBL/IPCC Courses					
i)	Project Based Learning (PBL)	:	50 marks			
ii)	Mid-semester Examinations	:	40 marks			
iii) Quizzes, Tutorials, Assignments, Seminars, etc.			10 marks			
60% weightage for theory + 40% weightage for PBL/Practical						

Any variation, other than the above distribution, requires the approval of the pertinent DUGC and Academic Council.

11.4 The letter grade awarded to a student in a 0-0-P (Practical) course, is based on an appropriate continuous evaluation scheme that the course instructor shall evolve, with the approval of the pertinent DUGC and the performance in SEE held on the specified period in a semester.

- **11.5** Evaluation Scheme (*Refer to Appendix-B for detailed evaluation guidelines*): The course Instructor shall announce in the class and/or display at the Notice board/faculty door/website the details of the Evaluation Scheme, including the distribution of the weightage for each of the components and method of conversion from the raw scores to the letter-grades within the first week of the semester in which the course is offered so that there are no ambiguities in communicating the same to all the students concerned.
 - 11.5.1 Internship: Mandatory Internship is in two parts. Internship-I (2 weeks) and Internship-II (8 weeks)
 - 11.5.2 Internship-I
 - i. All the students admitted to the 1st semester of engineering programs shall have to undergo Internship-I of 02 weeks (or 80 to 90 hrs duration) during the first year. The internship shall include Inter / Intra Institutional activities. A viva voce examination (Presentation followed by question-answer session) shall be conducted during the 2nd semester (for lateral entry students, during the 3rd semester) and the prescribed credit shall be included in the 4th-semester grade card.
 - All the students admitted to the 3rd semester of Engineering programs (Lateral Entry Category) shall have to undergo a mandatory internship of 02 weeks (during the 3rd semester or the intervening period of the 3rd and 4th semesters). The internship shall include Inter/Intra Institutional activities.
 - iii. The internship shall be considered as a head of passing and shall be considered for the award of a degree. Those, who do not take up / complete the internship shall be declared to fail and shall have to complete it during subsequent University examinations after satisfying the internship requirements. (The faculty coordinator or mentor has to monitor the student's internship progress and interact to guide them for the successful completion of the internship).
 - iv. Procedure for the Evaluation of Internship-I
 - a) Students should submit the reports immediately on completion of the Internship to the respective mentors.
 - b) The Examination of the internship will be carried out by the mentor.
 - c) The Internship-I shall be slated for 100 marks CIE only and will not have SEE.
 - d) Internship-I marks are based on CIE marks (25 marks for the first presentation, 25 marks for the second presentation, and 50 marks for the report and final presentation).
 - e) A Viva-Voce examination is conducted during I/II/III Semesters (Presentation followed by question-answer session) and the prescribed credit shall be included in the IV semester grade card.

11.5.3 Internship-II

i. All the students admitted to engineering programs shall have to undergo Internship-II of 08 weeks during the second and third year of their

Engineering studies.

- ii. During the intervening period of the IV & V semesters and VI & VII semesters, students shall be ready for industrial experience. Therefore, they shall choose to undergo 8 weeks Internship involving Innovation / Entrepreneurship/ or short-term (about 2 weeks) societal-related activities and 6 weeks Industry Internship.
- 11.5.4 **Project work evaluation:** The evaluation of CIE of the project work shall be based on the progress of the student in the work assigned by the project supervisor, periodically evaluated by him/her together with a department committee constituted for this purpose. Seminar presentation, project report, and final oral examination conducted by the project evaluation committee at the department level shall form the SEE of the project work.
- 11.5.5 In the case of other requirements, such as seminar, field work, or comprehensive viva voce, if any, the assessment shall be made as laid down by the DUGC/Academic council.
- 11.5.6 There shall be no re-examination for any course in the credit system. However, students
 - who have abstained from attending CIE or SEE without valid reasons ("N" grade), or
 - who have failed (F grade) to meet the minimum passing standards prescribed for CIE and/or SEE or
 - who have been detained for shortage of attendance or who have withdrawn (W grade) who have dropped any course shall be required to re-register for such course(s) and go through CIE and SEE again and obtain a grade equal to or better than "P" Grade in each case.
 - While such students should re-register for the same course(s) if core, they can re-register for the alternative course(s) from among the elective courses, as the case may be. The re-registration shall be possible when the particular course is offered again either in a main (Odd/Even) or summer semester.

11.6 Qualifying standards

Evaluation Method	Qualifying Standard
Sessional (CIE)	Score: ≥40% (≥20 marks)
Terminal (SEE)	Score: ≥40% (≥20 marks)
For securing a final Pass	Total 40 % of the Course maximum marks (100)
	i.e., the sum of the CIE and SEE marks prescribed for
	the Course is desired.

11.7 Grading System

The letter grade awarded to a student for his/her performance in a course is based on Absolute Grading.

11.7.1 Absolute Grading – Letter Grade and its range

The grade point scale for absolute grading

Marks Range (%)	Grade Point	Letter Grade	Descriptor	Classification	CGPA		
90 & above	10	0	Outstanding				
80-89	9	A+	Excellent	First Class with Distinction	7.00-& above		
70-79	8	А	Very Good				
60-69	7	B+	Good	First Class	6.00-6.99		
55-59	6	В	Above Average	Second Class	5.50-5.99		
50-54	5	С	Average		5.00-5.49		
40-49	4	Р	Pass	Academic	CCDA < 5.00*		
00-39	0	F	Fails	/ Non-compliance	CGFA < 5.00*		
Absent	0	AB	Absent	Fail			

* If a student secures CGPA< 5.0 at any point of time during his/her studies, he/she will be on Academic Probation/Noncompliance (refer section 14.2 and 17.3 for more details.)

- i. Grade "N": A candidate having shortage of attendance (<75%) in any course(s) or CIE marks less than 40% shall not be allowed to appear for SEE of such course(s). Such students will be awarded 'N' grade in these courses with a grade point of 0.
- ii. The grade points given above help in the evaluation of credit points earned by the student in a course as the credit points are equal to the number of credits assigned to the course multiplied by the grade points awarded to the student in that course. This shall be used in Arriving at the credit index of the student for that semester, as it is the sum total of all the credit points earned by the student for all the courses registered in that semester.

11.7 Earning of Credits

A student shall be considered to have completed a course successfully and earned the credits if he/she secures an acceptable letter grade in the range of O-P. The letter grade "F" in any course implies the failure of the student in that course and no credits earned.

11.7.1 The Transitional Grades "I", "W" and "X" would be awarded by the teachers in the following cases. These would be converted into one or the other of the letter grades (O-F) after the student completes the course

requirements.

- 11.7.2 Grade "I": To a student having attendance ≥85% and CIE ≥70%, in a course, but remained absent from SEE for valid & convincing reasons acceptable to the College, like:
 - i. Illness or accident, which disabled him/her from attending SEE.
 - ii. A calamity in the family at the time of SEE required the student to be away from the College.
 - iii. However, the committee chaired by the Principal is authorized to relax the requirement of $CIE \ge 70\%$ if the student is hospitalized or advised long-term rest after discharge from the hospital by the Doctor.
 - iv. Students who remain absent for Semester End Examinations due to valid reasons and those who are absent due to health reasons are required to submit the necessary documents along with their request to the Controller of Examinations to write Makeup Examinations within 2 working days of that examination for which he or she is absent, failing which they will not be given permission.
- 11.7.3 Grade "W": To a student having satisfactory attendance at classes, but withdrawing from that course before the prescribed date in a semester under Faculty Advice
- 11.7.4 Grade "X": To a student having attendance ≥85% and CIE ≥70%, in a course but SEE performance could result in an F grade in the course. (No "F" grade will be awarded in this case, but the student's performance record is maintained separately).

11.8 Summer / Fast Track semester

- 11.8.1 The students who have satisfied CIE and Attendance requirements for the course/s and obtained an F grade in SEE are permitted to appear directly in ensuing examination/s as backlog paper/s. The students need not re-register for such course/s in the summer / fast track semester. In case the student wishes to improve CIE/ he/she has to re-register for the summer / regular semester as and when offered next.
- 11.8.2 The student who obtains required attendance and CIE in the summer semester, but obtains an 'F' grade in SEE; is permitted to appear for SEE subsequently as backlog course/s. The student need not repeat the course for Attendance and CIE.
- 11.8.3 The course/s for which the student does not possess satisfactory attendance and CIE score shall be marked as 'N' on the Grade sheet. Such students are not permitted to SEE for the Courses marked as 'N' on the Grade sheet. The students have to re-register only for course/s marked as 'N' in the summer/ subsequent semester whenever that course is offered and obtain the required CIE and attendance. Subsequently, they are eligible to appear for SEE in such course/s.
- 11.8.4 Courses with Transitional Grades viz "W", "I", and "X" are also eligible to register in the summer semester in case they wish to improve their score in CIE.
- 11.8.5 All courses may not be offered in the summer semester. It is the discretion

of the University to offer the courses based on the availability of resources. The Institutes shall notify timetable for the summer semester well in advance.

- 11.8.6 Summer Semester is optional; it is for the student to make the best use of the opportunity.
- 11.8.7 A student is permitted to register for a maximum of 16 credits in the Summer / fast track semester.
- 11.8.8 A student has to choose those courses which are offered by the Institution in a given summer Semester.
- 11.8.9 In the summer semester, each course needs to be offered for the required number of lectures/ tutorial/ laboratory hours as prescribed in the syllabus.

11.9 Grade Card

Each student shall be issued a Grade Card at the end of each semester. This will have a list of all the courses registered by a student in the semester, together with their credits, the letter grades with grade points awarded. Only those courses registered for credit and having grade points shall be included in the computation of the students' performance like SGPA and CGPA and the courses taken for audit will not form part of this computation. The results of mandatory courses, which are of the non-credit type shall also be reflected in the Grade card as PP (for Passed) or NP (for not passed). Each UG student shall have to obtain the grade PP in each mandatory course to qualify for the Degree awarded by the university.

11.10 Re-Valuation and paper seeing.

Re-totalling of marks is permitted only for theory papers. The University, on application within the stipulated time and remittance of a prescribed fee for revaluation, shall permit revaluation for the course/s applied. The marks obtained after re-valuation shall be the final marks awarded.

11.11 The Make Up Examination

The Make Up Examination facility would be available to students who may have missed to attend the SEE of one or more course(s) in a semester for valid reasons and given the "I" grade; Also, students having the "X" grade shall be eligible to take advantage of this facility. **The makeup examination would be held as per dates notified in the Academic Calendar during the summer semester.** However, it would be possible to hold a makeup examination at any other time in the semester with the permission of the Academic Council of the College. In all these cases, the standard of makeup examinations shall be same as the regular SEE for the course(s).

- a) All the "I" and "X" grades awarded to the students would be converted to appropriate letter grades after the make-up examinations. Any outstanding "I" and "X" grades after the last scheduled make-up examinations shall be automatically converted to "F" grade.
- b) All the "W" grades awarded to the students would be eligible for conversion to the appropriate letter grades only after the concerned students re-register for these courses in a main/ Summer semester and fulfill the passing standards for their CIE and (CIE+SEE).

11.12 Rules for grace marks

a. Grace marks up to 1% of the maximum total marks of the courses for which

he/she is eligible and have registered (non-credit courses excluded) in the examination or 10 marks whichever is less shall be awarded to the failed course(s), (with a restriction of a maximum of 5 marks per course) provided on the award of such grace marks the candidate passes in that course(s).

12. EVALUATION OF PERFORMANCE

The overall performance of a student will be indicated by two indices: SGPA; which is the Semester Grade Point Average, and CGPA which is the Cumulative Grade Point Average.

SGPA for a semester is computed as follows.

 $SGPA = \frac{\sum [(Course \ Credits) \times (Grade \ Point)] \ (for all \ courses \ in \ that \ semester)}{\sum [Course \ Credits]}$

CGPA is computed as follows: $\sum [(Course \ Credits) \times (Grade \ Point)]$ $CGPA = \frac{(\text{for all courses excluding those with F grades until that semester})}{\sum [Course \ Credits]}$ (for all courses excluding those with F grades until that semester)

13. COMMUNICATION OF GRADES

The SGPA and CGPA respectively, facilitate the declaration of academic performance of a student at the end of a semester and at the end of successive semesters. Both would be normally calculated to the second decimal position.

14. REQUIREMENTS OF VERTICAL PROGRESSION (PROMOTION / ELIGIBILITY TO HIGHER SEMESTERS)

- **14.1** All students are promoted to their next semester or year of their programme, irrespective of the academic performance.
- 14.2 However, at any stage of his/her study, if a student reaches a CGPA below 5.00, the student will be on Academic Probation and are permitted to register for a maximum of 16 credits in subsequent semesters, until his CGPA crosses 5.0. However, the student has the choice to re-register for the courses / courses in which he/she has obtained 'F' / 'N' grade.
- 14.3 A Student shall be declared fail if he / she
 - (i) Has not satisfied the CIE requirements of any Course/s.
 - (ii) Has not appeared for the SEE even after satisfying the attendance and CIE requirements.
- 14.4 Vertical Progression for regular students who have taken admission to first year:

Normally students are expected to complete a minimum of 85% of credits by the end of 7th semester. However, for submission for B.Tech. Major Project in 8th semester, student should have completed at least 122 credits.

- 14.5 Vertical Progression in case of Diploma students admitted to Second year (lateral entry):
 - 14.5.1 Lateral entry students should complete at least 85% of credits by the end of the 7th semester. However, for submission of B.Tech. Major Project in 8th semester, the student should have completed at least 88 credits.
 - 14.5.2 Diploma students should register for mandatory non-credit Mathematics Courses Bridge Courses (i) Calculus and Laplace Transforms and (ii) Probability and Differential Equations prescribed during III and IV semesters respectively. They shall attend these bridge course classes during the respective semesters to satisfy attendance and CIE requirements.
 - 14.5.3 Completion of Mathematics Courses Bridge Courses (i) Calculus and Laplace Transforms and (ii) Probability and Differential Equations shall be mandatory for the award of the degree.

14.6 Termination from the programme

A student shall be required to withdraw (discontinue) from the programme and leave the college on the following grounds.

- i) Failure to secure a minimum CGPA of 5.0 at the end of 8 years (6 years for lateral entry students)
- ii) Failure to earn 160 credits (120 for lateral entry students) in 8 years (6 years for lateral entry students) of duration from the year of admission including the duration of temporary withdrawal (leave of absence).
- iii) Absence from classes for more than six weeks at a time in a semester without leave of absence being granted by competent authorities.
- iv) Failure to meet the standards of discipline as prescribed by the college from time to time.

15. AWARD OF CLASS

Sometimes, it would be necessary to provide equivalence of these averages, viz., SGPA and CGPA with the percentages and/or Class awarded as in the conventional system of declaring the results of university examinations. This can be done by prescribing certain specific thresholds in these averages for Distinction, First Class and Second Class. This can be seen from the following Table.

Grade Point	Percentage of	Class
	Marks*	
≥ 7.00	$\geq 70\%$	Distinction
≥ 6.00	$\geq 60\%$	First Class
$5.0 \ge \text{CGPA} < 6.00$	$50 \ge$ Percentage $< 60\%$	Second Class

Percentage Equivalence of Grade Points (For a 10-Point Scale)

Percentage $* = (CGPA) \times 10$

16. APPEAL FOR REVIEW OF GRADES

- a. The entire process of evaluation shall be made transparent, and the course instructor shall explain to a student why he/she gets whatever grade he/she is awarded, if and when required. A mechanism for review of grade is incorporated in the evaluation system. However, before appealing for such review, a student shall first approach the concerned course Instructor and then the concerned DUGC, with the request to do the needful; and only in situations where satisfactory remedial measures have not been taken, the student may then appeal to the Department Academic Appeals Boards (DAAB) before the date specified in Academic Calendar, by paying the prescribed fees.
- b. The fee for such an appeal will be decided by the Senate from time to time. If the appeal is upheld by DAAB, then the fee amount will be refunded to the student.

17. AWARD OF DEGREE

17.1 (1) B.Tech. Degree

- a) Students shall be declared to have completed the Programme of B.Tech. degree and is eligible for the award of degree, provided the students have undergone the stipulated Course work of all the semesters under the Scheme of Teaching and Examinations and has earned the prescribed number of credits (160 credits for regular students registered for 4-year degree programmes & 120 for lateral entry students).
- b) For the award of degree, a CGPA \geq 5.00 at the end of Programme shall be mandatory.
- c) Completion of Additional Mathematics I and II, shall be mandatory for the award of degree to lateral entry diploma students.
- d) Earning of Activity Points:
 - i. Every student entering 4-year degree programme should earn 100 activity points & every student entering 4-year degree programme through Lateral Entry should earn 75 activity points as per the AICTE Activity Point Programme for the award of Engineering degree
 - ii. The activities can be spread over the years (duration of the programme) any time during the semester weekends and holidays, as per the interest & convenience of the students from the year of entry to the programme.
 - iii. The Activity Points earned shall be reflected on the student's eight semester Grade Card.
 - iv. Activity Points (non-credit) have no effect on SGPA/CGPA and shall not be considered for vertical progression.
 - v. In case students fail to earn the prescribed activity Points before the commencement of 8th semester examinations, eighth semester Grade Card shall be issued only after earning the required activity Points. Students shall be admitted for the award of degree only after the release of the Eighth semester Grade Card.

17.2 Honours/ Minors Degree

17.2.1 B.Tech. (Honours) Degree

i. Students must earn a minimum of 18 additional credits in his/her

major program discipline entitles a student to get an 'Honours' credential.

- ii. Students have to pay additional fees for all the courses registered for 'Honours'.
- Students with a minimum of 7.5 CGPA and no backlog at the end of the 4th semester will qualify for registering for courses under the 'Honours credential.
- iv. Students shall register for 'Honours' courses from the 5th semester onwards.
- v. Students should register for additional courses and plan to take courses that are prescribed under that 'Honours' list as per 'pre-requisite' courses to earn the 'Honours' credential.
- vi. Students who wish to acquire an 'Honours' credential need to carry out 'Honours' course registration along with their regular semester course registration.
- vii. He/she accumulates credits by registering for the required courses, and if the requirements for 'Honours' are met within the prescribed minimum time limit of the program, the 'Honours' will be awarded along with the degree.
- viii. Also, the student should meet the following requirements to become eligible for the 'Honours award.
 - Minimum CGPA of 7.5 in this major discipline at the end of the 8th semester
 - Minimum CGPA of 7.0 in the registered 'Honours' courses
 - ix. In case a student withdraws from the 'Honours' registration in the middle of the program, the 'Honours' courses completed will be converted to 'Audit' courses and indicated accordingly in subsequent Grade Sheets and Consolidated Grade Sheets.
 - x. It must be noted that the 'Honours' award will be mentioned in the Degree Certificate as "Bachelor of Technology in (specialization) with Honours".
 - xi. This fact will also be reflected in the Consolidated Grade Sheet under a separate heading 'Honours' with similar details shown for other credited courses and the CGPA for 'Honours' will be indicated at the end of the list of courses under 'Honours'.
- xii. The grades obtained in the courses credited towards the 'Honours' award are not counted and shall not influence the GPA/ CGPA of the 'program' student has registered.

17.2.2 Minor Degree

- i. Students have to earn a min of 18 additional credits from the courses focused on discipline other than his/her major program discipline entitles a student to get a 'Minor' credential.
- ii. Students have to pay additional fees for all the courses registered for 'Minor'.
- iii. Students with a minimum of 5.0 CGPA and no backlog at the end of

the 3rd semester will only qualify for registering for the course under the 'Minor' credential.

- iv. Students shall register for 'Minor' degree courses from the 4th semester onwards.
- v. All Departments will offer 'Minors' in their varied disciplines and will prescribe what set of courses and/or projects is necessary for earning a minor in that discipline.
- vi. Students should register for additional courses and plan to take courses that are prescribed under that 'Minors' list as per 'pre-requisite' courses to earn the 'Minor' credential.
- vii. If any of the courses listed under the 'minor' option is a course listed under his/her curriculum as PCC then the student cannot opt for that 'Minor', since all minor courses need to be earned as additional courses to his/her program curriculum and depts decision is final and binding.
- viii. Students who wish to acquire a 'Minor' can register for 'Minor' courses along with their regular semester course registration.
 - ix. Also, the student should have a minimum CGPA of 5.0 in the 'Minor' courses registered to become eligible for the Minor credential. This fact will also be reflected in the Consolidated Grade Sheet under a separate heading 'Minor in (specialization)'.
 - x. If the course requirements for a particular 'Minor' are met within the prescribed minimum time limit of the program, the minor will be awarded along with the degree, and it will be mentioned in the Degree Certificate as "Bachelor of Technology in (Major discipline) with Minor in (specialization)."
 - xi. In case a student withdraws from the 'Minor', the 'Minor' courses completed, will be converted to 'Audit' courses and indicated accordingly in subsequent Grade Sheets and Consolidated Grade Sheets.
- xii. The grades obtained in the courses credited towards the 'Minor' award are not counted and shall not influence the GPA/ CGPA of the program the student has registered for.

17.2.3 Additional norms for Honours/Minors

- i. Students shall register for additional courses to earn Honours/Minors in consultation with their Class Advisor from the list of courses suggested by the DUGC.
- ii. DUGC may recommend Massive Open Online Courses (MOOCs)/SWAYAM/NPTEL courses to students who wish to register for Honours/Minors after justifying and establishing the equivalence of the curriculum. The decision of DUGC should be communicated to the Dean of Academics and Controller of Examinations for seeking approval.
- iii. A maximum of 40% credits prescribed for Honors/Minors may be earned through MOOCs/SWAYAM/NPTEL

- iv. Students may choose to take up additional course work, from the MOOCs courses list suggested by various departments (which can be from SWAYAM/NPTEL) with proctored examinations as approved by the University and complete the same before the last working day of the VIII semester with a final score (online assignments: 25 % + Proctored examination: 75 %) leading to the following certificates: Completed the course (40-59)– ELITE (60 to 75 %) or ELITE + SILVER (76 to 89 %) or ELITE + GOLD (\geq 90 %)
- v. In case, in MOOCs (ex: Coursera), there is no proctored examination, the University will conduct a SEE as deemed to be fit for the award of Credits.
- vi. The Credit equivalence for online courses shall be as follows -
 - 4 weeks of online course duration 1 credit (approx. 13-14 hours)
 - 8 weeks of online course duration 2 credits (approx. 26-28 hours) and
 - 12 weeks of online course duration 3 credits (approx. 39-42 Hours)

17.3 Noncompliance

17.3.1 Noncompliance of CGPA \geq 5.00 at the end of the Program

- a) Students, who have completed all the courses of the Program but do not have a CGPA \geq 5.00 at the end of the Program, shall not be eligible for the award of the degree.
- b) In the cases of 17.3 (1), a student shall be permitted to appear again for SEE in course/s (other than Internship, Technical seminar, Project (Mini and Major), and Laboratories) of any Semester/s without the rejection of CIE marks for any number of times, subject to the provision of a maximum duration of the Program to make up the CGPA equal to or greater than 5.00 for the award of the Degree.
- c) Students shall obtain written permission from the Controller of Examinations to reappear in SEE to make up the CGPA equal to or greater than 5.00.
- d) In case, the students earn improved grade/s in all the reappeared course/s, the CGPA shall be calculated considering the improved grade/s. If it is ≥5.00, the students shall become eligible for the award of the degree. If CGPA <5.00, the students shall follow the procedure laid in 17.3.1 (b).
- e) In case, the students earn improved grade/s in some course/s and the same or lesser than the previously earned pass grade/s in the other reappeared course/s, the CGPA shall be calculated considering the improved grade/s and the pass grades earned before the reappearance. If it is ≥5.00, the students shall become eligible for the award of the degree. If CGPA<5.00, the students shall follow the procedure laid in 17.3.1 (b).</p>
- f) In case, the students earn improved grade/s in some courses and fail in the other reappeared course/s, the CGPA shall be calculated by considering the improved grade/s and the previously earned pass grade/s of the reappeared course/s in which the students have failed. If it is≥5.00,

the students shall become eligible for the award of the degree. If CGPA <5.00, the students shall follow the procedure laid in 17.3.1 (b).

g) In case, the students fail (i.e., earns an F grade) in all the reappeared course/s, pass grade/s of the course/s earned by the students before reappearance shall be retained. In such cases, the students shall follow the procedure laid in 17.3.1 (b).

17.3.2 Noncompliance with Project/ Mini project

The project/mini project shall be considered as a head of passing and shall be considered for the award of degree. Those, who do not take up/complete the mini-project shall be declared to fail in that course and shall have to complete the same during subsequent University examinations after satisfying the Mini-project requirements.

17.3.3 Noncompliance of Internship

All the students of B. Tech shall have to undergo mandatory Internship-I and Internship-II for a total of 10 weeks to earn a total of 10 credits in parts during the vacations at the end of the 1/2/3 academic year. The evaluation of Internship shall be during IV and VIII semesters. The internship shall be considered mandatory for the award of a degree. Those who do not take up/complete the internship shall be declared to fail in that Course and shall have to complete the same during subsequent University examinations after satisfying the internship requirements.

The maximum duration for a student for complying with the Degree requirements is 16 – semesters from the date of first registration for his/ her first semester (8 years from the date of admission to the first year, (12 semesters / 6 years from the date of admission for lateral entry student)).

18. GRADUATION REQUIREMENTS AND CONVOCATION

18.1 A student shall be declared to be eligible for the award of the degree if he/she has

- a) Fulfilled "Award of Degree" Requirements
- b) No Dues to the College, Departments, Hostels, Library, Central Computer Centre and any other centers
- c) No disciplinary action pending against him/her.
- **18.2** The award of the degree must be recommended by the Governing council.
- **18.3** Convocation: Degree will be awarded for the students who have graduated during the preceding academic year. Students are required to apply for the Convocation along with the prescribed fees, after having satisfactorily completed all the degree requirements (refer "Award of Degree") within the specified date in order to arrange for the award of the degree during convocation.

19. AWARD OF PRIZES, MEDALS, & RANKS

19.1 For the award of Prizes and Medals, the conditions stipulated by the Donor may be considered as per the statutes framed by the University for such awards. Sometimes, it would be necessary to provide equivalence of these averages, viz., SGPA and CGPA with the percentages and/or Class awarded as in the conventional system of declaring the results of University examinations. This can be done by prescribing

certain specific thresholds in these averages for Distinction, First Class and Second Class as described in Section 15.

- **19.2** An attempt means the appearance/registration of a candidate for an examination in one or more courses either in part or failing a particular examination.
 - i) A candidate who fails/remaining absent (after submitting exam application) in the main examination and passes one or more subjects/courses or all subjects/courses in the supplementary/Make-up examination such candidates shall be considered as taken more than an attempt.
- **19.3** Merit Certificates and University Medals/ will be awarded on the basis of overall CGPA, governed by the specific selection criteria that may be formulated by the University for such Medals / Awards
 - i) Only those candidates who have completed the Program and fulfilled all the requirements in the minimum number of years prescribed (i.e., 3 years for Diploma lateral entry students or 4 years for students joined after 12th standard) and who have passed each semester in the first attempt are eligible for the award of Merit Certificates and /or University Medals.
 - ii) Candidates who pass the subjects in the supplementary/make-up examinations are not eligible for the award of Medal or Merit Certificate.

20. CONDUCT AND DISCIPLINE

- **20.1** Students shall conduct themselves within and outside the premises of the College in a manner befitting the students of an Institution of National Importance.
- **20.2** As per the order of Honorable Supreme Court of India, ragging in any form is considered as a criminal offence and is banned. Any form of ragging will be severely dealt with.
- **20.3** The following acts of omission/ or commission shall constitute gross violation of the Code of Conduct and are liable to invoke disciplinary measures:
 - i. Ragging.
 - ii. Lack of courtesy and decorum; indecent behavior anywhere within or outs ide the campus.
 - iii. Willful damage or stealthy removal of any property/belongings of the College/Hostel or of fellow students/citizens.
 - iv. Possession, consumption or distribution of alcoholic drinks or any kind of hallucinogenic drugs.
 - v. Mutilation or unauthorized possession of Library books.
 - vi. Noisy and unseemly behavior, disturbing studies of fellow students.
 - vii. Hacking in computer systems (such as entering into other Person's area without prior permission, manipulation and/or Damage of computer hardware and software or any other Cybercrime etc.).
 - viii. Plagiarism of any nature.
 - ix. Any other act of gross indiscipline as decided by the Senate from time to time.
 - x. Use of Mobile in the college Academic area.
 - xi. Smoking in College Campus and supari chewing.
 - xii. Unauthorized fund raising and promoting sales.
 - xiii. Commensurate with the gravity of offence the punishment may be:

reprimand, expulsion from the hostel, debarring from an examination, disallowing the use of certain facilities of the College, rustication for a specified period or even outright expulsion from the College, or even handing over the case to appropriate law enforcement authorities or the judiciary, as required by the circumstances.

- **20.4** For an offence committed in (i) a hostel (ii) a department or in a classroom and (iii) elsewhere, the Chief Warden, the Head of the Department, and the Dean (Academics), respectively, shall have the authority to reprimand or impose fine.
- **20.5** All cases involving punishment other than reprimand shall be reported to the principal.
- **20.6** Cases of adoption of unfair means and/or any malpractice in an examination shall be reported to the Controller of Examinations for taking appropriate action.
- **20.7** Note: Students are required to be inside the examination hall 20 minutes before the commencement of examination. This is applicable for all examinations (Semester end/Supplementary/makeup) henceforth. Students will not be allowed inside the examination hall after the commencement, under any circumstances.

APPENDIX - A

Definitions, terminology, and abbreviations

1. Nitte DU / University

a. Refers to Nitte (Deemed to be University)

2. BoM

a. Refers to Board of Management of Nitte (Deemed to be University)

3. BoS

a. Refers to Board of Studies in Electrical and Electronics Engineering

4. Institute/Institution

a. Refers to NMAM Institute of Technology, Nitte

5. Program

a. A range of learning experiences over a specified period, leading to the award of a degrees / diploma / certificate. A program is completed when the courses that make up the program are completed, and other requirements as specified in the program regulations are met.

6. Course

a. A unit of learning that typically lasts one semester, led by one or more teachers, for a fixed roster of students. Often referred to as a "subject". A course has identified course outcomes, modules / units of study, specified teaching-learning methods and assessment schemes. A course maybe designed to include lectures, tutorials, practical, laboratory work field work, project work, internship experiences, seminars, self-study components, online learning modules etc. in any combination.

7. Semester

- a. An academic session, usually of 16 weeks duration, with a minimum of 90 working days during which coursework and assessments are to be completed. Typically, two semesters make up an academic year, with the first of these referred to as Odd Semester and the second as Even Semester.
- b. An additional short semester (usually 8 weeks) maybe offered between an even semester and subsequent odd semester (in the interval between two academic years) and are termed as summer semester. Summer semester is offered to enable students to register for:
 - i. Fast-tracked courses required for clearing backlog courses
 - ii. Fact-tracked courses for earning additional credit / completing non-credit mandatory requirement
 - iii. Value added courses
 - iv. The courses offered in summer semesters are bound by the same regulations as that of regular semesters, except that they are run at an accelerated pace to provide the required contact hours and conduct assessments within the 8-week.

8. Credit

a. A unit by which the course work is measured. It determines the number of hours of formal learning (contact hours) required per week. Credits are calculated based on the concept of "notional learning time". Notional learning time is the number of hours which a learner is expected to spend, on average, to achieve the specified learning outcomes of the course. This may comprise a variable combination of scheduled learning activities, (lectures, seminars, labs etc.) and self-directed learning time (reading required prior to classes, working on assignments, examination preparation and completion of assessments).

9. Credit equivalence of notional learning time for different types of activities

a. The credit values assigned to various teaching-learning activities are as follows:

Type of teaching- learning	Nature of activity	No. of contact hours per week	Total number of contact hours over a 16-week semester
		equivalent to one credit	that is equivalent to one credit
Lectures / Seminars /	Scheduled	1:1	16
synchronous virtual	instruction		
webinars			
Tutorials	Scheduled	2:1	32
	instruction		
Supervised	Scheduled	2:1	32
Demonstrations /	instruction		
Laboratory sessions /			
Studio / Workshops /			
Workplace simulation			
/Skill Practice Sessions	Cabadulad	2.1	10
visits / community	instruction	5.1	40
visits/Internships	mstruction		
Scheduled self-directed	Scheduled	2:1	32
study (individual or	instruction		
group)			
Asynchronous E-	Independent	2:1	32
Learning modules	learning		
(structured self-directed			
study		0.1	22
Student Seminar	Independent /	2:1	32
	learning		
Project work /	Independent /	3:1	48
dissertation	small group		
	learning		
Internship for credit	Industry	3:1	48
	placement/		
	Research		
	Internship		

10. Choice-based credit system (CBCS)

A program structure for higher education which requires students to earn a minimum of credits by completing various types of courses, including electives, which facilitate a student to have some freedom in selecting his/her own choices, within as well as across disciplines.

11. Course registration

Refers to formal registration of the Courses in the study in every semester (Credits and Audit) by every student under the supervision of a faculty advisor. The institution will maintain records of the same and communicate it to the University.

12. Learning outcomes

- a. Program Outcomes (PO) Statements defining the skills, knowledge and attitude that graduates of a program will be able to demonstrate upon completing the program.
- b. Course Outcomes (CO) Statements defining the skills, knowledge and attitude that students will be able to demonstrate upon completing the course. COs are mapped to the POs such that attaining the course outcomes leads to attainment of program outcomes.
- c. Attainment of POs-COs are mapped to the POs such that attaining the course outcomes leads to attainment of program outcomes.

13. Evaluation

For all courses, evaluation will be based on both formative assessment (Continuous Internal Evaluation, CIE) and summative assessment (Semester End Evaluation, SEE). Weightage for CIE and SEE will be 50% each.

13.1 Continuous Internal Evaluation (CIE)

Refers to periodic and continuous *formative assessment* of student's performance during the semester by the teacher(s) of the course with the aim of providing timely feedback to students and for guiding "course corrections" by the teachers. The assessment methods may include tests, quizzes, assignments, project evaluations, portfolio evaluations, seminar assessments etc. CIE will have a weightage of 50% in the determination of final grading of the course.

13.2 Semester End Evaluation (SEE)

Refers to *summative assessment* that covers the entire course syllabus, conducted by the University, at the end of semester. Appropriate assessment methods aligned with the learning domain and teaching-learning methods are to be used. CIE will have a weightage of 50% in the determination of final grading of the course.

14. Grading

Course Grade refers to a qualitative measure of performance of a student in each course, based on the percentage of marks secured in Continuous Internal Evaluation (CIE) and Semester End Evaluation (SEE). A Letter grade is awarded for each course.

15. Semester Grade Point Average (SGPA)

Refers to the measure of a student's academic performance in a semester. It is calculated based on the credits and the grades obtained in the courses offered in the semester.

16. Cumulative Grade Point Average (CGPA)

Refers to the measure of the cumulative performance of a student in all the previous semesters and is computed from the 2nd semester onwards. It is calculated based on the credits and the grades obtained in all the courses taken.

17. Academic Bank of Credits (ABC)

The Academic Bank of Credits is a national-level facility for "credit transfer". It is provided by the Ministry of Education, Govt. of India, to promote the flexibility of the curriculum framework and interdisciplinary/multidisciplinary academic mobility of students across the Higher Education Institutions in the country. The banking and redemption of credits through ABC will be governed by the University's guidelines.

Appendix-B

Evaluation Guidelines

CIE and SEE details for various types of courses

1. Theory: PCC/IPCC/PEC/OEC

1.1. Scheme of examinations: CIE+SEE =50+50=100 marks

1.2. Continuous internal evaluation (CIE):

1.2.1. CIE (Non-PBL Courses)

Type of Questions	Questions to be set (Can have sub	Questions to Be answered	Marks per question	Total marks		
questions a and b) Mid Sem Exam-1						
	40% of the total syllabus (Unit-1) (15 Teachi	ng hours)			
Descriptive Part-1	2	1	10	10		
Descriptive Part-2	2	1	10	10		
	Mid Sen	n Exam-2				
	40% of the total syllabus (Unit-2) (15 Teachi	ng hours)			
Descriptive Part-1	2	1	10	10		
Descriptive Part-1	2	1	10	10		
	TASKS					
TASK Task comprises of 5 class tests/quizzes/assignments conducted for each unit for a max mark of 10. All tests/quizzes/Assignments are compulsory			10			
Maximum Marks				50		

1.2.2 CIE (for courses having Project Based Learning (PBL) component)

Type of Questions Questions to be set		Questions to be answered	Marks per question	Total marks		
	(Can have sub questions a and b)					
	Mid Sem Ex	xam-1				
	40% of the total syllabus (Unit	t-1) (15 Teachin	g hours)			
Descriptive Part-1	2	1	8	8		
Descriptive Part-2	2	1	7	7		
	Mid Sem Ex	xam-2				
	40% of the total syllabus (Unit	t-2) (15 Teachin	g hours)			
Descriptive Part-1	2	1	8	8		
Descriptive Part-1	2	1	7	7		
Project Based Learning (PBL)						
PBL PBL comprises of implementation of theoretical concepts through projects / problem solving						
Maximum Marks				50		

1.2.3 Semester End Evaluation (SEE): 3 Hours Duration

Type of Questions	Module & Teaching hours	Questions to be set (Can have sub questions a, b and c)	Questions to be answered	Marks per question	Total marks
MCQ	Entire Syllabus	10 or 20	All Questions	2 or 1	20

Descriptive	Unit-115 teaching hours	3	2	16	32	
Descriptive	Unit-215 teaching hours	3	2	16	32	
Descriptive	 Unit-3 10 teaching hours	2	1	16	16	
Maximum Marks						
SEE Marks with 50% V	Veightage				50	

			Evaluation scheme						
				CIE		SEE			
S1.	Cou	rses	(Minimur	(Minimum eligibility marks 40%		(Minimum Passing marks			
No.			to	of Max marks	40	% of Max marks)			
		Max	Min eligibility	Max	Minimum				
			Marks	marks required	Marks	passing marks			
1	Integrated Professional	Theory	30	12	50	20			
	Core Course (IPCC)	Practical	20	08					
	-	Total	50	20	50	20			
2	PCC with PBL	Theory	30	12	50	20			
	component	PBL component	20	08					
		Total	50	20	50	20			
3	PCC/PEC/OEC		50	20	50	20			
4	Laboratory		50	20	50	20			
5	Drafting		50	20	50	20			
6	Mini Project		100	40					
7	Inter/Intra Institutional	Internship	100	40					
	(2 weeks)								
8	Industrial/Govt./ NGO/	MSME/ Rural	100	40	100	40			
	Internship/ Innovation /	Entrepreneurship							
	(In single or two stretch	es =Total 8 weeks)							
9	Research Internship/ Advanced Industry		100	40	100	40			
	Internship/Project work	k							
10	Seminar		100	40					

1.2.4 CIE & SEE for various types of courses

All university examination (SEE) shall be conducted for maximum of 100 marks. For assigning the letter grade the university examination marks secured by a student, except in case of serial no. 06, 07 and 10 shall be reduced to 50 marks and added to CIE marks. If the total marks result a fraction during reduction, it shall be rounded off to a nearest higher value.

2 Laboratory/Practical Course

2.1 Split-up of Marks for evaluation of Practical for 50 CIE marks and 50 SEE marks.

2.2 Split-up of Marks for evaluation of Laboratory work:

2.2.1 Laboratory in-charge faculty will follow rubrics given in Tables below for evaluation of laboratory courses

- **2.2.2** In the case of Practical, the IA marks shall be based on the laboratory observation, records, viva and at least one practical test.
- **2.2.3** Continuous Evaluation in every lab session will be done using the format mentioned in the Table to evaluate PO9 (Individual and teamwork) and PO10 (Communication).
- 2.2.4 Rubrics used for continuous Evaluation of laboratory courses involving experiments with hardware

Lab co	onduction and R	ecord	La	ab Internal Assessm	ent
Split-up: 60% (30 Marks) of Maximum CIE marks (50). Each experiment is to be evaluated for conduction with an observation book and record write-up (30 marks per experiment). The final marks for conduction and record is the average of all the specified experiments in the syllabus.			(50). One test of 20 Marks) of Maximum CTE marks (50). One test of 20 Marks In test, conduction of experiment and acceptable result with viva-voce will carry a weightage of 60% per experiment, with the rest 40% for procedural knowledge and regularity of the student.		
Rubrics per experiment	Marks Distribution	Remarks	Rubrics	Marks distribution	Remarks
Circuit	02		Write-up	04	
Design	02		Conduction	10	
Procedure	02				
Conduction	06	Evaluation			
Viva	06	of Record			
Record write-up	12	write- up to include	Results	06	
Total Marks	30	weightage for submissio	Total Marks	20	

2.2.5 Split-up of Marks used for continuous Evaluation of laboratory involving experiments with software

Rubrics for Split up of Marks	Methodology / Process Steps per Experiment	Marks
#R1	Observation, Write up of Procedure / Algorithm/ Program execution and Conduction of experiment	12
#R2	Viva – Voce	06
#R3	Record writing	12

	Total Marks for each experiment	30
	Internal Test: Lab Internal Assessment	
4D 4	(i)Write-up of Procedure/Program/Algorithm	04
#K4	(ii) Conduction/Execution	10
	(iii) Viva-Voce	06
	Total Marks	20

3. Internship and Evaluation

3.1 Introduction

The rise in global competition has prompted organizations to devise strategies to have a talented and innovative workforce to gain a competitive edge. Developing an internship policy is an impactful strategy for creating a future talent pool for the industry. The internship (a form of experiential learning) program not only helps fresh pass–outs in gaining professional know– how but also benefits corporate sectors. The internship also enhances the employability skills of the student passing out from Technical Institutions.

The following list provides a brief illustrative overview of the knowledge, skills, work habits, and character traits commonly associated with 21st-century skills and to be acquired by graduates:

- Critical thinking, problem-solving, reasoning, analysis, interpretation, and synthesizing information.
- Scientific literacy and reasoning, the scientific method.
- Research skills and practices, interrogative questioning.
- Creativity, artistry, curiosity, imagination, innovation, and personal expression.
- Information and communication technology (ICT) literacy, media and internet literacy, data interpretation and analysis, computer programing.
- Oral and written communication, public speaking and presenting, listening.
- Economic and financial literacy, entrepreneurial skills.
- Global awareness, multicultural literacy, humanitarianism.
- Environmental and conservation literacy, ecosystems understanding.
- Civic, ethical, and social-justice literacy.
- Leadership, teamwork, collaboration, cooperation, and facility in using virtual workspaces.
- Perseverance, self-direction, planning, self-discipline, adaptability, initiative.
- Health and wellness literacy, including nutrition, diet, exercise, and public health and safety.

The internship experience will augment outcome-based learning process and inculcate various attributes mentioned above in a student in line with the graduate attributes defined by the NBA as well as NEP 2020

Following are the intended objectives of internship training.

- (i) Expose Technical students to the industrial environment, which cannot be simulated in the classroom and hence create competent professionals in the industry.
- (ii) Provide possible opportunities to learn, understand and sharpen the real time technical / managerial skills required at the job.
- (iii) Expose to the current technological developments relevant to the subject area of training.
- (iv) Use the experience gained from the industrial internship in discussions held in the classrooms.
- (v) Create conditions conducive to quest for knowledge and its applicability on the job.
- (vi) Learn to apply technical knowledge in real industrial situations.
- (vii) Gain experience in writing reports in technical works/projects.
- (viii) Expose students to the engineer's responsibilities and ethics.
- (ix) Familiarize with various materials, processes, products and their applications along with relevant aspects of quality control and safety measures.
- (x) Promote academic, career and/or personal development.
- (xi) Expose the students to future employers.
- (xii) Make students available to industry for employment.
- (xiii) Understand the psychology of the workers and their habits, attitudes, and approach to problem-solving.
- (xiv) Understand the social, economic, and administrative considerations that influence the working environment of industrial organizations.
- **3.2 Academic credit framework for the internship and project work** undergone as part of the B.Tech. programme.
 - A minimum of 20 credits of Internship/ Entrepreneurial activities / Project work/ Seminar and Inter/ Intra Institutional Training may be counted towards B. Tech. degree programme
 - Here, 1 credit is equivalent to minimum 40-45 hours of work. Therefore, a full-time intern is expected to spend 40 45 hours per week on Internship, Training, Project work, Seminar activities etc. This will result in about 800 to 900 hours of total internship and project duration for B. Tech programme.
 - To derive the benefits of an internship, it is introduced in two/ three stages of the B.Tech. program.
 - Internships may be full-time or part-time; they are full-time in the summer vacation and part-time during the academic session. The curriculum is flexible to adjust internship duration. Therefore, opportunities must be provided for experiences that cannot be anticipated when planning the course.
 - The departments have the flexibility to schedule internship, Project work, Seminar etc. according to the availability of the opportunities. However, suggested minimum requirement regarding Internship duration and credits are as given in Table -B1.

Table-B1 Suggested Credit Framework for Internship, Project work

Sl.	Title	Schedule	Duration	Activities	Credits
No.					

1	Internship-I	Ongoing First-year academic session/	02 weeks	Inter/ Intra Institutional Activities	02
		Summer vacation after 2nd Semester/ vacation during 3 rd semester (for lateral entry students		(Evaluation in 4 th semester)	
2	Internship- II	a) Summer vacation after 4th Semester	02-04 weeks	Industrial/Govt./ NGO/ MSME/ Rural Internship/ Innovation / Entrepreneurship/ social internship	
		b) Summer vacation after 6th Semester	04-06 weeks	Industrial/Govt./ NGO/ MSME/ Rural Internship/ Innovation / Entrepreneurship	
		c) Total of a) and b) at the beginning of the 8th semester	08 weeks	Evaluation in 8 th Semester	08
3	Project work	6 th Semester	6 hours/week	Mini -Project	02
		8th Semester	16 weeks	Extended Industry Internship /Research Internship/ Project work	10
				Report preparation and writing	
				Seminar	01
		Total Cre	edits		23

Table-1 states that during the ongoing/ summer vacations after the 2nd Semester, students are required to be involved in Inter/ Intra Institutional Activities viz; Training with higher Institutions; Soft skill training organized by Training and Placement Cell of the respective institutions; contribution at incubation/ innovation /entrepreneurship cell of the institute; participation in conferences/ workshops/ competitions etc.; Learning at Departmental Lab/ Tinkering Lab/ Institutional workshop; Working for consultancy/ research project within the institutes and Participation in all the activities of Institute's Innovation Council for eg: IPR workshop/Leadership Talks/ Idea/ Design/ Innovation/ Business Completion/ Technical Expos etc.

During the summer vacation after 4th/ 6th semester, students are ready for industrial experience. Therefore, they may choose to undergo Internship / Innovation / Entrepreneurship related activities. Students may choose either to work on innovation or entrepreneurial activities resulting in start-up or undergo internship with industry/ NGO's/ Government organizations/ Micro/ Small/ Medium enterprises to make themselves ready for the industry

3.3 Internship Supervision

- i) Internship shall be carried out under the supervision of a faculty mentor. The faculty mentor/guide should,
- ii) Serve as a teacher, mentor, trainer, critic, leader and boss.
- iii) Provide sufficient time to guide the interns. (Interns are students or a trainee who does a job to gain work experience)
- iv) Play a vital role, along with the Training and Placement Officer, in providing internship opportunities for the students.

- v) Exhibit qualities such as leadership, strong communication skills, and patience.
- vi) Provide letter of recommendation in due consultation with students and the industrial organization (if possible) where internship is intended to be carried out, endorsed by the authority (Principal/Institution Internship Coordinator).
- 3.3.1 Each faculty mentor shall supervise the students/Student batches allotted to them. Often, the supervision may be by an external expert. In such cases, the faculty mentor shall jointly guide the student/s without causing miscommunications/embarrassment to either side.
- 3.3.2 Depending on the activity taken up by the students, the internship shall be carried out individually or in batches having not more than three students.
- 3.3.3 Faculty Mentor, along with the external expert, shall scrupulously evaluate the work of an individual student or students of a batch and maintain the relevant documents.
- 3.3.4 For allotment of CIE marks, the institutions shall prepare the rubrics for each activity offered by the institution as given in Table B2. The marks shall be allotted by the Internship committee designated by HOD in consultation with the mentors.
- 3.3.5 For all activities conducted by the institution, the attendance of the students shall be maintained by the faculty and maintained in their respective department.

3.4 Internship-I (Activity based Internship)

While intra activities are within the institution, inter activates shall be between the concerned institution and neighboring institutions. Intra and Inter activities are the activities that are impetus to learning techniques. It adds to comprehensive growth of mind and associated activities.

As the students are at the verge of learning technical aspects and have limited time period of internship, it is preferable to expose students to polygonal activities instead of one type of activity. Therefore, activities completed by the students shall not be one type of activity but can be few within the time period of the internship. In this regard, Intra and Inter Institutional activities shall be completed under the supervision of a faculty on self-learning basis.

The faculty have to kindle the latent abilities of the students, encourage, guide, supervise and shape them to achieve the desired result. Therefore, a learning agenda in the form of specific learning objectives and outcomes shall be prepared prior to the start of the internship.

Whatever the activity/activities that is/are done under Intra and Inter Institutional activities, should ignite the inquisitiveness to learn, enhance the knowledge, thinking ability and imagination, planning, application of mind, execution ability, innovation attitude, listening and understanding, vocabulary, personal expression, public speaking, written communication, oral presentation of the subject matter, acquire leadership qualities and teamwork requirements, responsiveness, ethics, etc.

3.4.1 List of proposed activities

- a. Activities concerned with the works of Indian scholars like Charaka and Susruta, Aryabhata, Bhaskaracharya, Chanakya, Madhava, Patanjali, Panini and Thiruvalluvar, among numerous others
- b. Activities such as training with higher Institutions or Soft skill training
- c. Contribution at incubation/ innovation /entrepreneurship cell of the institute.
- d. Learning at Departmental Lab/Tinkering Lab/ Institutional workshop.
- e. Working for consultancy/ research project with-in the institute.

- f. Learning MS Word, Excel, Microsoft equations, MS drawing tools, MS Power point, etc.
- g. Coding.
- h. Mini projects using commercially available assembled electronic products.
- i. Debates, quizzes, and group discussions: On technical topics already studied (both in Kannada and English).
- j. Essay competitions: Both in Kannada and English on technical topics already studied.
- k. Survey and study of published literature on the assigned topic: Technical paper survey, Preparation of synopsis. Exposure to technical paper publications.
- l. Photography.
- m. Short film production: Contemporary aspects, technical aspects etc.
- n. Internship in Disaster Management.
- o. Solar energy connected activities that help common man.
- p. Working with Smart City Administration.
- q. Hackathon (it is a design sprint-like event in which computer programmers and others involved in software development, including graphic designers, interface designers, project managers, and others, often including domain experts collaborate intensively on software projects).
- r. Industrial Safety, Fire Safety, Electrical Safety, Chemical Process Safety, Food Safety etc.
- s. Internship and project work in Indian Knowledge System related Areas/Topics.
- t. Industrial visits to Small Scale Industries/ Factories/ Cottage Industries/substation visit etc., and submission of report.

3.5 Documents to be submitted by Students for Internship Evaluation

3.5.1 Student's Diary

The main purpose of writing daily diary is to cultivate the habit of documenting and to encourage the students to search for details. It develops the students' thought process and reasoning abilities. The students shall record in the daily training diary the day-to-day account of the observations, impressions, information gathered, and suggestions given, if any, and activities carried out. It should contain the sketches and drawings related to the observations made by the students. The daily training diary should be signed after every day or at least twice a week by the faculty/ in charge of the section (external expert) where the student has been working.

Student's Diary should be submitted by the students along with attendance record. It shall be evaluated on the basis of the following criteria:

- i) Regularity in the maintenance of the diary.
- ii) Adequacy and quality of information recorded.
- iii) Drawings, sketches and data recorded.
- iv) Thought process and recording techniques used.
- v) Organization of the information

3.5.2 Internship report

After completion of Internship, the student shall prepare, with daily diary as reference, a comprehensive report in consultation with the mentor/s to indicate what he / she has observed and learnt in the training period along with the internship outcomes. The training report should be signed by the mentor. The Internship report shall be evaluated on the basis of following criteria and/or other relevant criteria pertaining to the activity completed.

- i) Originality.
- ii) Adequacy and purposeful write-up.
- iii) Organization, format, drawings, sketches, style, language etc.
- iv) Practical applications, relationships with basic theory and concepts taught in the appropriate course.
- v) Variety and relevance of learning experience.

Procedure for the Evaluation of Internship-I

- a) Students should submit the reports immediately on completion of the Internship to the respective mentors
- b) The Examination of internship will be carried out by the mentor
- c) The Internship-I shall be slated for 100 marks CIE only and will not have SEE.
- **d**) Internship-I marks are based on CIE marks (25 marks for first presentation, 25 marks for second presentation, 50 marks for report and final presentation).
- e) A Viva-Voce examination conducted during I/II/III Semesters (Presentation followed by question-answer session) and the prescribed credit shall be included in the IV semester grade card

Table B2 Internship I Assessment Pubric

3.5.3 Assessment Rubrics for evaluation of Internship-I (Intra and Inter Institutional Activities)

$\mathbf{I} \mathbf{u} \mathbf{b} \mathbf{c} = \mathbf{b} 2 \mathbf{I} \mathbf{u} \mathbf{c} 1 \mathbf{n} \mathbf{s} \mathbf{n} \mathbf{p} 1 \mathbf{A} \mathbf{s} \mathbf{s} \mathbf{s} \mathbf{s} \mathbf{s} \mathbf{n} \mathbf{c} \mathbf{n} \mathbf{u} \mathbf{b} 1 \mathbf{c} \mathbf{s}$					
S	Scheduled during the first year (Prescribed Period 02 weeks and Prescribed credits: 02)				
SI No	Sub Activity Head	Performance/ Appraisal	Assessment Rubrics (Allotted marks decide the letter	Proposed Document as Evidence	Evaluated by
1	Inter/ Intra	Excellent	80 to 100		
	Institutional	Good	60 to 79		
	worksnop/ Training	Satisfactory	40 to 59		
	Training.	Unsatisfactory and fail	< 39		
2	Working for	Excellent	80 to 100		
	consultancy/	Good	60 to 79		
	Research project.	Satisfactory	40 to 59		Institute
	1 5	Unsatisfactory and fail	< 39		Faculty
3	Festival (Technical /	Excellent	80 to 100		(mentor)
	Business / Others)	Good	60 to 79		together with
	Events.	Satisfactory	40 to 59		External Export
		Unsatisfactory and fail	< 39		External Expert,
4	Contribution in	Excellent	80 to 100		if any.
	Incubation/ Innovation/	Good	60 to 79	(i) Student's	
	Entrepreneurship Cell.	Satisfactory	40 to 59	Diary and	
		Unsatisfactory and fail	< 39	(ii) Internation	
5	Learning at	Excellent	80 to 100	(II) Internship	
	Departmental	Good	60 to 79	Report along	
	Lab/Tinkering Lab/	Satisfactory	40 to 59	with the	
	Institutional			certificate	
	workshop.	Unsatisfactory and fail	< 39	issued from	
6		Excellent	80 to 100	relevant	
-		Good	60 to 79	authorised	

	Other than the above	Satisfactory	40 to 59	Authority	
	five activities	Unsatisfactory and fail	< 39		
Note: The total CIE marks shall be the sum of marks allotted to successfully completed activities by the student.					

3.6 Internship-II: (Societal internship and Research/Industry Internship) (08 weeks) [Scheduled during the intervening period of IV & V semester and VI & VII semester]

During the intervening period of IV & V semesters and VI & VII semester, students shall be ready for industrial experience. Therefore, they shall choose to undergo Internship involving Innovation / Entrepreneurship/short term (about 2 weeks) societal related activities. Students may choose to work on innovation or entrepreneurial activities, or both resulting in start-up or undergo internship with industry/ NGO's/ Government organizations/ Micro/ Small/ Medium enterprises to make themselves ready for the industry.

3.6.1 Innovation

Innovation refers to a new or improved product or process or a combination thereof that differs marginally or significantly from the unit's previous product. An innovation center is a place where students are encouraged to implement the innovative ideas formed through imagination, brainstorming sessions, design thinking and associated activities to bring them to reality. It is a place, where creative minds are shaped.

3.6.2 Entrepreneurship

Entrepreneurship refers to setting up a new business or businesses, taking on financial risks in the hope of profit. It involves investment to undertake production along with arranging inputs like land, labour, material and capital, introducing new techniques and products, identifying new sources for the enterprise, etc.

3.6.3 Incubation Center

An organized unit designed for innovation as well as to accelerate the growth and success of new entrepreneurial companies through mentorship and an array of business support resources and services that could include physical space, capital, coaching, common services, and networking connections.

3.6.4 Startup

An entity that develops a business model based on either product innovation or service innovation and makes it scalable, replicable and self-reliant.

An entity shall be considered as a Startup

- i) Up to a period of ten years from the date of incorporation/ registration, if it is incorporated as a private limited company (as defined in the Companies Act, 2013) or registered as a partnership firm (registered under section 59 of the Partnership Act, 1932) or a limited liability partnership (under the Limited Liability Partnership Act, 2008) in India.
- ii) Turnover of the entity for any of the financial years since incorporation/ registration has not exceeded one hundred crore rupees.
- iii) Entity is working towards innovation, development or improvement of products or processes or services, or if it is a scalable business model with a high potential of employment generation or wealth creation.
- iv) Provided that an entity formed by splitting up or reconstruction of an existing business

shall not be considered a Startup.

3.6.5 Societal (Social) related activities

Short term internship (about 2 weeks) at villages, slums or urban areas can be under social internship. The internship will be more fruitful if students work in teams. The teams can select one or more fields to do their best in the field of agriculture, watershed management, wastelands development, non-conventional energy, low-cost housing, sanitation, nutrition and personal hygiene, schemes for skill development, income generation, blood bank, government schemes such as

- i) (Swachch Bharat: Swachh Bharat Mission, Swachh Bharat Abhiyan, or Clean India Mission is a country-wide campaign to eliminate open defecation and improve solid waste management.
- ii) Accessible India: Accessible India Campaign or Sugamya Bharat Abhiyan is a program to serve the differently able community of the country.
- iii) Digital India: A campaign to ensure the Government's services are made available to citizens electronically by improved online infrastructure and by increasing Internet connectivity or making the country digitally empowered in the field of technology.
- iv) Beti Bachao and Beti Padhao: A campaign of the Government of India that aims to generate awareness and improve the efficiency of welfare services intended for girls in India.
- v) Environment and Energy Conservation and Education, legal aid, consumer protection and allied field including Indian Red Cross Society, National Cadet Corps, Bharat Scouts and Guides.

Societal activities are one of the NBA graduate attributes that are part of PO6 and PO7, which are reproduced below.

- vi) PO-6: The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- vii) PO-7: Environment and Sustainability: Understand the impact of the professional engineering solution in societal and environmental contexts and demonstrate the knowledge of and need for sustainable development. Long term goal under Societal (social work) related activities, particularly at a rural area, results into a rural internship. In urban areas, student may adopt slum/ economically weaker section areas for short duration social internship to uplift the living conditions.

In view of the above, internship coordinators should encourage students to take up societal internship as far as possible.

3.6.6 Places for Innovation/Entrepreneurial Activities

Students shall carryout Innovation or Entrepreneurial activities or both at the Incubation Center and Entrepreneurship Cell of the parent institution or elsewhere such as ATAL Incubation Centers [A flagship of Atal Innovation Mission (AIM), NITI Aayog for promoting the culture of innovation and entrepreneurship in India], institutes of national importance, public sector units, IT companies, government organizations, and non-governmental organizations, industries including MSME, etc.

Institutes should deter students to opt for internships at places established for

commercial benefits.

3.6.7 Industrial Internships

The gap between the theoretical knowledge obtained in the classrooms and the practical skills required in the actual workplace scenarios is fast growing. This has put forth varied challenges to graduating students when it comes to job placements. As institutes cannot have a relevant facility to expose students to real time industrial environment, industrial internship is an appropriate solution.

The main objective of the industry internship is to ensure that the intern is exposed to a real job world environment and gain practical experience. Often, it may be a practical exposure to the theory that has been learnt during the academic period. The industry internship helps student's understanding of the analytical concepts and tools, hone their skills in the real-life situations and build confidence in applying the skills learnt.

3.6.7.1 Industry Internship Benefits

- i) Have ample opportunities to attend seminars, symposiums, workshops etc. This in turn provides opportunity to establish rapports with professionals and pioneers in their respective fields for further growth.
- ii) Have wide scope to publish paper/s in journals.
- iii) Good recommendation letter/s that increase prospectus for further internships, higher studies and placements.
- iv) Helps to acquire team spirit, motivated acts, techniques to resolve conflicts, etc.
- v) Helps to develop a lot of leadership skills.
- vi) Increases the prospect of placement in the same concern, provided the intern has exhibited clear understanding of basics and successfully completed the internship.
- vii) Fosters to substantiate the issues with facts and figures.

For AICTE Internship opportunities refer to https://internship.aicte-india.org/

3.6.8 Assessment Rubrics for Innovation / entrepreneurship/ Societal Internship Activities

Once the internship begins, the students are required to maintain diary/journal and submit a report regularly to the guide. These reports should summarize the activities in which the student was involved during the previous week period. At the end of the internship, each student is required to submit the hard copy of consolidated diary/journal and report for evaluation. The report should clearly indicate the learning and achievements of the internship.

Table – B3 Innovation / entrepreneurship/ Societal Internship Activities and Assessment Rubrics Scheduled during the intervening period of IV & V semester and VI & VII Sem (Prescribed Period 08 weeks: Credits 08)

Sub Activity Head	Performance/ Appraisal	Assessment Rubrics	Proposed Document as Evidence	Evaluated by
 (1) Development of new product/ Business Plan/ registration of start- up/societal internship (2) Internship with Industry/ 	Excellent80 to 100(i) Student'sGood60 to 79Diary and (ii)Satisfactory40 to 59Internship RepoUnsatisfactory< 39	(i) Student's Diary and (ii) Internship Report or the activity report along with		
Govt. / NGO/ PSU/ Any Micro/ Small/Medium Enterprise.	Good Satisfactory Unsatisfactory and fail	60 to 79 40 to 59 < 39	report along with Certificate or Declaration from (relevant F Authorized t Authority. F Wherever, only a Certificate is issued, Assessment shall be at the institute as per (i) and (ii) to	(i) Institute Faculty (mentor) together with External Expert if any.
Note:	1	1	· · · · ·	1

(i) The total CIE marks shall be the sum of marks allotted to successfully completed activities by the student.

3.7 Research Internships / Extended Industry Internship

- 3.7.1 Research Internship /Extended Industry Internship of sufficient duration encourages students early on in their career. Its main goal is to give an opportunity to improve their analytical and technical skills in an international environment. Internship can be in an industry or at an appropriate workplace.
- 3.7.2 Research internships and industrial internships have different purposes and come with their set of benefits. A prior experience in any field is always preferred over a fresh start. Therefore, one of them can be selected depending on the interest the students have. Internships pose unexpected challenges and make students to think appropriately, tackle difficulties with ease and act in a scholarly way to get past the hurdles and practical constraints. An internship is always beneficial however good or bad it is.
- 3.7.3 Internships not only enhance one's learning but also identifies him/her as someone who has the commitment to approaching a project and completing it with or without the guidance. The internship learning is an impetus to professional development.
- 3.7.4 While research internship is a steppingstone to higher studies, an industry internship is a pathway for a placement. Those who are self-motivated and interested in search of new things that are original and unique can choose a research internship. Those who are interested in the real industry- experience and aspire to get a job soon after graduation can choose an industry internship.
- 3.7.5 Research Internships (Also known as dissertation internship) are focused research projects that push student's intellectual abilities beyond those driven by the classroom. Often, research internship typically helps solve problems which are usually part of major research projects. It involves a short theoretical or experimental research project supervised by a researcher.
- 3.7.6 The research internships, under the advice of a faculty supervisor, can be one's own selected project or a project on which a Researcher is researching or a new project/real world project offered by an organization. The research area may be pertaining to single

or multidisciplinary fields such as science, technology, engineering, mathematics, management, and business studies. Research internships can be carried out either individually or in teams (not exceeding 3 or 4 students).

3.7.7 Research internship opportunities, before graduation, may be in a laboratory of college, a research institute, or a company's R & D department. Apart from fixed working hours of the day of an organization, the researcher can devote sufficient time for other research related activities for an early and successful completion of the Research Internship.

3.7.8 Necessary Skills for Research Internship and Industrial Internship

For the internships to progress without hurdles and for successful completion, the Researchers should maintain a harmonious relationship with the guide/s, administrators, co – workers and others, and strictly adhere to the rules and regulations of the workplace. The other skills required or acquirable during the Internship are,

- 1. Good Communication skills.
- 2. Attention to detail.
- 3. Planning and scheduling.
- 4. Documentation.
- 5. Critical thinking.
- 6. Data collection.
- 7. Data analysis.
- 8. Ability to maintain quality, safety and/or infection control standards.
- 9. Appreciating and practicing the ethical issues.

3.7.9 Responsibilities of an Intern

Interns,

- 1. If working with a researcher, shall assist the researcher in an ongoing research project or work collaboratively in designing a new project of mutual interest.
- 2. Shall engage in literature survey and getting an insight of the research work at the initial stages.
- 3. Shall compile data, sort, file, implement ideas with minimal guidance and assist write papers.
- 4. Shall become familiar with a number of tools [meters (Electrical and Electronics, mechanical, computer, etc.)] used in data collection, software, graphic software, Statistical Package for the Social Sciences (SPSS) software [IBM's statistical software platform], etc.
- 5. Shall attain skills with Microsoft Word Office, Excel, PowerPoint, Outlook etc.
- 6. Shall give mid term oral presentation to a committee for review and feedback.
- 7. Shall attend discussions, meetings, symposiums, classroom lectures, etc., to learn new scientific techniques, design experiments, analyze results, and formulate the different hypotheses.
- 8. Shall learn writing reports and be able to correspond independently.
- 9. Shall manage time effectively.
- 10. Shall keep a track of the progress of the project.
- 11. Shall develop integrative thinking.

3.7.10 Research internship Outcomes

- 1. Generating technical paper/s and publish in refereed journal/s.
- 2. Possibility of acquiring an intellectual ownership and patent.
- 3. Build a prototype for an idea on which the research was carried out.

- 4. File patent/s.
- 5. Add academic knowledge to the field.
- 6. Enhanced ability in arranging meetings, presentations, seminars, trainings, etc.
- 7. Improved conscientiousness and ethics

3.7.11 Research internships Benefits

- 1. Are a great way to pursue an academic career in teaching and research, as a Research Scientist at a Research Organization, Company, Industry sector, etc.
- 2. Establish professional networks for future career.
- 3. Pave way to join a research team and work alongside leading experts in the field.
- 4. Introduced to new ideas through interaction with like-minded students and others.
- 5. Develop research skills and knowledge in a specific area of interest.
- 6. Provide opportunities for growth, achievement, and personal development. Offer an opportunity to publish a research paper that will boost the resume while applying for Post Graduate Studies
- 4. Evaluation Procedure of UC3001-1 Research Internship /Extended Industry Project/Internship/Project work (16 weeks)
 - **4.1** The students pursuing the course UC3001-1 shall submit the diary recordings of day-to-day activities to the concerned guide, reporting progress achieved in the course and seeking guidance to proceed with the internship. The interns should provide all the details to the guide, so that he/she can discuss with the employer to make the internship successful.
 - **4.2** The intern should constantly update the guide about the progress of the internship. The guide should know the intern's internship tasks, duties, responsibilities, and potential projects. The evaluation of interns and their internship progress should be honest and constructive.
 - **4.3** The hardcopy or softcopy of the diary maintained by the internes interns must be signed in regular intervals by the guide.
 - **4.4** With reference to intern's feedback, the guides should propose changes in internship activities so that they are helpful to the internship.
 - **4.5** Illustrations, drawings, photos, forms, samples, classified materials, etc., are to be included in the report only after obtaining the consent of the concerned authorities and should indicate the source all such material. The final report should also be submitted to the place where internship was carried out. The report should avoid a tone that is predominantly cynical or unduly critical of the employer or of those with whom the student intern has worked. The content of the report must be based on interns' own work.

4.6 Continuous Internal Evaluation (CIE)

The guides should evaluate the interns using the following as well as any other appropriate methods;

- a) Punctuality of intern.
- b) Conduct and character.
- c) Tactfulness and politeness with colleagues and the public.
- d) Attitude regarding professionalism.
- e) Inquisitiveness and eagerness to learn.
- f) Research attitude.
- g) Problem-solving techniques.

- h) Innovation mind-set.
- i) Time management and meeting the deadline.
- j) Receptiveness to feedback and critiques.
- k) Ability to work in a team as a member.
- 1) Ability to work without supervision.
- m) Supervisory skills and leadership skills.
- n) Judgement and decision-making skills.
- o) Writing skills, oral communication skills, technical communication skills, computer skills, analysis skills and business writing skills.
- p) Appropriateness of technical skills.
- q) Familiarization to writing technical papers, standards, codes, etc.
- r) Reading Behavioural attitude.
- s) Outcomes.
- t) Successes and failures experienced

4.7 Recommendation letter

The guide must state whether the intern,

- a) Exceeded the expectations of the internship.
- b) Met the expectations of the internship.
- c) Did not meet the expectations of the internship.
- d) Did work to a satisfactory level.
- e) Did an unsatisfactory internship.

At the end, the guide should issue a recommendation letter.

4.8 Assessment of CIE marks

- 4.8.1 **Single discipline:** The CIE marks shall be awarded by a committee consisting of the Head of the concerned Department and two faculty members of the Department, one of whom shall be the Guide. The CIE marks awarded for the internship, shall be based on the evaluation of the diary, presentation skill and viva-voce in the ratio 50:25:25.
- 4.8.2 **Interdisciplinary:** The CIE marks awarded for the internship, shall be group wise at the institution level with the participation of all guides of the internship. Participation of external guide/s, if any, is desirable.
- **4.8.3** The CIE marks awarded for the internship, shall be based on the evaluation of the diary, presentation skill and viva-voce in the ratio 50:25:25.

4.9 Assessment of SEE marks

- 4.9.1 Single discipline: Contribution to the internship and the performance of each group member shall be assessed individually in semester end examination (SEE) conducted at the department. Marks shall be awarded based on the evaluation of the report, presentation skill and viva-voce in the ratio 50:25:25.
- 4.9.2 Interdisciplinary: Contribution to the internship and the performance of each group member shall be assessed individually in semester end examination (SEE) conducted separately at the departments to which the student/s belong to. Marks shall be awarded based on the evaluation of the report, presentation skill and viva-voce in the ratio 50:25:25

4.10 Evaluation of research Internship/Extended Industry Internship/Project Work:

Split-up of marks for evaluation of Project work for 100 CIE marks and 100 SEE marks

Split up	Rubrics	Marks	

N

		Abstract/ Synopsis Write-up	10
	Content Development	Selection of Topic/ Relevance of the subject to concerned discipline	05
		Problem Identification	05
		Objectives and Methodology	05
Report		Literature Survey (Papers/Sites/Sources Surveyed)	10
(50 Marks)	Problem- Oriented Exposition	Documentation/ Systematic Approach	10
		Results (with inferences, Conclusions, etc.)	05
Project		Quality of preparation of presentation	05
Presentation		Communication Skills	05
Skill		Technical knowledge and awareness	05
(25 Marks)		Individual involvement	10
Viva Voca		The clarity in answering questions relating to fundamentals and concepts	10
(25 Marks)		The clarity in answering the questions related to the project	05
		The understanding ability of the questions asked	05
		The confidence in answering the questions asked.	05
		Total Marks	100

N)

B. Tech. SYLLABUS

Effective from

Academic Year

2023 – 2024

Curriculum for Acquiring Professional Skills (CAPS)

With Scheme of Teaching & Examination

Established under Section 3 of UGC Act 1956 Accredited with 'A+' Grade by NAAC

Ν

Off-Campus Centre, Nitte - 574 110, Karnataka, India

Scheme & Syllabus for

B. Tech. (Electrical and Electronics Engineering)

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING 2023-24

B. Tech. in Electrical and Electronics Engineering

Vision:

Pursuing excellence in Electrical & Electronics Engineering, creating a research environment to promote innovation and address global challenges

Mission:

- Equip students to face global challenges by excelling in a professional career and higher education
- Offer high-quality graduate and post graduate programs in electrical & electronics engineering
- Promote excellence in research, collaborative activities and contribute to social development with ethical values

Program Educational Objectives (PEOs):

To satisfy the mission of the Electrical & Electronics engineering program, the graduates will: PEO1: Excel in professional career and / or higher education by acquiring knowledge in mathematical, electrical, electronics and computer engineering principles

PEO2: Analyze real life problems, design electrical and electronics & multidisciplinary engineering systems and solutions that are socially acceptable

PEO3: Inculcate and exhibit ethical values, communication skills and provide supportive and leadership roles in their profession to emerge as excellent professionals and adapt to current trends by engaging in lifelong learning to promote research

Program Outcomes (POs):

Engineering Graduates will be able to:

PO1: Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2: Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3: Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4: Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5: Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO6: The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7: Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8: Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9: Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10: Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11: Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12: Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Program Specific Outcomes (PSOs):

PSO1: An ability to demonstrate the electrical and electronics engineering concepts by developing working models.

PSO2: Ability to model, simulate and develop application specific systems to meet industrial /societal needs.

1.5.1

B. Tech. in Electrical & Electronics Engineering CREDIT DISTRIBUTION

No.	Course Category	Credit	Suggested
		Range	Credits
1.	Basic Science Courses (BSC)	18-23	22
2.	Engineering Science Courses (ESC)	10-15	13
3.	Emerging Technology Courses (ETC)	03-05	03
4.	Programming Language Courses (PLC)	03-05	03
5.	Professional Core Courses (PCC)	52 - 58	55
6.	Professional Elective Courses (PEC)	12-18	15
7.	Open Elective Courses (OEC)	6	6
8.	Humanities, Social Sciences and Management courses	00.15	10
	(HSMC)	09-15	12
9.	Ability Enhancement Courses (AEC)	9	9
10.	Mandatan Nan gradit Courses (MNC)	Non-	0
	Mandatory Non-credit Courses (MINC)	Credit	
11.	Holistic Education Courses (HEC)	2	1
12.	Vocational Education Courses (VEC)	1	1
13.	Project Work (PROJ) (UCC)	10-12	10
14.	Internship (INT) (UCC)	8-12	10
15.	Note: Student can register between 16 to 28 credits per		
	semester		160
21.	Total minimum Credits to be earned: 160		

Course Numbering Scheme

Branch Code		Course Level		Course Cod	е	Separator	Version			
Letter	Letter	Number	Number	umber Number Numl		-	Number			
Branch Code	EE is 2 Letter code for the Department of Electrical & Electronics Engineering									
Course Level	Course Level is a 1-digit number that can have a value between 1-4 and indicates the prerequisite of a course. Level-1 courses are basic courses with no courses as pre-requisites Level-2 course(s) have Level-1 course(s) as prerequisites Level-3 course(s) have Level-2 course(s) as prerequisites Level-4 course(s) have Level-3 course(s) as prerequisites									
Course Code	Course C number 3 0 2 5 5 5 6 6 7	Code is a 3 Digit massigned to a cou assigned to a cou 01-199 is assigned 001-099 for Intr 101-199 for Profes 201-299 Electiv 301-399 Electiv 301-399 For Open 51 – 599 for Voca 01-650 for Profes 51-699 for Ability 01-799 for Course	umber that or rse based or d to Profess egrated Prof ofessional Co sional Elective res under Gro ure use Elective Cou tional Educa sional Core Enhanceme es offered to	can have a va n the followin ional Core Co fessional Core ore Theory Co ve Courses oup I oup I rses ation Courses Lab Courses ant Courses	lue between (og guidelines ourses e Courses [4 C ourses [3 Cred [1 Credit]	001-999 and in Credit] dit]	ndicates the			
Separator	" - " is use	ed as a separato	r between	the Course o	code and the	e version				
Version	Version minor re	is a 1-digit num evisions of the sa	ber that ca ame course	n have a val	ue between	1-9 and indi	cates			

Scheme & Syllabus (I Year)

B.Tech. (EE): Scheme of Teaching and Examinations 2023-27 Outcome Based Education (OBE) and Choice Based Credit System (CBCS) (Effective from the academic year 2023 - 24) Group 2

I/II SEMESTER													
				ţ	T ho	eachi urs/W	ng 'eek		Exam	inatio	۱		
SI No.	Cou Cou	Course and Course code Course code		Teaching Departmen	Theory Lecture	Tutorial	Practical/ Drawing	Duration in hours	CIE	SEE	Fotal Marks	Credits	
					L	Т	Р						
1	BSC	MA1001-2	Matrix Algebra and Calculus	MAT	4	0	0	3	50	50	100	4	
2	BSC	CY1005-1	Chemistry of Energy Storage and Display Devices	CHE	3	0	2	3	50	50	100	4	
3	ESC	EE1001-2	Basic Electrical Engineering	EE	2	0	2	3	50	50	100	3	
4	ESC	ME1003-2	Elements of Mechanical Engineering	ME	3	0	0	3	50	50	100	3	
5	ETC	IS1101-1	Fundamentals of Cyber Security	EC	3	0	0	3	50	50	100	3	
6	AEC	CS1002-1	IT Skills	CS/ME	1	0	2	3	50	50	100	2	
7	AEC	BT1651-1	Biology for Engineers	BT	1	0	0	1	50	50	100	1	
8	MNC	CV1002-1	Environmental Studies	CV	1	0	0	1	50	0	50	0	
9	ESC	ME1004-1	Engineering Visualization	ME	0	0	2	0	50	0	50	1	
			Total	18	0	8	20	450	350	800	21		

Note:

BSC: Basic Science Course, **ESC**: Engineering Science Course, **HSMC**: Humanity and Social Science & Management Courses, **AEC** –Ability Enhancement Courses, **MNC**: Mandatory Non credited course **UM**: University Mandatory

MATRIX A	LGEBRA & C	ALCULUS	
Course Code:	MA1001 - 2	Course Type:	BSC
Teaching Hours/Week (L: T: P: S):	4:0:0:0	Credits:	04
Total Teaching Hours:	50+0+0	CIE + SEE Marks:	50+50
Teaching D	epartment: Ma	thematics	
Course Objectives:			
1. This course will enable the stude infinite series, elementary linear and become skilled for solving p	ents to master the algebra, partial arcient	he basic tools of differenti I differentiation, multiple i nce and engineering.	al calculus, integration
	UNIT-I		
Matrices			10 Hours
Elementary transformation of a matrix,	Echelon form a	nd rank of a matrix. Cons	sistency and
solution of system of linear equations; by Gauss Seidel method. Eigen values a method to find the largest eigen values	Gauss eliminat nd eigen vector s and eigen vect	ion method and approxim s of square matrices, Rayle tors of square matrices.	ate solution eigh's power
Applications: Network Analysis, Markov solution.	[,] Analysis, critica	al point of a network system	m, optimum
	UNIT-II		
Sequences and Series	·		10 Hours
comparison test, D-Alembert's ratio theorem for a function of single vari functions into Taylor's and Maclaurin's Applications: Series expansion in comm	test and Cauch able with rema series. nunication signa	ny's root test. Power seri ainder (without proof), ex als.	es- Taylor's xpansion of
	UNIT-III		
Differential Calculus			10 Hours
Polar curves, angle between the radius curves. derivatives of arcs, radius of cur Theorem (without proof), mean value t Applications: Communication signals, N	vector and the vature - cartesia heorems and ap Janufacturing o	tangent, angle of intersed an, parametric and polar fo oplications to simple probl f microphones, and Image	ction of two orms. Rolle's lems. processing.
	UNIT-IV		
Partial Differentiation			10 Hours
Partial derivatives of simple functions, t implicit functions, Jacobians. Taylor's t minima for functions of two variables, I one subsidiary condition). Applications: Estimating the critical poi	otal differentiat heorem for fur agrange's meth nts and extreme	ion - differentiation of cor actions of two variables, r aod of undetermined mult e values.	nposite and naxima and tipliers (with
	UNIT-V		
Multiple Integrals			10 Hours
Double integrals and triple integrals, ev variables and applications to area a	aluation by cha nd volume. Be	nge of order of integration ta and Gamma function	n, change of s and their

Applications: Antenna and wave propagation, Calculation of optimum power in electrical circuits, field theory.

Cours	Course Outcomes: At the end of the course student will be able to							
1.	Solve the system of linear equations and find eigen values and eigen vectors of the							
	given matrix.							
2.	Develop the power series of the given function and understand the concept of							
	convergence and divergence of series.							
3.	Apply the concept of radius of curvature and mean value theorems.							
4.	Learn the concept of partial differentiation of a function with two or more							
	independent variables, apply them to solve engineering problems and examine the							
	given function for its extrema.							
5.	Apply the notion of multiple integrals to find areas and volumes.							

Course Outcomes Mapping with Program Outcomes & PSO

Program Outcomes→	1	2	3	4	5	6	7	8	9	10	11	12	PS	0 ↓
↓ Course Outcomes													1	2
MA1001 - 2.1	3	2	-	-	-	-	-	-	-	-	-	-	-	-
MA1001 - 2.2	2	2	-	-	-	-	-	-	-	-	-	-	-	-
MA1001 - 2.3	3	1	-	-	-	-	-	-	-	-	-	-	-	-
MA1001 - 2.4	3	2	-	-	-	-	-	-	-	-	-	-	-	-
MA1001 - 2.5	3	2	-	-	-	-	-	-	-	-	-	-	-	-

1: Low 2: Medium 3: High

TEXTBOOKS:

- **1.** Erwin Kreyszig, "Advanced Engineering Mathematics", John Wiley and Sons, 10th Edition (Reprint), 2016.
- **2.** B.S. Grewal, "Higher Engineering Mathematics", Khanna Publications, 43rd Edition, 2015.

REFERENCE BOOKS:

- **1.** G.B. Thomas and R. L. Finney, "Calculus and Analytic geometry", Pearson, 2002.
- **2.** T. Veerarajan, "Engineering Mathematics", McGraw-Hill, New Delhi, 2008.
- **3.** B. V. Ramana, "Higher Engineering Mathematics", Tata Mc Graw –Hill, New Delhi,2010.
- **4.** N.P. Bali and M.Goyal, "A text book of Engineering Mathematics", Laxmi Publications, 2010.

E Books / MOOCs/ NPTEL

- 1. http://nptel.ac.in/courses/111107108/
- 2. https://nptel.ac.in/courses/122101003

CHEMISTRY OF ENERGY STORAGE AND DISPLAY DEVICES								
Course Code:	CY1005-1	Course Type:	BSC					
Teaching Hours/Week (L: T:P: S):	3:0:2:0	Credits:	04					
Total Teaching Hours:	40+0+26	CIE + SEE Marks:	50+50					

Teaching Department: Chemistry

C	our	se Objectives:
	1.	To enable students to acquire knowledge on principles of chemistry for engineering applications.
	2.	To develop an intuitive understanding of chemistry by emphasizing the related branches of
		engineering.
	3.	To provide students with a solid foundation in analytical reasoning required to solve societal
		problems.

UNIT-I

Energy Conversion and Storage

Batteries: Introduction, classification of batteries. Components, construction, working and applications of modern batteries; Na-ion battery, Li-ion battery, and flow battery (Vanadium redox flow battery). **Fuel Cells**: Introduction, construction, working and applications of methanol–oxygen and polymer electrolyte membrane (PEM) fuel cell.

Solar Energy: Introduction, importance of solar PV cell, construction and working of solar PV cell, Advantages and disadvantages.

Polymers

Polymers: Introduction, Molecular weight- Number average, Weight average and numerical problems. Elastomers – Definition, Synthesis, and applications of Butyl rubber and Silicone rubbers. Adhesives-Synthesis and applications of Epoxy resins. Polymer Composites: Introduction, synthesis, properties, and applications of carbon fiber. Conducting polymers– synthesis and conducting mechanism of polyacetylene. Preparation, properties, and commercial applications of graphene oxide.

PCB: Electroless plating – Introduction, Electroless plating of copper in the manufacture of double-sided PCB.

UNIT-II

Electrode System and Sensors

Electrode System: Introduction, types of electrodes. Reference electrode- Introduction, calomel electrode- construction, working and applications of calomel electrode. Concentration cell– Definition, construction, and Numerical problems. Ion selective electrode – definition, construction, working and applications of glass electrode. Determination of pH using glass electrode.

Sensors: Introduction, working principle and applications of Conductometric sensors, Electro chemical sensors, Thermometric sensors, and Optical sensors.

Corrosion chemistry and Analytical techniques

Corrosion Chemistry: Introduction, electrochemical theory of corrosion, types of corrosion- differential metal and differential aeration. Corrosion control-galvanization, anodization, and sacrificial anode method. Corrosion Penetration Rate (CPR) – Introduction and numerical problems.

Analytical techniques: Principle and instrumentation of Conductometry; its application in the estimation of weak acid and strong acid. Principle and instrumentation of Potentiometry; its application in the estimation of iron.

UNIT-III

Nanomaterials and Display Systems

Nanomaterials: Introduction, size dependent properties of nanomaterials (Surface area, Catalytic, Conducting), preparation of nanomaterials by sol-gel and co-precipitation method with example. Introduction, properties, synthesis, and applications carbon nano tubes.

Display Systems: Liquid crystals (LC's)-Introduction, classification, properties, and application in Liquid Crystal Displays (LCD's). Properties and application of Organic Light Emitting Diodes (OLED's) and Quantum Light emitting diodes (QLED's).

Perovskite Materials: Introduction, properties, and applications in opto-electronic devices.

9 Hours

6 Hours

10 Hours

8 Hours

7 Hours

E-wa	ste Management: Introducti	on,	SOL	urces	, ty	pes,	eff	ects	s of	e-v	vaste	e on	env	ironr	nent	and	l human
health, methods of disposal, advantages of recycling. Extraction of copper and gold from e-waste.																	
-		Su	gge	estec	l Lis	t of	F Ex	peri	me	nts							
l.	Determination of strength of an acid in Pb-acid battery (Demonstration).																
2.	Determination of Total Hardness of a sample of water using disodium salt of EDTA.																
3.	Estimation of iron in TMT bar by diphenyl amine/external indicator method.																
4.	Synthesis of polyurethane (De	mo	nsti	ratio	n).												
5.	Conductometric estimation of	stro	ong	j acio	d wit	th st	tand	lard	Na	<u>OH</u>	solut	tion.					
6.	Potentiometric estimation of	FAS	usi	ng st	and.	ard	K ₂ C	r ₂ O	7 SO	lutic	on.						
/.	Determination of pKa of vineo	jarι	ISIN	ig p⊦	l ser	nsor	- (Gl	ass	eleo	ctro	de).		<u> </u>				
8.	Determination of the viscosity	' COE	effic	cient .	of a	i giv	en l	iqui	id u	sing	l Ost	wald	's vis	scom	eter.		
9.	Estimation of Copper present	in e	lec	tropl	atın	g et	flue	nt b	у о	ptic	al se	nsor	(colo	orime	etry).		
10.	Colorimetric determination of	iror	n.														
11.	Conductometric estimation of		/eal		a us	ing	star	ndar				utior	<u>ו.</u>				
12.	Estimation of Sodium present	IN S			lent	san	npie	USI	ng i	lam	e pn	oton	netei	ſ.			
13.	Synthesis of blodlesel (Demor	1stra		n).				(m)									
14.	Synthesis of Iron-Oxide Nano	part	lCIE	es (Di	emc	nst	ratic	on).									
Court	At the and af t	20.0	~	co ct	uda	nt v			bla	to							
	Identify the terms processes	ie c	our	se su		nt v		be a	bie	10	rina	and	annli	icatio	200		
1.	Identity the terms processes	mv	Jive	eum	SCIE	: i i ti i	ic ai	iu e	ingi	nee	my	anu	аррп	icatio	JIIS.		
2.	Explain the phenomena of cl	nem	istr	y to	des	crib	e th	e m	eth	ods	of er	ngine	eerin	g pro	oces	ses.	
3.	Solve the problems in chemi	stry	tha	at are	e pe	rtine	ent i	n e	ngir	neer	ing a	appli	catio	ns.			
4.	Apply the basic concepts of	cher	mis	try to	o ex	plai	n th	e ch	nem	ical	prop	bertie	es an	d pro	oces	ses.	
5	Analyze properties and multi processes associated with chemical substances in disciplinary																
J.		i i i i	50	Cesse	25 d	5500	late	eu v	vitii	Ch	emic	arsu	IDSIG	inces)	uisci	pinary
5.	situations.		5100	Cesse	:5 a	SSO		ea v	WILLI	Ch	emic	arsu	IDSLO	inces)	uisci	pinary
5.	situations.				25 d	5500		ea v	WILLI	Ch	emic	al su	IDSLO		> 111		piniary
Cour	situations.	Pro	gra	im O	utco	ome	es &	2 PS	O						• II I		
Cour	situations. rse Outcomes Mapping with Program Outcomes→	Pro 1	gra	im 0	utc 4	ome 5	es &	2 PS 7	0 8	9	10	11	12		PSO		
Cour	situations. rse Outcomes Mapping with Program Outcomes→ ↓ Course Outcomes	Pro	gra	m 0	utco	ome	es 8	2 PS 7	0 8	9	10	11	12	1	PSO 2	↓ 3	
Cour	situations. rse Outcomes Mapping with Program Outcomes→ ↓ Course Outcomes CY1005-1.1	Pro	gra 2	m O	utco 4	ome 5	es 8 6	2 PS 7 -	0 8	9	10	11	12	1 -	PSO 2 -	↓ 3 -	
Cour	situations. rse Outcomes Mapping with Program Outcomes ↓ Course Outcomes CY1005-1.1 CY1005-1.2	Pro	gra 2 1 2	im 0 3	utco 4 -	ome 5 -	es 8 6 -	2 PS 7 -	0 8 -	9	10 - -	111 - -	12 - -	1 -	PSO 2 -	↓ 3 -	
Cour	situations. rse Outcomes Mapping with Program Outcomes→ ↓ Course Outcomes CY1005-1.1 CY1005-1.2 CY1005-1.3	Pro	gra 2 1 2 3	am O 3 - -	utco 4 - -	ome 5 - -	es 8 6 - -	2 PS 7 - -	0 8 - -	9	10 - -	111 - - -	12 - -	1 - -	PSO 2 - - -	↓ 3 - -	
Cour	situations. rse Outcomes Mapping with Program Outcomes ↓ Course Outcomes CY1005-1.1 CY1005-1.2 CY1005-1.3 CY1005-1.4	Pro	gra 2 1 2 3 1	im O 3 - - -	utco 4 - -	ome 5 - - -	es 8 6 - - -	2 PS 7 - - -	0 8 - - -	9 - - - -	10 - - - -	111 - - -	12 - - - -	1 - - -	PSO 2 - - -	↓ 3 - - -	
Cour	situations. rse Outcomes Mapping with Program Outcomes ↓ Course Outcomes CY1005-1.1 CY1005-1.2 CY1005-1.3 CY1005-1.4 CY1005-1.5	Pro 1 3 3 2 2 2	gra 2 1 2 3 1 1 1	am O 3 - - - - -	utco 4 - - - -	5	es 8 6 - - - -	2 PS 7 - - - -	0 8 - - - -	9 - - - -	10 - - - - -	111 - - - - -	12 - - - - -	1 - - - -	PSO 2 - - - - - -	↓ 3 - - - - -	
Cour	situations. rse Outcomes Mapping with Program Outcomes ↓ Course Outcomes CY1005-1.1 CY1005-1.2 CY1005-1.3 CY1005-1.4 CY1005-1.5 1: Low 2: Medium 3: Higl	Prov 1 3 3 2 2 1	gra 2 1 2 3 1 1	im O 3 - - - -	utco 4 - - -	ome 5 - - -	es 8 6 - - -	2 PS 7 - - -	0 8 - - - -	9 - - - -	10 - - - -	111 - - - -	12 - - - -	1 - - - -	PSO 2 - - - - -	↓ 3 - - - -	
Cour	situations. rse Outcomes Mapping with Program Outcomes ↓ Course Outcomes CY1005-1.1 CY1005-1.2 CY1005-1.3 CY1005-1.4 CY1005-1.5 1: Low 2: Medium 3: Higl	Prog 1 3 3 2 2 1	gra 2 1 2 3 1 1	am O 3 - - -	utco 4 - -	ome 5 - - -	es &	2 PS 7 - - -	0 8 - - -	9 - -	10 - - - -	111 - - - -	12 - - - -	1 - - -	PSO 2 - - - -	↓ 3 - - -	
Cour TEXT	situations. rse Outcomes Mapping with Program Outcomes ↓ Course Outcomes CY1005-1.1 CY1005-1.2 CY1005-1.3 CY1005-1.4 CY1005-1.5 1: Low 2: Medium 3: Higl	Pro 1 3 3 2 2 1	gra 2 1 2 3 1 1	m O 3	utco 4 - -	ome 5 - - -	es 8 6 - - -	2 PS 7 - - -	0 8 - - -	9	10 - - -		12 - - -	1 - - -	PSO 2 - - - -	3 - - -	
Cour TEX1	situations. situations. Program Outcomes ↓ Course Outcomes CY1005-1.1 CY1005-1.2 CY1005-1.3 CY1005-1.4 CY1005-1.5 1: Low 2: Medium 3: High TBOOKS: P. C. Jain & Monica Jain, "Er	Pro 1 3 3 2 2 1 1	gra 2 1 2 3 1 1 eeri	ing C	utco 4 - - -	ome 5 - - -	es 8 6 - - - - y", 1	2 PS 7 - - - - - -	0 8 - - - - -	9 - - - -	10 - - - - - -	111 - - - - blica	12 - - - - tions	1 - - - - - -	PSO 2 - - - - - - - - - - - - - -	↓ 3 - - -	2015.
Cour TEXT	situations. situations. rese Outcomes Mapping with Program Outcomes ↓ Course Outcomes CY1005-1.1 CY1005-1.2 CY1005-1.3 CY1005-1.4 CY1005-1.5 1: Low 2: Medium 3: High FBOOKS: P. C. Jain & Monica Jain, "Er R. V. Gadag and Nityanance	Pro 1 3 3 2 2 2 1	gra 2 1 2 3 1 1 1 eeri het	ing C	utco 4 - - - - - - - - - - - - - - - - - -	ome 5 - - - - - - - - - - - - - - -	es & 6 - - - - - - - - - - - - - - - - - -	2 PS 7 - - - - - - - - - - - - - - - - - -	Image: Non-Image: Non-Image	9 - - - - at Ra	10 - - - - - - - - - - -	11 - - - - blica g Cł	12 - - - - tions	1 - - - - - - - - - - - - - - - - - - -	PSO 2 - - - - - - - - - - - - - - - - - -	↓ 3 - - - - - -	2015. ion, I. K.
Cour TEX1	situations. rse Outcomes Mapping with Program Outcomes ↓ Course Outcomes CY1005-1.1 CY1005-1.2 CY1005-1.3 CY1005-1.4 CY1005-1.5 1: Low 2: Medium 3: Higl FBOOKS: P. C. Jain & Monica Jain, "Er R. V. Gadag and Nityanance International Publishing hou	Pro 1 3 3 2 2 2 1 1	gra 2 1 2 3 1 1 1 eeri het 201	ing C tty, "/	utco 4 - - - - - - - - - - - - - - - - - -	ome 5 - - - - -	es 8 6 - - - - - - - - - - - - - - - - - -	2 PS 7 - - - - - - - - - - - - - - - - - -	P B B C C C C C C C C C C C C C C C C C	9 - - - - - - - - - - - - - - - - -	10 - - - - - - -	111 - - - - blica g Ch	12 - - - - tions	1 - - - - - - - - - - - - - - - - - - -	PSO 2 - - - - - - - - - - - - - - - - - -	↓ 3 - - - - Edit	2015. ion, I. K.
Cour TEXT 1. 2. 3.	situations. situations. Se Outcomes Mapping with Program Outcomes ↓ Course Outcomes CY1005-1.1 CY1005-1.2 CY1005-1.3 CY1005-1.4 CY1005-1.5 1: Low 2: Medium 3: High FBOOKS: P. C. Jain & Monica Jain, "Er R. V. Gadag and Nityanance International Publishing hou S. S. Dara & S. S. Umare, "A Total Science of the second	Pro 1 3 3 2 2 1 igine la S ise, exth	gra 2 1 2 3 1 1 2 3 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ing C tty, ", L6.	utco 4 - - - - - - - - - - - - - - - - - -	ome 5 - - - - - - - - - - - - - - - - - -	ering	2 PS 7 - - - - - - - - - - - - - - - - - -	Provide the second seco	9 - - - - - - - - - - - - - - - - - - -	10 - - - - - - - - - - - - - - - - - - -	11 - - - blica g Ch	12 - - - tions nemis	1 - - - - - - - - - - - - - - - - - - -	PSO 2 - - - - - - - - - - - - - - - - - -	↓ 3 - - - - Edit	2015. ion, I. K.
Cour TEXT 1. 2. 3.	situations. situations. Se Outcomes Mapping with Program Outcomes ↓ Course Outcomes CY1005-1.1 CY1005-1.2 CY1005-1.3 CY1005-1.4 CY1005-1.4 CY1005-1.5 1: Low 2: Medium 3: Higl FBOOKS: P. C. Jain & Monica Jain, "Er R. V. Gadag and Nityanance International Publishing hou S. S. Dara & S. S. Umare, "A T Ltd., 2011.	Pro 1 3 3 2 2 2 1 1 se, rextt	gra 2 1 2 3 1 1 1 2 2 3 1 1 2 2 3 1 1 2 0 1 2 0 0 000	ing C ty, "/	utco 4 - - - - Chen A Te Engi	ome 5 - - - - - - - - - - - - - - - - - -	es & 6 - - - - - - - - - - - - - - - - - -	2 PS 7 - - - - - - - - - - - - - - - - - -	O 8 - - - - - f En emi	9 - - - - at Ra gine	10 - - - - - - - - - - - - - - - - - - -	11 - - - - blica g Ch	12 - - - tions nemis	1 - - - - - - - - - - - - - - - - - - -	PSO 2 - - - - - - - - - - - - - - - - - -	↓ 3 - - - - - - - - - - - - - - - - - -	2015. ion, I. K.
Cour TEX1 1. 2. 3. REFE	situations. situations. Program Outcomes ↓ Course Outcomes CY1005-1.1 CY1005-1.2 CY1005-1.3 CY1005-1.4 CY1005-1.4 CY1005-1.5 1: Low 2: Medium 3: Higl BOOKS: P. C. Jain & Monica Jain, "Er R. V. Gadag and Nityanance International Publishing hou S. S. Dara & S. S. Umare, "A T Ltd., 2011. ERENCE BOOKS:	Pro 1 3 3 2 2 1 n n ise, rextt	gra 2 1 2 3 1 1 2 3 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ing C ty, "/ L6. tr,"	utco 4 - - - - - - - - - - - - - - - - - -	ome 5 - - - - - - - - - - - - - - - - - -	ering	2 PS 7 - - - - - - - - - - - - - - - - - -	npa f En	9 - - - - gine istry	10 - - - - - - - - - - - - - - - - - - -	111 - - - - blica g Ch th Ed	12 - - - tions nemis	1 - - - - - - - - - - - - - - - - - - -	PSO 2 - - - - - - - - - - - - - - - - - -	213C1	2015. ion, I. K. Company
Cour TEXT 1. 2. 3. REFE	situations. situations. Program Outcomes ↓ Course Outcomes CY1005-1.1 CY1005-1.2 CY1005-1.2 CY1005-1.3 CY1005-1.4 CY1005-1.5 1: Low 2: Medium 3: High FBOOKS: P. C. Jain & Monica Jain, "Er R. V. Gadag and Nityanance International Publishing hou S. S. Dara & S. S. Umare, "A T Ltd., 2011. ERENCE BOOKS: Baskar, "Wiley Engineering O	Pro Pro 1 3 3 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1	gra 2 1 2 3 1 1 1 2 3 1 1 1 2 3 1 1 1 2 3 1 1 1 2 3 1 1 1 2 3 1 1 1 2 3 1 1 1 2 3 1 1 1 2 3 1 1 1 2 1 2	ing C try, "/	utco 4 - - - - - - - - - - - - - - - - - -	ome 5 - - - - - - - - - - - - - - - - - -	ering	2 PS 7 - - - - - - - - - - - - - - - - - -	O B C C C C C C C C C C C C	9 	10 - - - - - - - - - - - - - - - - - - -	111 - - - - - - - - - - - - - - - - - -	12 - - - - tions nemis	1 - - - - - - - - - - - - - - - - - - -	PSO 2 - - - - - - - - - - - - - - - - - -	↓ 3 - - - - - Edit 1 & C	2015. ion, I. K. Company
Cour TEXT 1. 2. 3. REFE 1. 2. 2.	situations. situations. Se Outcomes Mapping with Program Outcomes ↓ Course Outcomes CY1005-1.1 CY1005-1.2 CY1005-1.3 CY1005-1.4 CY1005-1.4 CY1005-1.5 1: Low 2: Medium 3: Higl FBOOKS: P. C. Jain & Monica Jain, "Er R. V. Gadag and Nityanance International Publishing hou S. S. Dara & S. S. Umare, "A T Ltd., 2011. ERENCE BOOKS: Baskar, "Wiley Engineering O Satya Prakash & Manisha Ad Babl & Tuli, "Eccontials of Ph	Pro Pro 1 3 3 2 2 2 1 1 1 1 3 3 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1	gra 2 1 2 3 1 1 1 2 3 1 1 1 2 0 1 0 00 0 00	ing C tty, "/ L6. "Eng	utco 4 - - - - - - - - - - - - - - - - - -	ome 5 - - - - - - - - - - - - - - - - - -	ering ion, g Ch	PS 7 7 - - - - - - - - - - - - - - - - -	npa f En ewi iistr	9 - - - - - - - - - - - - - - - - - - -	10 - - - - - - - - - - - - - - - - - - -	111 - - - - blica g Ch th Edi th Edi	12 - - - - tions nemis ition, New pok F	1 - - - - - - - - - - - - - - - - - - -	PSO 2 - - - - - - - - - - - - - - - - - -	↓ 3 - - - - - Edit 1 & C 013. g, De	2015. ion, I. K. Company
S. Cour TEXT 1. 2. 3. REFE 1. 2. 3. REFE 1. 2.	situations. situations. Se Outcomes Mapping with Program Outcomes ↓ Course Outcomes CY1005-1.1 CY1005-1.2 CY1005-1.3 CY1005-1.4 CY1005-1.4 CY1005-1.5 1: Low 2: Medium 3: Higl FBOOKS: P. C. Jain & Monica Jain, "Er R. V. Gadag and Nityanance International Publishing hou S. S. Dara & S. S. Umare, "A T Ltd., 2011. ERENCE BOOKS: Baskar, "Wiley Engineering G Satya Prakash & Manisha Ad Bahl & Tuli, "Essentials of Ph Sunita Pattan, "Applied Che	Pro Pro 1 3 3 2 2 2 1 1 1 1 1 3 3 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1	gra 2 1 2 3 1 1 2 3 1 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ing C try, "/ L6. bk of try", "Eng Chen	utco 4 - - - - - - - - - - - - - - - - - -	ome 5 - - - - - - - - - - - - - - - - - -	ering ion, g Cł 5. Cł	2 PS 7 - - - - - - - - - - - - - - - - - -	Image: Normal Science	9 - - - - - - - - - - - - - - - - - - -	10 - - - - - - - - - - - - - - - - - - -	111 - - - - blica g Ch th Edi th Edi	12 - - - - tions nemis	1 - - - - - - - - - - - - - - - - - - -	PSO 2 - - - - - - - - - - - - - - - - - -	↓ 3 - - - - Edit 1 & C 013. g, De	2015. ion, I. K. Company

5.	D. Grour Krishana, "Engineering Chemistry – I", Vikas Publishing.
6	F. W. Billmeyer, "Text Book of Polymer Science", John Wiley & Sons, 4 th Edition, 1999.
7	G. A. Ozin & A. C. Arsenault, "Nanotechnology A Chemical Approach to Nanomaterials", RSC
	Publishing, 2005.
8	Kirby W. Beard, "Linden's Handbook of Batteries", Fifth Edition, Mc GrawHill, 2019.
9	Takatoshi Tsujimura, "OLED Display Fundamentals and Applications", Wiley–Blackwell, 2012.
10	MaxLu, Francois Beguin, Elzbieta Frackowiak, "Super capacitors: Materials, Systems, and
	Applications", Wiley-VCH;1stedition, 2013.
11	H. Panda, "Handbook on Electroplating with Manufacture of Electro-chemicals", ASIAPACIFIC
	BUSINESS PRESS Inc., 2017.
12	Sudharani, "Laboratory manual in Engineering Chemistry", Dhanpat Rai Publishing Company,
	New Delhi.
13	"Expanding the Vision of Sensor Materials", National Research Council 1995, Washington, DC:
	The National Academies Press. doi:10.17226/4782.
14	Mahesh B and Roopa Shree B, "Engineering Chemistry", Sunstar Publisher, Bengaluru, ISBN978-
	93-85155-70-3, 2022
15	F. H. Froes, et al., "High Performance Metallic Materials for Cost Sensitive Applications", John
	Wiley & Sons, 2010.
16	K. R. Mahadik and L. Satyanarayana, "Instrumental Methods of Analysis", Nirali Prakashan, 2020.
17	Douglas A. Skoog, F. James Holler, Stanley R. Crouch, "Principles of Instrumental Analysis",
	Seventh Edition, Cengage Learning, 2020.
18	V R Gowariker, N V Viswanathan, Jayadev, Sreedhar, "Polymer Science", NewageInt. Publishers,
	4 th Edition, 2021.
19	Hari Singh, "Nanostructure materials and nanotechnology", Nalwa, Academic press, 1 st Edition,
20	O. G. Palanna, "Engineering Chemistry", Tata McGraw Hill Education Pvt. Ltd. New Delhi, Fourth
	Reprint, 2015.
E BOO	KS / MOUCS/ NPIEL
1.	http://libgen.rs/ • https://nptel.ac.in/downloads/122101001/
2.	https://nptei.ac.in/courses/104/103/104103019/ • https://ndl.iitkgp.ac.in/.
3.	https://www.youtube.com/watch?v=faESCxAWR9k

BASIC ELECTRICAL ENGINEERING

Course Code:	EE1001-2	Course Type:	BSC
Teaching Hours/Week (L: T: P: S):	2:0:2:0	Credits:	03
Total Teaching Hours:	25+0+26	CIE + SEE Marks:	50+50
3		1	

Teaching Department: Electrical & Electronics Engineering

Course Objectives:

1.	To familiarize the student with the DC circuit analyses.
2.	To analyze single and three-phase AC circuits.
3.	To understand the working principle of electrical machines.
1	To introduce fundamental concepts in EV, basic converters and special motors,
4.	electrical wiring protective devices and safety measures

ircuit	Fundamentals.	

UNIT-I

Introduction to DC circuits, Basic nodal and mesh analysis excited by independent DC voltage sources, Power and Energy.

08 Hours

03 Hours

AC Fundamentals: Generation of sinusoidal voltage, frequency of generated voltage, definition and numerical values of average value, root mean square value, form factor and peak factor of sinusoidally varying voltage and current, phasor representation of alternating quantities.

A.C. Circuits: Analysis of R, L, C, R-L, R-C and R-L-C series. Phasor Diagrams. Real power, reactive power, apparent power and power factor. Three-phase balanced circuits, voltage and current relations in star and delta connections. Measurement of three phase power using two wattmeter.

DC Machines

Faradays Laws, self and mutually induced emfs. Constructional details, Principle of operation of generator and motor, Expression for back emf, Types of dc motors, Characteristic of dc motors (shunt and series motors only) and Applications.

UNIT-II

Single-Phase Transformers:	03 Hours							
Necessity of transformer, Principle of operation. Types of Transformers, Emf equation,								
losses, efficiency, problems on emf equation and efficiency, Autotransformer	, Applications.							

Induction Motors	03 Hours
Concept of rotating magnetic field, Construction and working of a three-pha	ase Induction
Motor, Slip and its significance, Torque slip characteristics (qualitative). Nece	ssity of a
starter, Principle of operation Single Phase Induction Motor. Applications	

UNIT-III

 Electric Vehicles:
 04 Hours

 Fundamentals, Block diagram of EV and its components. Motors used in EV –

 BLDC,Permanent Magnet Synchronous Machine (PMSM) -Working principle

 SMPS: Concept of step up and step-down converter (Basic equation and Block diagram

representation), Applications. Block diagram of UPS and applications.

Domestic Wiring:02 HoursTypes of wiring. Two-way and Three-way control of lamp. Elementary discussion on Circuitprotective devices: Fuse and Miniature Circuit Breaker (MCB's).

Personal safety measures: Electric Shock and Precautions against shock. Potential between neutral and ground. Necessity of Earthing, Earthing types- Pipe and Plate earthing.

*One additional tutorial class will be allotted every week

Suggested	List of Ex	periments
-----------	------------	-----------

- Verification of KVL and KCL for DC circuits.
 Measurement of current, power and power fac
 - 2. Measurement of current, power and power factor of incandescent lamp, fluorescent lamp, CFL and LED lamp.
 - 3. Sinusoidal steady state response of R-L, and R-C circuits- impedance calculation and verification
 - 4. Voltage and Current relationships of three phase star/delta circuits.

	5.	Measurement of three	-ph	ase	рои	ver	usin	g tv	vo v	vatt	met	er m	etho	d														
	6.	Load test on a single-phase Transformer. Speed load characteristic of a 3-phase Induction Motor.																										
	7.	Speed load characteristic of a 3-phase Induction Motor. Time characteristic of fuse																										
	8.	Time characteristic of	fuse	ć																								
		onstration Experiments																										
C)emo	Demonstration of fuse. MCB by creating a fault.																										
	1.	Demonstration of fuse	, M	CB b	оу с	reat	ina	a fa	ult.																			
	2.	Two-way and Three-w	av (Cont	trol	of la	amp	and	d fo	rma	tior	n of t	ruth	table														
	3.	Demonstration of cut	out	sec	tion	s of	ele	ctric	al r	nacl	nine	s (DC	2 ma	chine	es, Indu	ction												
		machines and Synchro	noi	us m	nach	ines	5).					,			,													
	4.	Demonstration of EV a	and	its (Com	nog	ent	s.																				
C	Cours	Irse Outcomes: At the end of the course student will be able to																										
		irse Oulcomes: At the end of the course student will be able to																										
	1	Analyze the DC Circuits using mesh & node methods to compute power and																										
		energy.																										
	2	energy. Analyze voltage & current phasor relationships in single phase & three phase AC																										
	2.	Analyze voltage & current phasor relationships in single phase & three phase AC																										
	3	Describe the fundamer	ntal	s of	elec	tror	nao	net	ism	co	nstri	ictio	n. or	erati	na prir	nciple												
	5.	of DC & Induction mot	or 1	o st	udv	ner	forr	nan	ice o	, co. char	acte	risti	יי, סף רק	, er a ti	ng pin	reipie												
	4	Apply principle of single-phase transformer to compute transformer efficiency																										
	5	Describe fundamental concepts in EV, converters, domestic wiring, protection and																										
	5.	safety schemes		cep		,	001	ive:	tert	<i>,</i> ac	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			<i>y</i> , pro		runu												
		survey schemes																										
C	Cours	e Outcomes Mapping	wit	h P	roa	ram	Ou	tco	me	s &	PSC)																
		<u> </u>			y		0.0					-																
			1	2	2	Λ	5	6	7	8	a	10	11	12	DC	0	1											
		ourse Outcomes	-	2		Т	5		ľ	0		10		12	1	2												
	↓ C	FF1001-2 1	2	2											-	2												
		EE1001-2.1	2	2																								
		EE1001 2.2	2	2																								
		EE1001 2.5	2	2																								
		EE1001-2.4	2	2																								
		LL1001-2.5	2	5								1.		2. M	lodium	2. ⊔ia	_ •h											
т	FXTE	30045.											LUW	2. 10	leuluii	1 5 . Th <u>e</u>	<u>,</u>											
-	1	Basic Electrical Engine	orin	αD	D	Kotl	nari	and	111	Na	ara	th T	ata N	AcGra	w Hill	2010												
	2	Basic Electrical Engine	orin	<u>g, D</u> a (w	<u>, i .</u> 	l ah	Ma	nua			-E D		ibod	Tovt	hook b	<u>2010.</u> v S K												
	۷.	Sabdey (Author) Janua	anv	9 (* 202	2	Lab	Ivia	nua	<i>י</i> ן ע		L I	esci	ibeu	TEAU		y 5.K.												
	2	Lecture Notes on Basi	c Fl	actri	<u>~</u>	Engi	noo	rinc		ona	rtm	ont o	f F Ru		ΛΔΝΛΙΤ	Nitto												
	5.			cui	car	Liigi	nee	iniç	, D	ера	un		La	∟, INIV	///////////////////////////////////////	mille.	3. Lecture Notes on Basic Electrical Engineering, Department of E&E, NMAMIT, Nitte.											
╞		(New version)																										
	Δ	(New version)	Ни	4. Electrical Technology, Hughes, Edward, Pearson Education Publications, 10 th Edition,												Edition	<u> </u>											
1	4.	(New version) Electrical Technology, 2010	Huợ	ghes	s, Ed	lwar	d, P	ear	son	Edu	icati	on P	ublic	atior	ns, 10 th	Editior	۱,											
	4.	(New version) Electrical Technology, 2010.	Hu	ghes	5, Ed	war	d, P	ears	SON Rh	Edu		on P	ublic	ation	ns, 10 th	Edition	٦,											
	4.	(New version) Electrical Technology, 2010. A. Chakarbarti, M.L. Sc	Hug oni a	ghes and	s, Ed	lwar Gup	d, P ota,	ears	son . Bh	Edu atna	icati agar	on P	ublic	atior ysten	ns, 10 th n engir	Editior neering	٦, ,											
	4. 5.	(New version) Electrical Technology, 2010. A. Chakarbarti, M.L. Sc Published by Gagan Ka	Huợ oni a anu	ghes and r, Dl	s, Ed P.V. hana	lwar Gup apat	d, P ota, : Rai	ears U.S	son . Bh d Co	Edu atna o Pv	icati agar rt. Lt	on P , Pov d,20:	ublic ver s 13	atior ysten	ns, 10 th n engir	Editior	٦, ,											
R	4. 5. REFER	(New version) Electrical Technology, 2010. A. Chakarbarti, M.L. Sc Published by Gagan Ka RENCE BOOKS:	Huợ oni a anu	ghes and r, Dl	s, Ed P.V. hana	Gup Gup	d, P ota, : Rai	ears	son . Bh d Co	Edu atna o Pv	agar t. Lt	on P , Pov d,20:	ublic ver s 13	ysten	n engir	Edition neering	ז, י,											
R	4. 5. REFER <u>1.</u>	(New version) Electrical Technology, 2010. A. Chakarbarti, M.L. Sc Published by Gagan Ka ENCE BOOKS: Electrical Engineering	Hug oni a anu Fun	ghes and r, Dl dam	s, Ed P.V. hana	Gup Gup apat	d, P ota, <u>Rai</u> <u>Vin</u>	ears	son . Bh d Co t De	Edu atna o Pv el To	agar t. Lt	on P ; Pov d,20 2nd I	ublic ver s 13 Editic	ysten	ns, 10 th n engir earson,	Editior neering 2015	٦, ,											

3.	Basic Electrical Engineering by A. Mittle and V. N. Mittle, Tata McGraw Hill, 2005												
4.	Basic Electrical Engineering, Dr. Debashisha Jena, Wiley India Private Limited, 2012												
5.	M.V. Deshpande, Elements of Power Station Design, 1 st edition, PHI learning, 2009.												
E Books / MOOCs/ NPTEL													
1.	http://nptel.ac.in/downloads/108105053/												
2.	http://www.textbooksonline.tn.nic.in/books/11/stdxi-voc-ema-em-1.pdf												
3.	Basic Electrical Technology Lectures by Dr. L Umanand Department of Power												
	Electronics Group, CEDT IISC Bangalore available at												
	http://www.nptelvideos.in/2012/11/basic-electrical-technology.html												

ELEMENTS OF MECHANICAL ENGINEERING												
Course Code:	ME1003-2	Course Type:	ESC									
Teaching Hours/Week (L: T: P):	3:0:0:0	Credits:	03									
Total Teaching Hours:	40	CIE + SEE Marks:	50+50									

Teaching Department: Mechanical Engineering

Course Objectives:

Students belonging to all branches of Engineering are made to learn certain fundamental topics related to mechanical engineering so that they will have a minimum understanding of mechanical systems, equipment and processes.

- 1. Understand the principles of energy sources, formation of steam and boilers.
- 2. Know the working principles of pumps, compressors, and turbines.
- 3. Understand basic principles of I. C. Engines, Refrigeration and Airconditioning.
- 4. Understand the basic principles of power transmission and metal joining processes.
- 5. Understand the different machining operations, automation, and robotics.

UNIT-I

09 Hours

Introduction to Mechanical Engineering (Overview only):

Role of Mechanical Engineering in Industries and Society- Emerging Trends and Technologies in different sectors such as Energy, Manufacturing, Automotive, Aerospace, and Marine sectors. Biomaterials, Biomedical applications, implants, Additive manufacturing.

Simple stress and strain

Introduction, stress, strain, Mechanical properties of materials, Linear elasticity, Hook's Law and Poisson's ratio, Stress-Strain relation - behavior in Tension for Mild steel and nonferrous metals. Modes of heat transfer, Laws of Thermodynamics, Steam Formation and its application.

Energy Sources and Power Plants:

Basic working principles of Hydel power plant, Thermal power plant, nuclear power plant, Solar power plant, Tidal power plant and Wind power plant.

06 Hours

Pumps and compressors: Introduction, Working principles of Centrifugal Pump and Single Stage Reciprocating Compressor.

Turbines: Working principles of Impulse and Reaction steam turbines (De Laval and Parson's turbines), Water turbines (Pelton wheel, Kaplan, and Francis turbines), Gas turbines (Open and Closed cycles).

UNIT-II

09 Hour

Introduction to IC Engines: Components and working principles, 4-Stroke Petrol and Diesel engines, Application of IC Engines, performance of IC engines (Simple numericals).

Insight into future mobility technology; Electric and Hybrid Vehicles, Components of Electric and Hybrid Vehicles. Advantages and disadvantages of Electric Vehicles (EVs) and Hybrid vehicles.

Introduction to Refrigeration and Air Conditioning: Principle of refrigeration, Refrigerants and their desirable properties. Working principle of VCR refrigeration system, working principle of room air conditioner & Applications of air Conditioners.

06 Hours

Mechanical Power Transmission:

Gear Drives: Types - spur, helical, bevel, worm and rack and pinion, velocity ratio, simple and compound gear trains (simple numerical problems)

Belt Drives: Introduction, Types of belt drives (Flat and V-Belt Drive), length of the belt and tensions ratio (simple numerical problems)

Joining Processes: Soldering, Brazing and Welding, Definitions, classification of welding process, Arc welding, Gas welding, (types of flames), TIG welding, MIG welding and Fusion welding.

UNIT-III

10 Hours

Machine Tool Operations:

Lathe: Principle of working of a center lathe, lathe operations: Turning, facing, knurling, thread cutting, taper turning by swivelling the compound rest,

Drilling Machine: Working of simple drilling machine, drilling operations: drilling, boring, reaming, tapping, counter sinking, counter boring,

Milling Machine: Working and types of milling machine, milling operations: plane milling, end milling and slot milling.

(No sketches of machine tools, sketches to be used only for explaining the operations).

Mechatronics and Automation: Meaning, Need for automation, Types - Fixed, Programmable & Flexible automation. Elements of automated systems, Open and Closed loop control systems. Example of a simple pneumatic/ hydraulic/ electro-pneumatic circuit with function of each component.

Robotics: Introduction, Robot Anatomy, Classification based on Robot Configuration, Applications of Robots.

N.

Course Outcomes: At the end of the course student will be able to																
1.	Explain the principles of er	nerg	y so	urce	es, fo	orma	atio	n of	ste	am a	and E	Inerg	gy so	urce	s. Ar	nd
	simple stress and strain.															
2.	Discuss the working princi	oles	of p	bum	ps, d	com	pres	ssor	s, ar	nd ti	urbin	es.				
3.	Explain basic principles of	[. C.	Eng	ines	, Fu	ture	mo	bilit	ty ar	nd R	efrig	erati	on, A	١ir		
	conditioning															
4.	Discuss the basic principles of power transmission and metal joining processes.															
5.	Explain the different machining operations, automation, and robotics.															
Course Outcomes Mapping with Program Outcomes & PSO																
	Program Outcomes→	1	2	3	4	5	6	7	8	9	10	11	12		PSO.	L I
\downarrow	Course Outcomes													1	2	3
	ME1003-2.1	3	1	-	-	-	1	-	1	-	1	-	-	-	-	-
	ME1003-2.2	3	1	-	-	-	-	-	-	-	1	_	-	-	-	_
	ME1003-2.3	3	2	-	-	-	-	-	-	-	1	-	-	-	-	-
	ME1003-2.4	3	2	-	-	-	-	-	-	1	1	_	-	-	-	_
	ME1003-2.5	3	2	-	-	-	-	-	1	1	1	-	-	-	-	-
											1: l	.ow	2: M	ediu	m 3:	: High
TEX	TBOOKS:															
1.	K.R.Gopalkrishna, "A text	Bo	ook	of	Ele	mer	its	of	Me	char	nical	Eng	jinee	ring'	′ Su	bhash
	Publishers, Bangalore, 2010)									- ud -					
2.	Mikell P. Groover, "Automa	ation	n, Pr	odu	ctio	n Sy	ster	ns 8	k CI	М",	3 rd E	ditio	n, PH	HI, 20)12	
3.	V.K. Manglik, "Elements of	Me	char	nical	Eng	ine	ering	g", F	PHI	Pub	licati	ons,	2013			
REF	ERENCE BOOKS				. =1					•		- •	•		ath r	
1.	S. Trymbaka Murthy, "A I	ext	BOO	K 01	t Ele	emei	nts	ot N	viec	nanı	cal E	ngin	ieerii	ng",	4" E	dition
•	2006, Universities Press (In	dia)	Pvt.	. Ltd	<u>, ну</u>	dera	abad	d.				·			"	
2.	к.Р. коу, S.K. Hajra Choudh	ury	, NII	'jnar	KO	y, ″E ,th ⊏	iem	ent	s of	Me	cnan	ical E	ngir	ieerii	ng",	viedia
~	Promoters & Publishers Pv		a, M	umt	5ai, /	E E		n,2			.					
5. E D	Pravin Kumar, Basic Mech	anic	ai Ei	ngin	ieeri	ng	20.	13 F	aitio	on, I	-ears	on.				
1 E B(boks / IVIUULS/ INPIEL	(C+	ر مار ر		oric	احد	NIat		J T	-+:+·	to of		o ct o	100 0 10		
⊥.	nups://niam.gov.in/iec.asp	(St	udy	mat	eria	I OT	ivat	iona	ai in:	stitu	ite of	DIS	aster	mar	iagei	nent)

	FUNDAMEN	TALS OF CYE	SER SECURITY											
Cou	rse Code:	IS1101-1	Course Type:	ETC										
Tea	ching Hours/Week (L: T: P: S):	3:0:0:0	Credits:	03										
Tota	al Teaching Hours:	40	CIE + SEE Marks:	50+50										
	Teaching Department	Information	Science & Engineering											
Cour	se Objectives:													
1.	Define the area of cybercrime a	and forensics.												
2.	Explain the motive and causes	for cybercrime,	detection, and handling.											
3.	Investigate Areas affected by cybercrime.													
4.	Illustrate tools used in cyber fo	rensic												
		UNIT-I		I										
Intro	duction to Cybercrime			15 Hours										
Cybe	rcrime - Definition and Origins o	f the Word, Cyt	percrime and Information	Security, Who										
are C	ybercriminals? Classifications of	Cyber Crimes. [T1: 1.1-1.5]											
Cybe	r offenses: How Criminals Plan	Them												
How	Criminals Plan the Attacks,	Social Engine	ering, Cyberstalking, C	ybercafe and										
Cybe	rcrimes, Botnets: The Fuel for Cyl	percrime, Attacl	Vector, Cloud Computin	g. [T1: 2.1-2.8]										
Mob	ile and Wireless Devices													
Intro	duction, Proliferation of Mobile	and Wireless D	evices, Trends in Mobility	y, Credit Card										
Frauc	ds in Mobile and Wireless Compu	iting Era, Securi	ty Challenges Posed by M	obile Devices,										
Regis	stry Settings for Mobile Devices, /	Authentication	Service Security, Attacks o	n Mobile/Cell										
Phon	nes, Mobile Devices: Security Im	plications for o	rganizations, Organizatio	nal Measures										
for H	landling Mobile, Organizational	Security Policie	s and Measures in Mobil	e Computing										
Era, L	_aptops. [11: 3.1-3.12]													
		UNIT-II												
Tools	s and methods used in Cybercr	ime		14 Hours										
Intro	duction, Proxy Servers and Anony	ymizers, Phishin	g, Password Cracking, Key	loggers and										
Spyw	ares, Virus and Worms, Trojan-h	orses and Back	doors, Steganography, Do	S and DDoS										
Attac	ks, SQL Injection, Buffer Overflow	v, Attacks on W	ireless Networks. [T1: 4.1	-4.12]										
Phish	ning and Identity Theft													
Intro	duction to Phishing, Identity The	ft (ID Theft). [T1	: 5.1-5.3]											
Unde	erstanding Computer Forensics	5 (111-111 5		11 Hours										
Intro	duction, Digital Forensics Science	, The Need for C	Computer Forensics, Cyber	rforensics and										
Digita	al Evidence, Forensics Analysis o	f E-Mail, Digital	Forensics Life Cycle, Cha	in of Custody										
Conc	ept, Network Forensics, Approac	hing a Comput	er Forensics Investigation	, Setting up a										
Com	puter Forensics Laboratory: Unde	erstanding the F	Requirements, Computer	Forensics and										
Stega	anography, Relevance of the OSI	7 Layer Model	to Computer Forensics,	Forensics and										
Socia	I Networking Sites: The Security/	Privacy Threats	, Computer Forensics fror	n Compliance										
Persp	pective, Challenges in Computer	r Forensics, Sp	ecial Tools and Techniqu	les, Forensics										
Audit	ting, Antitorensics. [T1: 7.1-7.19]													
<u> </u>	a Quite men At the and of the		will be able to											
	Se Outcomes: At the end of the	course student												
L.	Comprehend the Cybercrime a	nu its origin												

- 2. Analyse the cybercrimes in mobile and wireless devices
- **3.** Apply tools and methods used in Cyber crimes
- **4.** Analyse Phishing and ID Theft
- **5.** Comprehend Digital Forensics

Course Outcomes Mapping with Program Outcomes & PSO															
Program Outcomes→	1	2	2		-	C	-	0	_	10	1 1	10	PSO↓		
↓ Course Outcomes	1	2	3	4	5	6	/	ð	9	10	ΤT	12	1	2	3
IS1101-1.1	2	-	-	-	-	1	-	3	-	-	-	-	-	-	-
IS1101-1.2	-	3	-	1	-	2	-	-	2	-	-	-	-	-	-
IS1101-1.3	-	3	2	-	-	-	-	-	-	-	-	-	-	-	-
IS1101-1.4	2	-	-	-	-	2	-	-	-	-	-	-	-	-	-
IS1101-1.5	-	-	-	-	-	-	-	3	-	-	-	-	-	-	-
1: Low 2: Medium 3:	Higł	n													

TEXTBOOKS:

151

1. Sunit Belapure and Nina Godbole, "Cyber Security: Understanding Cyber Crimes, Computer Forensics and Legal Perspectives", Wiley India Pvt Ltd, ISBN: 978-81-265-21791, Publish Date 2013.

REFE	ERENCE BOOKS:
1	Thomas J. Mowbray, "Cybersecurity: Managing Systems, Conducting Testing, and
•	Investigating Intrusions", John Wiley & Sons, Inc, ISBN: 978 -1-118 -84965 -1, 2014.
2	James Graham, Ryan Olson, Rick Howard, "Cyber Security Essentials", CRC Press, 15-
•	Dec 2010. Anti- Hacker Tool Kit (Indian Edition) by Mike Shema, Publication Mc Graw-
	Hill.
2	Mr. Santosh BJ, Dr. K.V. S.S.S.S. Sairam, Mr. Shubham Kumar, Mr. Chandu Jagan Sekhar
5	M, "Information and Cyber Security", Scientific International Publishing House, ISBN-
•	978-93-5625-694-1.
	·

		IT SKILLS										
Cou	rse Code:	CS1002-1	Course Type:	AEC								
Теас	hing Hours/Week (L: T: P: S):	1:0:2	Credits:	02								
Tota	l Teaching Hours:	13+0+26	CIE + SEE Marks:	50+50								
	Teaching Department	: Computer Se	cience & Engineering									
Cours	se Objectives:											
1.	Demonstrate the basics of Android Programming.											
2.	2. Design and develop effective static web pages.											
3.	Describe the basic concepts of Cloud.											
4.	Analyse data using Microsoft E	xcel.										
5.	Create interactive gaming appl	ications through	n Scratch coding.									
			•									
-	Sugges	ted List of Expe	eriments									
1.	Design and create simple gar	ne using MIT-s	cratch/Code.org									
	• Design and create catch gan	ne using MIT scra	atch coding.									
	• Design and create a Jumping	g game using MI	Γ scratch coding.									
	• Design and create pong gam	ne using MIT scra	tch coding.									
2.	Design and create simple and	lroid applicatio	ons using MIT app inve	ntor.								
	• Create an application to dist	olav a "Hello. Wo	orld!" message on screen.	Application								
	should also display the curre	ent time and date.										
	• Implement an application to	change the backg	round colour and image of	the screen.								
	• Create a simple calculator	which can perfe	orm basic arithmetic oper	ations like								
	addition, subtraction, multip	olication, or divisi	on depending upon the use	er input.								
	• Build a bouncing ball app or	make a ball boun	ce around on the screen (on	a Canvas).								
	• Write an application to sen	d SMS using Mľ	Г app inventor and also ir	nplement a								
	text-to-speech application b	y passing text fro	m the user.									
3.	HTML and CSS											
	HTML: Basic Tags - paragraph	headings Hype	rlinks image tables HTI	ML forms								
4.	HTML Lists: Unordered Lists. O	rdered Lists and	Definition list.									
5.	Create a form for a survey on	the topic of vo	our choice.Include a var	iety of answer								
	options, including text fields, o	dropdowns, rad	io buttons, checkboxes,	and a submit								
	button. Use CSS to improve the	e look of your fo	orm.									
6.	Design and create web page for	or a travel book	/recipe book with more	than 3 pages,								
	add table to list places /recipes	iframe, hyperli	nk)									
7.	Create user account and dem	onstrate use of	f Google drive, Google	docs, Google								
	Form.											
	• Upload and share any file	es and folders i	n google drive using di	fferent file								
	permissions.											
	• Creation of google forms f	for applications s	uch as a registration form	ı, feedback								
	form,quiz etc.		-									
	• Creation of google docs wit	h citation from w	ebsites.									
8.	Data Analysis using Microsof	t Excel.										

- Basic Excel Formulas: Concatenate(),Len(),Days(), Net workdays(), Count(),
 Counta(), If(), Iferror(), Find(), Search(),Left(), Right() and Rank().
- Conditional Math: Learn to use SUMIF(), SUMIFS(), AVERAGE(), AVERAGEIF(), AVERAGEIFS(), COUNTIF(), COUNTIFS() to add cells only when certain conditions are met.
- VLOOKUP with Approximate or Exact Match: Learn to use VLOOKUP to find an approximate or exact match and return the corresponding value, work with INDEX, MATCH, and HLOOKUP as alternatives to the VLOOKUP function.
- Conditional Formatting: Apply the different rules to the values of the cell in sheets to carry out the analysis of data.
- Optimizing Data: Sorting, Filtering, Excel PivotTables
- Data Validation: Use Data Validation to ensure that users enter valid data in input cells, o restrict users' ability to enter invalid data in cells by providing them with a drop-down list of valid options.
- Data Visualization in Excel-Charts by generating various types of charts.

Course Outcomes: At the end of the course student will be able to

- **1.** Develop Gaming Applications using Scratch Coding.
- **2.** Understand the basics of Android Programming.
- **3.** Design attractive and effective Static Web pages.
- **4.** Analyse the basic concepts of Cloud.
- **5.** Utilize Microsoft Excel to conduct data analysis.

Course Outcomes Mapping with Program Outcomes & PSO

				<u> </u>												
Program Outcomes→	1	2	2	4	F	<i>с</i>	٦	0	0	10	11	10	PSO↓			
↓ Course Outcomes	L	2	3	4	5	6	/	ð	9	10	ΤT	12	1	2	3]
CS1002-1.1	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-]
CS1002-1.2	3	1	-	-	-	-	-	-	-	-	-	-	-	-	-]
CS1002-1.3	3	2	-	-	-	-	-	-	-	-	-	-	-	-	-]
CS1002-1.4	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-]
CS1002-1.5	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
1. Low 2. Medium 3.	Hiał	1														

TEXTBOOKS:

- **1.** Suman M, Chinmaya Dash, R Sreenivas Rao "Digital Fluency", Himalaya Publishing House Pvt. Ltd., 2021.
- 2. Melwyn Amrithraj, Prem Sagar, Pradeep, "Digital Fluency", Himalaya Publishing House Pvt. Ltd., 2021.
- **3.** R G Saha, Dr. Kantesha S, Niha Asif, "Digital Fluency", Himalaya Publishing House Pvt. Ltd., 2021.

REFERENCE BOOKS:

1 Randy Connolly and Ricardo Hoar, "Fundamentals of Web Development", 1st Edition, Pearson Education India.

E Books / MOOCs/ NPTEL

1 https://www.sas.com/en_in/insights/analytics/machine-learning.html

2	https://www.aig.com/IoT
3	14 Types of Phishing Attacks That IT Administrators Should Watch For (syscloud.com)
4	6 Common Phishing Attacks and How to Protect Against Them (tripwire.com)
5	Important Applications of Cloud Computing (jigsawacademy.com)
	Phishing Attack Prevention: How to Identify & Avoid Phishing Scams in 2021 Digital
6	GuardianIT Security FAQ (udel.edu)

BIOLOGY FOR ENGINEERS													
Course Code:	BT1651-1	Course Type:	AEC										
Teaching Hours/Week (L: T: I	P): 1:0:0	Credits:	01										
Total Teaching Hours:	15+0+0	CIE + SEE Marks:	50+50										
Teaching Department: Biotechnology													
Course Objectives:													
1. To learn the types of cells	, biomolecules, and li	fe processes											
2. To know the applications inspired by nature in various streams													
3. To be updated application of biology in real life scenarios.													

Introd	duction For Biology for Engir	neer	rs										0	5 Hours
Why B	Biology for Engineers? Cell Type	es &	Pro	pert	ies:	Pro	kary	ote	s - B	acte	eria, ^v	Virus	es ar	nd Fungi,
Eukaryotes - Plant and Animal Cells, Biomolecules, Life Processes at Cellular Level.														
			U	NIT	-II									
Appli	cations Inspired by Nature												0	5 Hours
Composites in Construction, Termite Mound architecture, Counter current heat exchangers,														
Desig	n of aeroplane, helicopter and	d su	ıbm	arine	e, Ir	for	mat	ion	The	ory	and	Biol	ogy,	SONAR,
Medic	al Devices.													
			U	NIT	-III									
Real L	ife Scenarios												0	5 Hours
Recen	t scenarios in Environment, Ag	iricu	Iltur	e an	d M	ledi	cal ⁻	Tech	nol	ogy	•			
_														
Cours	e Outcomes: At the end of the	<u>e co</u>	ourse	e stu	ider	it w		e ab	le to	C	•	•		
1.	Ascertain the importance of B		gy i	.o b	e ap	plie	d ir	var	lous	s en	gine	ering	stre	ams
2.	Interpret the basics of cell and	<u>d lite</u>	e pro	oces	ses									
3.	Draw inspiration nature in design of machinery and construction													
4.	Analyze the significance of mimicry of nature in design of electrical, electronic, and													
	medical devices													
5. Judge knowledge on recent advances in application of biology to Environm											nment,			
	Agriculture and Medical Technology													
Courc	o Outcomos Monning with P)roa		<u>م</u>	itco		- 2,		`					
Cours	Brogram Outcomos		an			me		FJ						
		1	2	3	4	5	6	7	8	9	10	11	12	
	T1651-1 1	2	_	_	<u> </u>	_	_	_	_	1	_	_	1	
	BT1651-1.2	2	_	_	_	_		_	_	1		_	 1	
	BT1651-1 3	3	2	_	_	-	_	2	-	1		_	 1	
	BT1651-1 4	3	3	_	-	_	<u> </u>	2	_	1		_	 1	
	BT1651-1 5	3	3	_	-	_	-	2	_	1	_	_	1	
			<u> </u>					-	1	- -	w 2:	Mec	 lium	3: Hiah
TEXT	BOOKS:								_	•				0. mg.
1.	Suraishkumar, G. K., "Biology	for	Eng	inee	ers",	Oxf	ord	Uni	ivers	sitv	Press	s Ind	ia, 20)19.
	Chakraborty, T, Akthar N., "	Biol	oav	for	Enc	aine	ers"	, PH	HI le	earn	ina,	Prin	t Boo	ok ISBN:
2.	9789391818142 eBook ISBN:	978	939	181	819 ⁻	, 7					<u>,</u>			
REFEF	RENCE BOOKS:													
1.	Rao C.V., "Biology for Engine	ers"	, 202	21.										
2.	Raven, P. H. and Johnson, G.	B. "E	Biolo	ogy"	, 4tł	ו Ed	litio	n, W	/CB	pub	lishe	ers, 2	010.	
2	Ethier, R. S. and Simmons, C. A	۹., "I	ntrc	duc	tory	' bio	me	char	nics	- Fro	om ce	ells to	o org	anisms",
٦.	Cambridge University Press, 2	2012	2.											

	ENVIRONMENTAL STUDIES												
Со	ourse Code:	CV1002-1	Course Type	MNC									
Те	aching Hours/Week (L: T: P)	1:0:0	Credits	00									
То	tal Teaching Hours	hing Hours 15+0+0 CIE + SEE Marks											
Teaching Department: Civil Engineering													
Course Objectives:													
1.	1. To raise consciousness about environmental conditions and to imbibe environmentally												
	appropriate behaviour.												
2.	To equip the engineering undergoing practice in their daily life and in t	graduates to ide the engineering	ntify the significance of practices.	environmental									
3.	To make them conscious of und	erstanding the e	environment where we	live and act up									
	on.	_											
		UNIT-I											
				03 Hours									

Environment

ſ

Definition, significance of environmental studies- current scenario, local, regional, national and global problems

Components of environment: atmosphere, hydrosphere, lithosphere, and biosphere. Layers of atmosphere and its role.

Parts of Earth- lithosphere and its role; hydrological cycle

Eco system - Definition, ecology and environment, ecosystem components: biotic and abiotic components; ecological balance; elements of ecosystem: biotic, abiotic; producers, consumers and decomposers.

Habitat, range of life, Biome, balanced eco- system, food chain, food web and ecological pyramids

Human activities - The Anthropogenic System- human activities like growing food, building shelter and other activities for economy and social security. Soil erosion, water logging - definition. Organic farming- definition.

Natural resources

03 Hours

Resources - Natural resources, water, minerals, Fossil fuels and energy

Water resources - Global water resources: distribution, uses of water for irrigation, domestic and industrial purposes in India.

Quality aspects - Water quality parameters, drinking water standards for turbidity, pH value, total hardness, iron, fluoride, lead, arsenic, nitrate

Mineral resources- Metallic minerals, non-metallic minerals Fossil fuels - Coal and petroleum

Forest Wealth - Components of the forest, key benefits of forests. Deforestationenvironmental effects of deforestation and remedies Sustainable development- definition, objectives

Material cycles - Carbon, Nitrogen, and Sulphur cycles.

UNIT-II

Environmental pollution: Definition, harmful effects related to public 03 Hours health

Water pollution:

Definition, types, and sources – agriculture (pesticides and fertilizers), industry, domestic and mining, harmful effects, water borne and water induced diseases- definition, common diseases and their causatives, Fluoride problem in drinking water

Land pollution:

Definition, sources_agriculture, housing, industry, mining, transportation. Types of municipal Solid waste Disposal (Sanitary landfills, composting, incineration (in brief) and effects

Air Pollution:

Definition, types, and sources: industry, mining, agriculture, transportation, and effects

Noise pollution:

Definition, sources, mining, industries, rail-roads, aviation, effects and control measures
Energy
02 Hours

Different types of energy-

Non-renewable energy; fossil fuels- coal, oil, and natural gas- brief description only. Nuclear energy- nuclear power plants,

Renewable energy: solar energy- Photovoltaic systems for street and domestic lighting, solar water heating-brief description only

Wind energy- definition, merits and demerits, Hydro power- definition, merits, and demerits. Biomass energy- definition, sources of bioenergy, biogas, biofuels, India's position in renewable energy

Hydrogen as an alternative future source of energy- brief scope, fuel cells.

UNIT-III

_												
Cur	rent environmental issues of importance	04 Hours										
Рор	ulation growth- Definition, growth rate, effects, remedies Urbanization -	Definition,										
envi	environmental impacts and remedies Global warming and climate change-											
Con	Concept of greenhouse effect, sources of greenhouse gases, effects, and remedial measures											
of g	reenhouse gases											
Acio	d rain: Definition, causes and effects, control measures. Ozone Depletion:	Definition,										
caus	causes, effects, and control measures.											
Envi	ironmental Impact Assessment- EIA definition, objectives, and benefits of EIA.											
Cou	Irse Outcomes: At the end of the course student will be able to											
1.	Identify the significance of environmental practice in their daily life an	nd in the										
	Engineering practices.											
2.	Create awareness about environmental conditions.											
3.	Follow environmentally appropriate behaviour.											
4.	Understand the importance of their surroundings.											

5. Understand Current environmental issues of importance

Course Outcomes Mapping with Program Outcomes & PSO

Program Outcomes→	1	2	3	4	5	6	7	8	9	10	11	12	l	PSO↓		
↓ Course Outcomes													1	2	3	
CV1002-1.1	-	2	-	-	-	-	-	2	-	-	-	-	1	-	-	
CV1002-1.2	-	-	-	1	-	-	-	-	-	1	-	-	1	-	-	
CV1002-1.3	1	-	-		1	-	-	-	-	-	-	-	1	-	-	
CV1002-1.4	1	-	-	1	-	-	-	-	-	-	-	-	1	-	-	
CV1002-1.5	-	-	3	-	-	-	-	-	-	-	3	-	1	-	-	

1: Low 2: Medium 3: High

TEXTBOOKS:

151

- 1. Benny Joseph, "Environmental Studies", Tata McGraw Hill Publ. Co., New Delhi, 2005.
- 2. Rajagopalan, R., "Environmental Studies: From Crisis to Cure", Oxford University Press, London, 2005.

REFERENCE BOOKS:

- 1. Balasubramanya, N and Chatwal, Gurdeep R., "Environmental Studies", Himalaya Publishing House, Mumbai, 2007.
- 2. Barucha, E., "Environmental Studies", University Grants Commission, New Delhi, 2004.
- 3. Bhatia, S. C., "Environmental Chemistry", CBS Publishers, New Delhi, 2005.
- 4. De, A.K. and De, A. K., "Environmental Studies", 2006.
- 5. Keller, Edward A., "Environmental Geology", CBS Publishers and Distributors, Delhi, 1985.

ENGINEERING VISUALIZATION											
Course Code:	ME1004-1	Course Type:	ESC								
Teaching Hours/Week (L: T: P):	0:0:2	Credits:	01								
Total Teaching Hours:	26	CIE + SEE Marks:	50+50								

Teaching Department: Mechanical Engineering

Course Objectives:

	1.	To impart and inculcate understanding of the concept of orthographic projection and
		projection of plane surfaces and solids in different position in first angle projection
		system.
ſ	-	

2. To develop the lateral surfaces of solid objects and to draw the isometric projection of simple solids.

UNIT-I

02 Hours

Chapter 1: Orthographic Projection: Introduction to orthographic projection, Quadrants, principal planes, principal views, Difference between First angle and third angle projection, Dimensioning, Conventions employed for drawing.

06 Hours

Chapter 2: Projection of plane surface: Triangle, Square, Rectangle, Pentagon, Hexagon and Circle in simple position (Resting on HP with inclination to HP and VP, true length with true inclination only)

UNIT-II

Chapter 3: Projection of Solids: Prisms, Pyramids, Cones and Cylinders in simple position (Resting on HP with inclination to HP and VP, true length with true inclination only) Orthographic projection of simple machine components using their isometric projection.

UNIT-III

Chapter 4: Development of Lateral surfaces of solids: Right regular Prisms, Pyramids, Cylinders and cones (with single section plane)

06 Hours

06 Hours

Chapter 5: Isometric projection: Isometric scale, Isometric dimensions, to draw Isometric views of simple solids and machine components using their orthographic projections.

Course Outcomes: At the end of the course student will be able to

- 1. Draw the orthographic projections of a plane for a given position using Solid Edge software.
- 2. Draw the orthographic projections of a solids and simple machine parts for a given position using Solid Edge software.
- 3. Draw the development of lateral surfaces of standard solid objects. Draw isometric projection of solid objects individually or in combination using Solid Edge software.

Course Outcomes Mapping with Program Outcomes & PSO

Program Outcomes→	1	2	3	4	5	6	7	8	9	10	11	12	PSC	D↓
↓ Course Outcomes													1	2
ME1004-1.1	3	1	1	-	-	-	-	1	1	1	-	2	2	1
ME1004-1.2	3	1	I	1	-	-	I	I	1	1	-	2	2	1
ME1004-1.3	3	1	-	-	-	-	-	-	1	1	_	2	2	1

1: Low 2: Medium 3: High

TEXTBOOKS:

151

N. D. Bhat & V. M. Panchal, Pramod R. Ingle, "Engineering Drawing", 53rd Edition, Charotar
 Publishing House, Gujarat, 2014.

K. R. Gopalakrishna, "Engineering Drawing", Subhas publishers, Bangalore, 32nd Edition, 2012.

REFERENCE BOOKS

1.	"A Primer on computer aided Engineering Drawing", VTU, Belgaum, 8thedition, 2011.
2.	Shah, "Engineering Drawing and Computer Graphics", Pearson, 2010.
3.	Agarwal & Agarwal, "Engineering Graphics", TMH, Second edition, 2013.
4.	P. S. Gill, "A Text book of Engineering Graphics and Drafting", 11 th Edition, S. K. Kataria & sons, New Delhi, 2009.

	B.Tech. (EE): Scheme of Teaching and Examinations 2023-27 Outcome Based Education (OBE) and Choice Based Credit System (CBCS) (Effective from the academic year 2023 - 24) GROUP - 2														
	I/II SEMESTER Teaching														
				t.	hou	rs/W	eek		Exam	inatio	n				
SI No.	Course and Course code		Course and Course code Course code		Theory Lecture	Tutorial	Practical/ Drawing	ıration in hours	CIE	SEE	Total Marks	Credits			
			Differential Equations and Londons		L	Т	Р	d							
1	BSC	MA1003-1	Transforms	MAT	3	0	0	3	50	50	100	3			
2	BSC	PH1006-1	Semiconductor Physics and Photonics	PHY	3	0	2	3	50	50	100	4			
3	ESC	EC1001-1	Basic Electronics	EC	3	0	0	3	50	50	100	3			
4	PLC	CS1004-1	Introduction to C Programming	EC	3	0	0	3	50	50	100	3			
5	ESC	EC1002-1	Applied Digital Logic Design	EC	2	0	2	3	50	50	100	3			
6	HSMC	HU1001-1	Technical English	ΗU	1	0	2	3	50	50	100	2			
7	HSMC	HU1002-1	Constitution of India	ΗU	1	0	0	1	50	0	50	0			
8	BSC	MA1006-1	Teaching Mathematics with MATLAB	MAT	0	0	2	1	50	0	50	1			
				Total	16	0	8	20	400	350	700	19			
Note	•														

BSC: Basic Science Course, **ESC**: Engineering Science Course, **HSMC**: Humanity and Social Science & Management Courses, **AEC** –Ability Enhancement Courses, **MNC**: Mandatory Non credited course **UM**: University Mandatory

Man	Mandatory Internship-I*													
1.	INT	UC1001-1	Internship – I	Mandatory Intra Institutional Internship of duration (80 - 90 Hours) to be completed during I & II Semesters. *The grades will be included in the IV semester grade card (Refer 11.5.2 for details)	100		100	2						

rse Code: ching Hours/Week (L: T: P: S): al Teaching Hours: Teaching D rse Objectives: This course will enable the stude differential equations partial di	MA1003 - 1 3:0:0:0 40+0+0 epartment: Math	Course Type: Credits: CIE + SEE Marks: nematics	BSC 03 50+50							
ching Hours/Week (L: T: P: S): al Teaching Hours: Teaching D rse Objectives: This course will enable the stude differential equations partial di	3:0:0:0 40+0+0 epartment: Math	Credits: CIE + SEE Marks: nematics	03 50+50							
al Teaching Hours: Teaching D se Objectives: This course will enable the stude	40+0+0 epartment: Math	CIE + SEE Marks: iematics	50+50							
Teaching D se Objectives: This course will enable the stude	epartment: Math	nematics								
This course will enable the stude										
This course will enable the stude										
1. This course will enable the students to master the basic tools of Laplace transforms, differential equations, partial differential equations and become skilled for solving problems in science and engineering.										
	UNIT-I									
Order Ordinary Differential Equ	ations		08 Hours							
order and higher degree) equa tions solvable for x, general and si ications: Rate of growth or decay	tions solvable foingular solutions c , conduction of he	r p, equations solvable of Clairaut's equations. eat.	e for y and							
nary Differential Equations Of H	igher Order		08 Hours							
lems. ications: Oscillations of spring.	ear differential eq									
	UNIT-II									
ace Transforms			08 Hours							
nitions, transforms of elementary	functions, transf	orms of derivatives and	d integrals-							
erties. Periodic functions, unit step	functions and un	it impulse functions.	5							
rse Laplace Transforms		i	08 Hours							
se Transforms and properties, co ications to engineering problems. ications: Signals and systems, Cont	onvolution theore	em, initial & final value	e theorems.							
	UNI I -111									
al Differential Equations	Les aris E		08 Hours							
and higher order partial differentia	l equations. Forma	ation of partial differentia	al equations							
	Order Ordinary Differential Equ , linear and Bernoulli's differential curves. Applications to simple en order and higher degree) equa tions solvable for x, general and si cations: Rate of growth or decay hary Differential Equations Of H and higher order linear differential se differential operator, method of variable coefficients- Cauchy's line ems. cations: Oscillations of spring. itions , transforms itions, transforms of elementary erties. Periodic functions, unit step ise Laplace Transforms se Transforms and properties, co cations to engineering problems. cations: Signals and systems, Com al Differential Equations	UNIT-I Order Ordinary Differential Equations , linear and Bernoulli's differential equations, orthor curves. Applications to simple engineering problem order and higher degree) equations solvable for tions solvable for x, general and singular solutions of cations: Rate of growth or decay, conduction of he hary Differential Equations Of Higher Order and and higher order linear differential equation wit se differential operator, method of variation of para variable coefficients- Cauchy's linear differential eque ems. cations: Oscillations of spring. UNIT-II fee Transforms itions, transforms of elementary functions, transforer se Transforms and properties, convolution theore cations to engineering problems. cations: Signals and systems, Control systems, LR, C UNIT-III al Differential Equations	UNIT-I Order Ordinary Differential Equations , linear and Bernoulli's differential equations, orthogonal trajectories of ca curves. Applications to simple engineering problems. Non-linear differential order and higher degree) equations solvable for p, equations solvable tions solvable for x, general and singular solutions of Clairaut's equations. cations: Rate of growth or decay, conduction of heat. hary Differential Equations Of Higher Order nd and higher order linear differential equation with constant coefficients, see differential operator, method of variation of parameters, linear differential eartial coefficients- Cauchy's linear differential equation. Applications to e ems. cations: Oscillations of spring. UNIT-II tece Transforms itions, transforms of elementary functions, transforms of derivatives and erties. Periodic functions, unit step functions and unit impulse functions. rse Laplace Transforms se Transforms and properties, convolution theorem, initial & final value cations to engineering problems. cations: Signals and systems, Control systems, LR, CR and LCR circuits. UNIT-III al Differential Equations UNIT-III al Differential Equations							

Cours	se Outcomes: At the end of the course student will be able to
1.	Solve first order ordinary differential equations.
2.	Solve linear ordinary differential equations of higher order.
3.	Understand the concept of Laplace Transform and apply it to solve engineering
	problems.
4.	Make use of Laplace transform method to solve linear ordinary differential equations
	with constant coefficients
5.	Understand the derivation of one dimensional heat and wave equations and solve
	partial differential equations.

Course Outcomes Mapping with Program Outcomes & PSO

Program Outcomes→	1	2	3	4	5	6	7	8	9	10	11	12	PS	O↓
↓ Course Outcomes													1	2
MA1003 - 1.1	3	2	-	-	-	-	-	-	-	-	-	-	-	-
MA1003 - 1.2	3	2	-	-	-	-	-	-	-	-	-	-	-	-
MA1003 - 1.3	2	2	-	-	-	-	-	-	-	-	-	-	-	-
MA1003 - 1.4	2	2	-	-	-	-	-	-	-	-	-	-	-	-
MA1003 - 1.5	3	2	-	-	-	-	-	-	-	-	-	-	-	-

1: Low 2: Medium 3: High

TEXTBOOKS:

- **1.** Erwin Kreyszig, "Advanced Engineering Mathematics", John Wiley and Sons, 10th Edition (Reprint), 2016.
- **2.** B.S. Grewal, "Higher Engineering Mathematics", Khanna Publications, 43rd Edition, 2015.

REFERENCE BOOKS:

1.	T. Veerarajan, "Engineering Mathematics", McGraw-Hill, New Delhi, 2008.
2.	B. V. Ramana, "Higher Engineering Mathematics", Tata Mc Graw –Hill, New Delhi,2010.
3.	N.P. Bali and M.Goyal, "A text book of Engineering Mathematics", Laxmi Publications, 2010.
4.	W.E. Boyce and R.C. DiPrima, "Elementary Differential Equations and Boundary Value Problems", Wiley India, 2009.
5.	E.A. Coddington, "An Introduction to Ordinary Differential Equations", Prentice Hall India, 1995.
6.	G.F. Simmons and S.G. Krantz, "Differential Equations", McGraw Hill, 2007.
E Boo	ks / MOOCs/ NPTEL
1.	http://nptel.ac.in/courses/111106100
2.	http://nptel.ac.in/courses/111106139

3. http://nptel.ac.in/courses/111107111

SEMICONDUCTOR PHYSICS AND PHOTONICS

Course Code:	PH1006-1	Course Type:	IPCC
Teaching Hours/Week (L:T:P: S):	3:0:2:0	Credits:	04
Total Teaching Hours:	40+26	CIE + SEE Marks:	50+50

Teaching Department: Physics

Course Objectives:

1.	To understand the concepts of wave mechanics					
2.	To study the concepts of quantum free electron theory.					
3.	To understand the fundamentals of semiconductors.					
4.	To study the concept of dielectrics.					
5.	To understand the principles of lasers and optical fibers					
	UNIT-I					

Wave Mechanics

Introduction, Matter waves and de Broglie Hypothesis, de Broglie wavelength and derivation of expression by analogy, Phase Velocity and Group Velocity, Wave Function, Physical significance of a wave function (Born Interpretation), Heisenberg's Uncertainty Principle, Schrodinger wave equation (time dependent and time independent), Eigen functions and Eigen Values, Particle in one dimensional infinite potential well, waveforms and probabilities. Numerical Problems.

Quantum Free electron theory

Classical free electron theory and its failures, Quantum Free Electron Theory of Metals -Assumptions, Fermi - Dirac Statistics, Fermi level, Fermi-energy, Fermi factor, Variation of Fermi Factor with Temperature and Energy, Numerical problems.

UNIT-II

Semiconductors

Introduction to semiconductors- intrinsic and extrinsic semiconductors - carrier generation, Direct and indirect band gap semiconductors.Fermi level in Intrinsic & Extrinsic Semiconductorand its behavior with temperature, Expression for concentration of electrons in conduction band & holes concentration in valance band (mention of the expression), Electrical conductivity of a semiconductor (derivation), Effect of temperature on conductivity of intrinsic and extrinsic semiconductors, Hall effect - theory with derivation for Hall coefficient, carrier concentration, andmobility, applications, Numerical problems.

p-n junction: Junction formation, Unbiased and biased p-n junction, Devices: LED, Photodiode and solar cell.

Dielectric materials

7 Hours

Dielectrics, Dipoles, Polar and non-polar dielectrics, Dielectric constant, Electric polarization, Polarizability, Electrical Polarization Mechanisms,Electric susceptibility (relation between P, χ and E - no derivation), Internal fields in solids(theory based on one dimensional atomic array), Clausius-Mossotti equation (Derivation), Temperature dependence of polarization, , Frequency dependence of polarization, Dielectric loss (derivation), Dielectric breakdown, Solid, Liquid and Gaseous dielectrics, Application of dielectrics in transformers, Capacitors and Electrical Insulation.

Ferroelectric materials and Piezoelectric materials, properties and applications, Numerical Problems.

UNIT-III

Photonics: Lasers

Introduction to lasers, Characteristics of LASER, Interaction of radiation with matter, Einstein's coefficients, Expression for Energy Density and its significance. Requisites of a Laser System. Conditions for Laser action. Principle, Construction and Working of Nd:YAG and Semiconductor laser. Application of Lasers in Defence (Laser range finder), Barcode scanner and Laser Printer. Numerical Problems.

Photonics: Optical Fibers

Introduction to optical fibers, Principle of optical fibers (TIR), Propagation mechanism in optical fibers - Angle of Acceptance and Numerical Aperture (N.A.), Expression for NA, Fractional Index Change, Modes of Propagation, Number of Modes and V Number, Types of Optical Fibers, Attenuation in optical fibers, Attenuation Spectrum - Optical Windows. Discussion of Block Diagram of Point-to-Point Communication, Intensity based Fiber Optic Displacement Sensor, Merits and Demerits, Numerical problems.

05 Hours

05 Hours

8 Hours

05 Hours

10 Hours

	List of Experiments (Any Ten experiments)																
1.	Wavelength of LASE	Rus	sing	Diff	ract	ion	Gra	ting	J.								
2.	Numerical aperture	of tł	ne g	iver	n Op	tica	l Fil	oer.									
3.	Energy gap of semic	Energy gap of semiconductor by Four Probe Method															
4.	Dielectric constant b	Dielectric constant by charging and discharging of a capacitor.															
5.	Hall effect	,						5	5		1						
6.	Determination of Fe	rmi	Ene	rgy	of C	opp	er.										-
7.	Ferroelectric phase t	ran	sitio	n in	Bar	ium	tita	nat	е								-
8.	Photo-Diode charac	teris	stics														-
9.	Solar cell characteris	tics															
10.	Photo electric effect	– D	eter	min	atio	n o	fthe	e wo	ork f	unc	tion	of th	e ma	ateria	al of	the	-
	emitter of a photoce	ell.															
11.	LED characteristics a	nd	dete	ermi	nati	on c	of P	lanc	k's (Con	stant	usir	ng LE	Ds.			
Cour	se Outcomes: At the en	d o	f the	e coi	urse	stu	den	ıt wi	ll be	e ab	le to						
1.	Comprehend various	prc	per	ties	of	sub	-at	omi	ср	artio	cles	on t	he l	basis	of	wave	į
	mechanics.	-	-						-								
2.	Elucidate the concepts	Elucidate the concepts of quantum free electron theory.															
3.	Explain and analyze the	e pr	ope	rties	s of	sem	ico	ndu	ctor	S.							
4.	Describe and apply the	e co	nce	ots d	of di	elec	tric	s.									
5.	Understand the princip	ole, v	worl	king	and	d ap	plic	atic	ons c	of la	sers	& op	otical	fibe	rs.		
	· · · · ·																
Cour	se Outcomes Mapping	wit	h P	rogi	ram	Ou	tco	mes	s &	PSC)						
	Program Outcomes→	1	2	3	4	5	6	7	8	9	10	11	12		PSO	Ļ	
↓ C	Course Outcomes																
	PH1006-1.1	3	3	-	-	-	-	-	-	-	-	-	-	-	-	-	l
	PH1006-1.2	3	3	-	-	-	-	-	-	-	-	-	-	-	-	-	
	PH1006-1.3	3	3	-	-	-	-	-	-	-	-	-	-	-	-	-	
	PH1006-1.4	3	3	-	-	-	-	-	-	-	-	-	-	-	-	-	
	PH1006-1.5	3	3	-	-	-	-	-	-	-	-	-	-	-	-	-	
	1: Low 2: Medium 3	: Hi	igh									•					
			•														
TEXT	BOOKS:																
1.	Arthur Beiser, "Conce	epts	of	Mo	derr	n Ph	ysio	cs",	Tata	аM	cGra	w Hi	ill Ed	ucat	ion	Privat	e
	Limited, Special India	n Ec	ditio	n, 20	009.												
2.	B. G. Streetmann, "S	olid	Sta	ite I	Elect	ron	ic d	devi	ces"	, 6 ^{tl}	י edi	tion,	Pre	ntice	Hal	l Ind	ia
	Learning Private Limit	ed.															
3.	A. Ghatak, "Optics", T	ata	McG	Graw	/ Hil	l Pu	b., 5	5 th e	ditio	on, 2	2012	•					-
REFE	RENCE BOOKS:																
1.	KEFEKENCE BOOKS: 1 A. I. Dakkar, "Electrical Engineering Materials", Dreptice Hell India Dub, New Dalki																
	A. J. Dekker, "Electric	al E	ngir	neer	ing	Mat	eria	als",	Pre	ntic	e Ha	ll Ind	dia P	ub.,	New	Delh	۱İ,
	A. J. Dekker, "Electric Reprint 2011.	al E	ngir	neer	ing	Mat	eria	als",	Pre	ntic	e Ha	ıll Ind	dia P	ub.,	New	Delh	ni,
2.	A. J. Dekker, "Electric Reprint 2011. W. A. Wahab, "Solid	al E Sta	ngir te P	neer Physi	ing ics,	Mat Stru	eria	als", re a	Pre ind	ntic Pro	e Ha perti	es o	dia P f Ma	ub., teria	New	Delh	i, a
2.	A. J. Dekker, "Electric Reprint 2011. W. A. Wahab, "Solid Publishing House Pvt	al E Sta . Ltc	ngir te P I., N	heer Physi ew [ing ics, Delh	Mat Stru i.	eria Ictu	als", re a	Pre ind	ntic Pro	e Ha perti	es o [.]	dia P f Ma	ub., teria	New ls", l	Delh Naros	i, a

 M. Ali. Omar, "Elements of Solid State Physics: Principles and Applications", Pearson Publishers.

5.	S O Kasap, "Principles of electronic materials and device's", 4 th edition, McGraw Hill,									
	2017.									
6.	M N Avadhanulu, P G Kshirsagar and TVS Arun Murthy, "A Textbook of Engineering									
	Physics", S. Chand and Company Limited, New Delhi.									
7.	Kenneth Krane "Modern Physics", Wiley International, 3 rd Edition, 2012.									
8.	B. P. Pal, "Fundamentals of Fibre Optics in Telecommunication & Sensor Systems",									
	New Age International Publishers									
E Boo	oks / MOOCs/ NPTEL/ Web links									
1.	Laser: https://www.britannica.com/technology/laser,k									
2.	Laser: https://nptel.ac.in/courses/115/102/115102124/									
3.	Quantum mechanics: https://nptel.ac.in/courses/115/104/115104096/									
4.	Physics: http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html									
5.	Numerical Aperture of fiber: https://bop-iitk.vlabs.ac.in/exp/numerical-aperture-									
	measurement									
Activ	ity Based Learning (Suggested Activities in Class)/ Practical Based learning									
1.	http://nptel.ac.in									
2.	https://swayam.gov.in									
3.	https://www.vlab.co.in/participating-institute-amrita-vishwa-vidyapeetham									
4.	https://vlab.amrita.edu/index.php?sub=1&brch=189∼=343&cnt=1									
5.	https://virtuallabs.merlot.org/vl_physics.html									
6.	https://phet.colorado.edu									
7.	https://www.myphysicslab.com									

BASIC ELECTRONICS								
Course Code:	EC1001-1	Course Type:	ESC					
Teaching Hours/Week (L: T: P):	3:0:0	Credits:	03					
Total Teaching Hours:	40+0+0	CIE + SEE Marks:	50+50					

Teaching Department: Electronics & Communication Engineering

	Course Objectives:										
	1. To familiarize the student with Semiconductor devices like Diodes, Transistors and their										
		applications									
2. To analyze the working of simple electronic circuits involving Op-amps, 555 Timer and											
		Linear Regulator ICs.									
	3. To understand the fundamentals of Modern communication system.										
	4.	4. To introduce the fundamentals of Embedded Systems									
		UNIT-I									
	Dio	des and their Applications	07 Hours								
	Sem	iconductor Diode, Diode Equivalent circuits, Load Line analysis, Half Wave Re	ectifier, Full								
	wave Bridge Rectifier, capacitor, and choke filter circuit (only qualitative approach). Zener										
	Dioc	le and its use in Voltage Regulation									
	Trar	nsistors and their Applications	09 Hours								

Bipolar Junction Transistor: Construction and operation, Common Emitter and Common Base Characteristics, DC load line analysis, RC coupled amplifier (frequency response excluded), BJT as a switch, BJT circuit to switch ON/OFF an LED

Field Effect Transistor: Construction and Characteristics of JFET, Transfer Characteristics, Enhancement mode MOSFETs, CMOS Inverter.

UNIT-II

Op-Amp & Linear IC Applications

Introduction, Op-Amp Specifications, Differential & Common-Mode operation, Op-Amp applications: Inverting/Non-Inverting Amplifier, Summing, Integrator, Differentiator, Comparator. 555 Timer IC in Astable mode. 78XX series IC Voltage Regulators.

Feedback and Oscillator Circuits

Feedback– Principle and advantages of negative feedback, Voltage series feedback amplifier. Concept of positive feedback, Op-Amp Oscillators – RC phase shift, Hartley and Colpitts's Oscillator

UNIT-III

Fundamentals of Communication and Embedded Systems 08 Hours

Modern communication system scheme (Block scheme), Information source, Input Transducers, Transmitter, Channels, Receivers, Noise, Fundamentals of Cellular communication.

Embedded system definition, Embedded System v/s General Computing Systems, Classification of Embedded systems, Elements of Embedded systems, Core of Embedded systems, Microprocessor v/s Microcontroller, RISC v/s CISC, Hardware v/s Von Neumann Architecture, Sensors and Actuators with examples

Course Outcomes: At the end of the course student will be able to

Explain the operation of Rectifiers; Design a rectifier circuit, given the specification for 1. output Voltage, PIV, and ripple factor; Design a Zener voltage regulator for the given specification of output voltage and Power; 2. Explain the construction and operation of Bipolar transistor in CE or CB Mode; Explain the use of BJT in Amplification as well as switching operations; Explain the construction and operation of JFET or MOSFET; Explain the operation of a CMOS Inverter; 3. List the ideal and practical parameters for an Op-Amp; Define Op-amp Specifications; Explain the use of Op-Amp in Amplification, Summing, Integration, Differentiation and comparison; Design an Astable Multivibrator, using 555 Timer IC, for the given frequency and duty cycle; List the advantages and disadvantage of Negative Feedback; Explain the impact of 4. negative feedback on Amplifier gain, Input and Output Impedance for a Series Voltage Negative feedback; Explain the operation of Op-Amp based RC Phase-shift, Hartley, and Colpitts Oscillator Explain the scheme of a Modern Communication System; List the differences between 5. a general computing system and Embedded System; Describe the differences between Harvard and Von-Neuman, RISC and CISC system architectures **Course Outcomes Mapping with Program Outcomes & PSO Program Outcomes**→ 1 2 3 4 5 6 7 8 9 10 11 12 **Course Outcomes**

3 - - -

EC1001-1.1

_

- - - - -

_

_

_

11 Hours

05 Hours

N

	EC1001-1.2	3	-	-	-	-	-	-	-	-	-	-	-	
	EC1001-1.3	3	-	-	-	-	-	-	-	-	-	-	-	
	EC1001-1.4	3	-	-	-	-	-	-	-	-	-	-	-	
	EC1001-1.5	3	-	-	-	-	-	-	-	-	-	-	-	
	1: Low 2: Medium 3: Hig	gh												
TE	XTBOOKS:													
1.	Robert L. Boylestad, Louis Nash	nelsky	, "El	ectr	onic	: De	vice	s ar	nd C	ircu	it The	eory"	', 11 ^{tł}	¹ Edition,

- PHI, 2016 Simon Haykin, "Introduction to Analog and Digital Communications", Wiley Publishers, 2.
- 2nd Edition, 2019
- Theodore Rappaport, "Wireless Communications: Principles and Practice", Pearson, 2nd 3. Edition, 2016
- Shibu K V, "Introduction to Embedded Systems", TATA Mc Graw Hill Edu., 2nd Edition, 4. 2016

E Books / MOOCs/ NPTEL

- 1. https://nptel.ac.in/courses/117107095
- 2. https://nptel.ac.in/courses/117103063
- 3. <u>https://www.coursera.org/learn/electronics?#syllabus</u>
- **4.** https://www.coursera.org/learn/diode-pn-junction-metal-semiconductorcontact?specialization=semiconductor-devices#syllabus
- https://www.coursera.org/learn/transistor-field-effect-transistor-bipolar-junction-5. transistor?specialization=semiconductor-devices

INTRODUCTION TO C PROGRAMMING									
Cou	rse Code:	CS1004-1	Course Type:	PLC					
Tea	ching Hours/Week (L: T: P: S):	2:0:2	Credits:	03					
Tota	al Teaching Hours:	26+0+26	CIE + SEE Marks:	50+50					
•	Teaching Department	: Computer S	cience & Engineering						
Cour	se Objectives:								
1.	1. Make students learn the basics of C programming language including the basic data types, Operators and Evaluating expressions in C.								
2.	Apply the concepts of decise demonstrate its usage using si	sion making ar mple programs.	nd looping in problem s	olving to					
3.	Apply the concepts of Array problem solving along with pa defined functions.	s, User-defined rameter passing	functions and code reus and returning with the he	ability in lp of user					
4.	Demonstrate the usage of Strir	ngs andStructure	es						
5.	Demonstrate the usage of F understanding the concepts wi	Pointers, and F ith simple exam	ile handling that are esso oles.	ential for					
-		UNIT-I							
Intro	duction To C Programming La	nguage		10 Hours					
Basic conve	C DataTypes, operators, Ope ersion.	rator preceden	ce, Arithmetic expressions	and type					
Decis	sion Making and Branching:								
Decis	ion making with if statement,	Nesting of if	else statements, ternary op tique statements	perator, the					
Decis	sion Making and Looping:		tinde statements.,						
The v	while statement, the dowhile st	atement, the for	statement, Jumps in Loops						
		UNIT-II							
Arra	ys			10 Hours					
Array	vs (1-D, 2-D) Initialization and De	claration.		I					
User	-Defined Functions								
Argu Com	ment Passing – call by value, mand line arguments	call by referend	e, Category of Functions.	Managing					
Exam Matr	ples: Linear Search, Binary Sear	ch, Bubble sort,	Selection Sort, Trace and	Transpose,					
Strin	gs								
Decla	aring and Initializing strings, Strir	ng manipulation	functions.						
		UNIT-III							
Struc	tures			06 Hours					
Struc	tures and Unions: Usage and nes	sting, Array of St	ructures						
Pointe	ers and File Handling:								
Access	sing of variables using Pointers, a	array of pointers							

Basic file operations: Open, Close, Read, Write, Append and concatenate

	Suggested List of Experiments PART A											
		PAI	RT A									
9.	Write a C program to	o find the roots of	a quadratic equation ax ² +	-bx+c=0								
10.	Write a C program t	to find the sum of	all the digits and occurre	ence of a digit in the								
	number.											
11.	Write a C program	to find the GCD a	nd LCM of given two nur	mbers using Euclid's								
	method.											
12.	Write a C program to	o print the prime r	numbers in a given range.									
13.	Write a C program	to find if a giver	n string is a palindrome	or not using string								
	manipulation functions.											
14.	4. Write a C program to input N real numbers in 1-D array. Compute mean, variance and											
	Standard Deviation.											
	[Mean= sum/	'N, Variance = Σ (X	i-mean) 2 /N, STD Deviatio	on= √variance.l								
15.	Write a C program t	o read N integers	into an array A and find t	the sum of elements								
	using pointers.											
16.	using pointers. 6. Write a C program to copy contents of one file to another file.											
		PA	RT B									
1.	• Write a C program to perform a binary search for a given key integer in a single											
	dimensional array of	f numbers in ascen	ding order and report suc	cess or failure in the								
	form of a suitable m	essage.										
2.	Write a C program	to input N integei	r numbers into a single d	limension array, sort								
	them in to ascending	g order using selec	tion sort technique, and th	hen to print both the								
	given array and the	sorted array with s	uitable headings.									
3.	Write a C program	to transpose a ma	trix of order M x N and f	find the trace of the								
	resultant matrix.											
4.	Write a C program ι	ising functions to i	read two matrices A (M x	N) and B (P x Q) and								
	to compute the proc	duct of A and B if t	he matrices are compatibl	le for multiplication.								
5.	Write a C program ι	using functions rea	dmat(), rowsum (), colsu	m (), totsum () and								
	printmat() to read t	he values into a tw	vo dimensional array A, fir	nd the sum of all the								
	elements of a row, s	um of all the elem	ents of a column, find the	e total sum of all the								
	elements of the two	dimensional array	A and print the results.									
6.	Write a C program	to perform a line	ar search for a given key	/ integer in a single								
	dimensional array of	r numbers and rep	ort success or failure in th	he form of a suitable								
7	Message using funct	CIONS.	anting like pages yesister	number merter in C								
1.	write a C program	to enter the inform	nation like name, register									
	subjects of N students into an array of structures, and find the average & display											
	grade based on average for each student.											
		A	Cuede]								
	Average Grade											
		80-100	Distinction									
		60-79	First Class									
		40-59	Second Class									
				J								

		<	40				Fa	ail									
8.	Write a C program, t	o ir	nple	eme	nt a	buł	ble	sor	t teo	chni	aue i	Isina	fun	ction	to s	ort a	iven
	N integers in ascend	dina	ı∕ de	esce	ndii	na c	orde	r as	ner	use	r's n	refer	ence	د etion		on g	
9.	Write a program to	den	non	stra	te ti	ne u	se c	of p	oint	ers a	and f	iles.					
	_		-								-						
Cou	rse Outcomes: At the	end	l of	the	cou	rse	stuc	lent	wil	l be	able	to					
1.	Describe the basic	s o	f C	an	d t	he	pro	cess	s of	pr	obler	n-so	lving	g as	pect	s usi	ng
	algorithmic solution	for	a gi	ven	pro	bler	n. A	ppl	y th	e kn	owle	dge	of e>	kpres	sion	solvi	ng
	to evaluate simple ex	kpre	essic	ons a	and	Inpl	ut/o	utp	ut si	tater	nent	s to c	deve	lop a		rogra	m.
Z .	constructs for a given problem.																
3	Apply the knowledge	e o	$\frac{100}{100}$	ieni. Ide i	<u>е-п</u>	Isah	ilitv	na	ram	eter	nase	sina	and	retu	ninc	ı valı	
	to develop a maintainable C program using these concepts including arrays and																
	functions.																
4.	Identify and describe the use of strings in a C program.																
5.	Develop the C program using structures in C																
Co	urse Outcomes Mapping with Program Outcomes & PSO																
P	Program Outcomes \rightarrow 1 2 2 4 5 6 7 8 0 10 11 12 PSO \downarrow																
↓ Co	Durse Outcomes 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3																
	CS1004-1.1 3 2 -																
	CS1004-1.2	2	3	-	-	-	-	-	-	-	-	-	-	-	3	-	
	CS1004-1.3	2	3	-	-	-	-	-	-	-	-	-	-	-	3	-	
	CS1004-1.4	2	2	3	-	-	-	-	-	-	-	-	-	-	3	-	_
	CS1004-1.5	2	3	-	-	-	-	-	-	-	-	-	-	-	3	-]
	1: LOW 2: Medium 3:	HIG	jn														
TEX	TBOOKS:																
1.	E. Balaguruswamy, "Pro	ogra	amn	ning	in /	ANS	I C″	, Ta	ta N	1cGr	aw ⊦	lill, 3	rd Ec	lition	, 200)4.	
2. .	Jacqueline A. Jones & I	Keit	hΗ	arro	w, "	C Pi	rogr	ram	min	g wi	th Pr	oble	m So	olving	g", P	earsc	on,
REFE	ERENCE BOOKS:	/ 1	~	_			,	A N 14		<i>"</i> D						100	
L	Rernignan & Ritchie,	ine tor		Prog	gran ta a	nmii nd (ng (SI C)	, Pr		е на	all; Z		Ition	1, 199	<u>ک.</u> + ا + ط
2	Publishers 1st Edition	ner v 20	COI 106	icep	ns a	na	_ Pr	ogra	amn	ning	, ine	w Ag	ge in	terna	ation	arev	l Lla
3	Yashwant Kanetkar, "L	_et	Us (C", 5	th Ec	ditio	n, B	PB	Pub	licat	ions,	New	v De	lhi, 2	004.		
E Bo	oks / MOOCs/ NPTEL	-					,							,			
1	http://www.lysator.liu	.se/	c/b	wk-t	uto	r.htr	nl#	intro	odu	ctior	า						
2	http://www.acm.uiuc.	edu	/we	bmo	onk	eys/	boc	ok/c	_gui	ide/							
2	C programming Tute	oria	l b	уM	ark	Bu	rger	rs h	ttp:	//ma	arkbu	irges	s.or	g/CT	utor	ial/C-	Tut-
3	4.02.pdf																
4	http://nptel.ac.in/cou	rses	/10	610	508	5/4		14 5									
5	https://www.lynda.co	m/C	-tra	ainir	ig-ti	utor	ials,	/124	19-0	.htn	าไ						

	APPLIED D	IGITAL LOGI	C DESIGN									
Co	urse Code:	EC1002-1	Course Type:	ESC								
Те	aching Hours/Week (L: T: P)	2:0:2	Credits:	03								
То	tal Teaching Hours:	25+0+26	CIE + SEE Marks:	50+50								
	Teaching Department: Elec	ctronics & Cor	nmunication Engineering									
Cou	rse Objectives:											
1. To understand the basics of Number Systems, Logic Gates and Boolean Functions.												
2.	2. To understand simplification of the Boolean Equations using Boolean Algebra,											
	Karnaugh Maps and QM method.											
3.	3. To design combinational Logic Circuits like Adders/Subtractors, Binary Comparators,											
	Decoders, Encoders, and Multiple>	kers.										
4.	4. To understand the operation of Flip-Flops, Master-Slave Flip-Flops and Conversion of											
	Flip Flops.											
5.	To design Shift Registers and Cou	nters.										
		UNIT-I										

Fundamentals of Digital Design

10 Hours

Difference between Analog and Digital Signals, Number Systems: Decimal, Binary, Octal and Hexadecimal. Binary Addition and Subtraction, Digital Logic Gates, Boolean Algebra, Boolean Functions: Canonical Forms, Completely and Incompletely Specified Functions, Simplification of Boolean Functions using Boolean Algebra, Karnaugh Map and Quine-McCluskey Method, Realization of Boolean functions using Basic Gates and Universal Gates.

UNIT-II

10 Hours

Introduction to Combinational Logic Circuits, Half/Full Adders/Subtractors, Parallel Adders/Subtractors, Binary Comparators, Decoders, Encoders, Multiplexers. Basic Bistable Element, SR Flip-Flop, D Flip Flop, JK Flip Flop, T Flip Flop, Master Slave JK Flip

Flop, Characteristic Equations, Conversion of Flip Flops.

Combinational Logic and Sequential Logic Circuits

Applications of Flip Flops

05 Hours

Design of Shift Register using D- flip flop, Design of Counters: Asynchronous counters using T-flip flop, Synchronous Counters using D-flip flop and T Flip Flop.

UNIT-III

Suggested List of Experiments

- Introduction to Digital Circuit Simulation Software.
 Introduction to Basic gates, Universal gates.
- 3. Realization of Logic Circuits using Universal gates.
- 4. Realization of Combinational Logic Circuits.
- 5. Realization of Sequential Logic Circuits.

Course Outcomes: At the end of the course student will be able to

- 1. Compare Analog & Digital Signals; Convert the number from one numbering system to another; Analyze Boolean functions.
- 2. Simplify the logic expressions using Boolean Algebra or K-Map or QM Method; Realize the logic expressions using Basic/Universal Gates.
- 3. Analyze and Design different Combinational Logic Circuits such as Adders, Subtractors, Binary Comparators, Decoders, Encoders and Multiplexers.
- 4. Describe the operation of Flip Flops, Mater-Slave Flip Flops and Conversion of Flip Flops.
- 5. Make use of Flip Flops to design Shift Registers and Synchronous/Asynchronous Counters.

Course Outcomes Mapping with Program Outcomes & PSO

	_											
Program Outcomes→	1	2	3	4	5	6	7	8	9	10	11	12
↓ Course Outcomes												
EC1002-1.1	3	-	-	-	-	-	-	-	-	-	-	-
EC1002-1.2	3	1	1	-	3	-	-	-	3	1	-	-
EC1002-1.3	3	2	1	-	3	-	-	-	3	1	-	-
EC1002-1.4	3	-	-	-	3	-	-	-	3	1	-	-
EC1002-1.5	3	1	1	-	3	-	-	-	3	1	-	-
<u></u>												

1: Low 2: Medium 3: High

TEXTBOOKS:

- 1. Morris Mano, "Digital Design", Prentice Hall of India, 3rd Edition.
- 2. Donald D. Givone, "Digital Principles and Design", McGraw Hill, 2002.

REFERENCE BOOKS:

- 1. John M Yarbrough, "Digital Logic Applications and Design", Thomson Learning, 2001.
- 2. D. P. Kothari and J. S Dhillon, "Digital Circuits and Design", Pearson, 2016.
- 3. Charles H Roth, "Fundamentals of Logic Design", Cengage Learning.

E Books / MOOCs/ NPTEL

1. https://nptel.ac.in/courses/117106086

TECHNICAL ENGLISH										
Course Code	HU1001-1	Course Type	HSMC							
Teaching Hours/Week (L: T:P)	1:0:2	Credits	02							
Total Teaching Hours	13+0+26	CIE + SEE Marks	50+50							

	Теас	hing	g De	epar	tme	ent:	Hu	mar	nitie	S						
Со	Course Objectives:															
	1 Identify the nuances of Phonetics Intonation and enhance pronunciation skills															
1.	Identify the nuances of Pho	net	ICS, I	nto	natio	on a	nd	enha	ance	e pro	onun	ciatio	on sk	cills	<u>,</u>	_
2.	Understand Technical Com	mur	nicat	lon	alor	ng w	/ith	the	barr	iers	and	appl	icati	on o	ſ	
	effective Interpersonal Com	nmu	nica	tion	Ski											
3. Enhance basic English grammar and essentials of language skills																
4.	Improve sentence structure	wit	h th	e he	elp c	of co	hes	ive	devi	ces						
5.	Develop spoken and writing	g sk	ills													
				U	TIN	- I										
Ph	onetics & Pronunciation													8 H	Hour	S
Inti	oduction to Phonetics; Word	Stre	ess, l	Rhyt	hm,	and	d Int	ona	tion	; W	eak F	orm	s and	b		
Introduction to Phonetics; word Stress, Rhythm, and Intonation; Weak Forms and Strong Forms, Role of IPA in past tense and plural forms of words. Awareness of Different												nt				
Accent																
Со	nmunication Skills													8 H	lour	S
Introduction to Communication, Greeting and Introducing. Making Requests, asking for and												nd				
Giv	Introduction to Communication, Greeting and Introducing, Making Requests, asking for and Giving Permission, Offering Help, Understanding Telephone Communication, Handling Calls											ls,				
ask	asking for and Giving Information, Telephone Etiquette															
	<u> </u>		ł			•										
				UN	IIT ·	- II										
Lar	guage Skills													15	Hou	rs
Bas	ic English Grammar, Ability to	o ide	entif	fy, A	naly	ze,	Inte	rpre	et ar	nd D	escr	ibe tl	he ci	ritica	l idea	as,
val	ues, and themes through liter	arv	worl	ks.	,	,		1								
		-)	-	-												
				UN	IT -	III										
Wr	iting Skills			_										8 H	lour	'S
Par	agraph writing, Refutations, L	inke	ers, 1	Γνρε	s of	Let	ters									
	<u> </u>		-1	71												
C		£ + -					. !	a a	-							
Co	irse Outcomes: At the end o	ττη	e co	urse	stu	aen	τwi	ii de	e abi	eτc)					
1			1	• • •		· · · ·		-l -				1				-
1.	Identify the nuances of ph	ione	etics	, int	ona	tion	an	a pi	ronu	Incla	ation	to a	appro	eciat	e an	a
	Incorporate Received Pront	Incl		n				• •								-
2.	Interpret and assess nuar	nces	; ot	ora	al c	omr	mun	icat	ion	SKI	ls a	nd t	he r	on-	verba	al
	communication for professi	iona	lus	age	••											
3.	Identify, interpret and dese	crib	e th	e cr	itica	l id	eas,	val	ues,	an	d the	emes	to	appr	eciat	e
	literary pieces for its langua	ige a	and	SOC	al ir	iter	oret	atio	ns		<u> </u>					_
4.	Implement English vocabul	ary	at co	omn	nano	d an	d la	ngu	age	pro	oficie	ncy i	n pe	rsona	al an	d
	professional life															
5.	5. Develop effective writing skills for incorporating them in different forms of writing															
C οι	irse Outcomes Mapping with I	Prog	Iram	n Ou	tcor	nes	& P:	SO				1				
_	Program Outcomes→	1	2	3	4	5	6	7	8	9	10	11	12	PS	0 ↓	
	Course Outcomes	4	-						~		2		-	1	2	
	HU1001-1.1	1	1	-	-	-	-	-	2	-	2	-	3	-	-	
	HU1001-1.2	2	-	-	-	-	2	-	-	-	3	-	5	-	-	
	HU1001-1.3	-	2	-	-	-	2	3	2	-	3	-	3	-	-	
	HU1001-1.4	-		-	- 1	-		- 1	-		L 2	- 1	L 2	-	-	l

2

_

_

_

-

-

2

-

2

1

2

2

_

_

HU1001-1.5

|--|

TEXT	BOOK:
1.	Subhashini, "A Textbook of English Language & Communication Skills", R Victor et al.
REFEF	RENCE MATERIALS:
1.	English Pronunciation Dictionary, Daniel Jones A Remedial English Grammar for Foreign
	Students, Woods
2.	Sanjay Kumar, "Communication Skills", Oxford University Press.
3.	Exercises in Spoken English Part I - CIEFL, Hyderabad, Oxford University Press.
4.	Exercises in Spoken English Part II - CIEFL, Hyderabad, Oxford University Press.
5.	Exercises in Spoken English Part III - CIEFL, Hyderabad, Oxford University Press.
6.	On Writing Well, William Zinsser
7.	Practical English Usage, Swan, Oxford University Press.
8.	Study Writing, Liz-Hamp Lyons, Cambridge University Press
E Res	ources
1.	https://www.macmillandictionary.com/dictionary/british/

	CONSTITUTION OF INDIA												
Со	Course Code HU1002-1 Course Type HSMC												
Teaching Hours/Week (L: T:P)1:0:0Credits01Teaching Hours/Week (L: T:P)15:0:0CTE + CTE Market50:10													
Total Teaching Hours15+0+0CIE + SEE Marks50+50													
	Teaching Department: Humanities												
Cou	Course Objectives:												
1.	1. Inculcate Social and Political consciousness of the Indian Polity.												
2.	2. Understand their Obligations, Responsibilities, Privileges and Rights, Duties, and the												
	Role that they have to play in d	eciding the Adm	ninistrative Machinery of	f the country.									
3.	Develop National and Patriotic	Spirit.											

4.	Understand the nature a	and	ch	arac	ter	of	rela	atio	ns l	oetv	veen	uni	on a	and	state
5.	5. Divulge the students about the statutory institutions and policies.														
UNIT - I															
Evo	Evolution of the Indian Constitution 6 Hours														
1909	1909 Act, 1919 Act, 1935 Govt of India Act, Constituent Assembly: Composition and														
Fund	ctions, Basic structure of I	ndia	an (Cons	stitu	tion	, Fι	unda	ame	ntal	fea	tures	of	the	Indian
Con	stitution, Salient Features of	Ind	ian (Con	stitu	itior	١								
				U	TIV	- II									
Stru	Structure of Government 6 Hours														
Unic	on Government: Legislature;	Exe	cutiv	/e-P	resi	den	t, Pr	ime	Mir	niste	er, Co	ounci	lofN	Ainis	ters;
Judi	ciary, Judicial Review, and	act	tivisr	n. S	State	e G	ove	nm	ent:	Exe	ecuti	ve: C	Gove	rnor,	Chief
Min	ister, Council of Ministers.						_								
Loca	Local Government: Panchayat Raj Institutions, Urban Governance														
C+-+				UN	411 -	- 111								2	laura
Stat	tions Floction Commission		f Ind	1:-	Nat	iona				iah			iccio		
Elec	Elections - Election Commission of India, National Human Rights Commission, National														
COII	Commission for Women.														
Cou	Course Outcomes: At the and of the course student will be able to														
Cou	ise outcomes. At the end o			Juis		JUCI	IC VV		e ab		5				
1	Analyze the legalities and re	elat	ed is	SUP	s of	dra	ftind	n ac	lont	ion	and	enfo	rcem	ent (of the
	Indian Constitution as a f	fund	dam	enta	al la	wc	of th	ne r	natio	n a	and t	the r	orovi	sion	and
	privileges of Indian Citizens	shin)	Circo					latic				51011	51011	
2.	Understand and judicious	lv i	lse	the	fun	dam	nent	al r	iaht	s, fi	unda	men	tal d	uties	and
	privileges envisaged in the	con	stitu	utior	n pro	opa	gati	ng s	ocia	ıl ha	rmoi	ny ar	nd eq	ualit	y and
	respecting the rights and li	ber	ties	of o	ther	peq.) algc					,	'		,
3.	Contribute in protecting a	nd	pres	ervi	ng t	the	sov	erei	gnty	' an	d int	egrit	y of	India	a and
	have a compassion to all li	ving	g cre	eatu	res,	uph	old	sen	se c	of br	othe	rhoc	d ne	ss ai	mong
	all citizens of the nation an	d p	rom	ote	pea	ce a	nd l	narn	non	y					5
4.	Respect the Constitutional	Ins	titu	ion	s an	d al	l no	ble	ide	als o	cheri	shed	duri	ng I	ndian
	struggle for freedom													-	
5.	Develop a Spirit of belongi	ngn	iess	to t	he c	oun	try.								
Cou	rse Outcomes Mapping wi	th F	Prog	ran	1 Oı	utco	me	s &	PSC)					
	Program Outcomes \rightarrow	1	2	3	4	5	6	7	8	9	10	11	12	PS	O↓
↓	Course Outcomes													1	2
	HU1002-1.1	-	-	_	-	-	-	-	3	-	-	1	1	-	_
	HU1002-1.2	-	-	-	-	-	-	-	2	-	-	1	1	-	-
	HU1002-1.3	-	-	2	-	-	-	1	2	-	_	1	1	-	-
	HU1002-1.4	-	-		-	-	-	-	1	-	_	-	-	-	-
	HU1002-1.5	-	-	1	-	-	-	-	3	-	-	1	1	-	-
1: L	ow 2: Medium 3: High														

RE	FERENCE MATERIALS:
1.	Durga Das Basu, "Introduction to the Constitution of India", Twentieth Edition, LexisNexis
	Butterworths Wadhwa, Nagpur, Haryana, India, Reprint 2011.
2.	M.V. Pylee, "Introduction to Constitution of India", Fourth Revised Edition, Vikas
	Publishing House Pvt. Ltd., New Delhi, 2005.
3.	Brij Kishore Sharma , "Introduction to Constitution of India", Second Edition, Prentice
	Hall of India Pvt. Ltd., New Delhi, 2004.
4.	B. R. Venkatesh and Merunandan K. B., "An Introduction to Constitution of India and
	Professional Ethics", Merugu Publications, Bangalore; Second Edition, 2007.
EF	Resources
1.	http://nptel.ac.in/courses/109104032/
2.	https://pothi.com/pothi/book/ebook-ministry-law-and-justice-constitution-india
3.	iasplanner.blogspot.com/2010/11/free-ebook-download-constitution-of.html
4.	www.iasabhiyan.com
_	

5. Samvidhaan, Documentary by Prasaar Bharathi

HOLISTIC COMPONENTS

151

HUMANITIES

Holistic education is not only about teaching the basic subjects, but it is more about redefining the way a student should be taught. The purpose of holistic language teaching is the development of the learners' ability to handle both their language oral skills as well as maximizing their life skills. The department contributes to educational life and work spaces that are creative and meaningful. Multidisciplinary and holistic learning is an ancient method used in Indian education system as well as the other parts of the world. This is the reason that such type of education system was advocated by scholars like Kautilya, Banabhatta, Plato, and Aristotle among many others. Holistic approach is essentially a student centered strategy rather than a teacher centered one.

Holistic education through courses allied to Humanities is created within the inclusive connections of social and human experience. A curriculum built around such stages is considered holistic if they involve the practices that integrates language acquisition and fills multiple cognitive demands in interlocking activities that spiral learning. Through the applied learning style of a person--mind, body and spirit students will learn more effectively the nuances of language, responsibilities towards social fabrics and ethics.

The approach strives to make a learner construct his own understanding of the text he/she interacts with and converses with others according his understanding. Intensive experiential and group sessions, a co-created learning ambience and hands-on engagement through reallife cases, field trips and internships to make learning exciting, rigorous and transformative. As a part of the holistic approach and its philosophy, a student is educated beyond core academics providing him/her virtuous and holistic education. This helps the students to discover their individuality and comprehend the significance of life purposefully, creatively, and morally in a complex world. Krishnamurti writes If the unity of life and the oneness of its purpose could be clearly taught to the young, how much brighter would be our hopes for the future! (Krishnamurti, J. 1974).

MATHEMATICS

INDIAN MATHEMATICIANS

It is essential to know about the ancient, medieval and modern time Indian mathematicians and their contribution to Science and Mathematics. Ancient Indian mathematicians have contributed immensely to the field of mathematics. The invention of zero is

attributed to Indians and this contribution outweighs all other made by any other nation since it is the basis of the decimal number system, without which no advancement in mathematics would have been possible. The number system used today was invented by Indians and it is still called Indo-Arabic numerals because Indians invented them and the Arab merchants took them to the western world.

Here we are introducing some of the important Indian mathematicians from ancient times. **Aryabhata:** (500 A. D.) - Studied at the University of <u>Nalanda</u>, which was considered as a

great centre of learning. Aryabhata was a <u>great Indian</u> <u>mathematician</u>. He gave the value of " π " as 3.1416, claiming for the 1st time, that it was approximation. Aryabhata also dealt with other aspects of mathematics and Astronomical calculations, namely <u>Geometry</u>, <u>Mensuration</u>, <u>Square root</u>, <u>Cube root</u>, <u>Progression</u> and <u>Celestial sphere</u>. He presented a method to solve an intermediate equation of certain type that are important in astronomy and computer science.

Bhaskara: (1100 A. D.) - was a great <u>Mathematician</u> and <u>Astrologer</u>. He was the first Mathematician to declare confidently that any term divided by ZERO is infinity and

the sum of any term and infinity is infinity. His concept of "Tatkalikagati", which means instantaneous motion, used by astronomers to determine the motion of the planet

accurately brought credit to him. He explained the solutions of quadratic and cubic equations. He stated the Rolle's theorems in analysis, the mean value theorem.

Srinivas Ramanujan was an Indian Mathematician who made significant contributions to mathematical analysis, Number theory and continued fractions. He made many important contributions in the field of mathematics with his wonderful and unique knowledge. That's why his birthday is celebrated as Mathematics Day.

PHYSICS

The ancient world had considered Physical Sciences, Chemical Sciences, Earth Sciences, Biological Sciences, Mathematical Sciences etc. as study of nature, which were all studied under the banner of Philosophy. Even today, the philosophers are studying Metaphysics

which connects physical attributes to mind. Physics is a branch of science which deals with the study of matter and energy. The Physical Science was a matter of interest for all the civilizations including Vedic era of India dating back to over 3000 years. The physical science in ancient India was majorly restricted to Astronomy and Astrology. It was Kanada(600 B.C.) who presented holistic approach of physics, by blending science, philosophy and religion through 'Vaisesika Sutra'. Their essence is the atomic theory of matter. He gave the name 'Paramanu' (Atom), to be the indivisible entity of matter. The idea of chemical change was also put forward by Kanada. Bharadwaja is credited with teaching missile technology. Aryabhata(500 A.D.) was a great astronomer. He was the first to state that the earth is round and it rotates on its own axis, creating day and night. He declared that the moon is dark and shines only because of sunlight. Aryabhatta contributed greatly to the field of science particularly astronomy. Varaha mihira (500 A.D.) studied astrology and astronomy and declared that the earth was spherical. He also proposed that the moon and planets are lustrous not because of their own light but due to sunlight. Bhaskra (1100 A. D.) was a great scientist his concept of "Tatkalikagati", which means instantaneous motion, used by astronomers to determine the motion of the planet accurately brought credit to him. Brahmagupta(598 A.D.) calculated the instantaneous motion of a planet, gave correct equations for parallax, and some information related to the computation of eclipses and is widely regarded as one of the most accomplished of the ancient Indian astronomers.

"If you wish to make an apple pie from scratch, you must first invent the universe." So said astronomer Carl Sagan in an episode of his landmark television series, Cosmos. Embedded in Sagan's memorable quip is a certain holistic understanding of the universe — a notion that the existence of any one thing is intimately tied to the existence of everything else. There are no apple pies without apples; there are no apples without the proper climate for growing apple trees; there is no proper climate for growing apple trees without a planet on which the apple trees can grow — and so on, all the way back to the Big Bang.Pythagoras and his followers held mathematics in an almost holy regard, and they saw numbers as a basic form of matter. According to their view, all things had numbers, and the objects of the universe — including human societies — were arranged in harmonious mathematical relationships with one another.

All sciences were originated from philosophy. Physics was called natural philosophy until the 19th century, but once it was proven to be correct it was no longer philosophy and became a science. Physics is the science of the natural world, more specifically dealing with the matter, energy, space-time, and fundamental forces that govern the physical world. In physics we study a wide range of physical phenomena from subatomic particles to large galaxies of the material universe, and use empirical data and mathematics to find results and conclusions. Physics is also deeply concerned with arriving at knowledge about the ultimate nature of reality. Since we cannot know whether we have discovered everything which would affect our theories of the universe, all such theories are perpetually subject to modification or change. Mathematics is a language and a tool that we use in physics to explain the universe. Quantum physics is a mathematical description that rules the tiny world of atoms and subatomic particles in our universe. Without quantum physics, much of the information

technology that we rely on, from microcircuits to lasers, would not exist. Today many scientists argue that metaphysics plays an important role in quantum mechanics at a deeper level; the nature of reality is all mathematical. This could be an example of how metaphysical assumptions can get in the way of our understanding the paradoxical nature of quantum mechanics. But even when quantum mechanics appears a mystical science of metaphysics, it is not metaphysics but productive science.

Thus, the Physics though has many branches and uses many other branches of science and philosophy, in the past and the present, its aim is to understand the whole universe which is nothing but matter and energy which is seen or unseen.

CHEMISTRY

ANCIENT SEERS OF INDIA – CHEMISTRY

In ancient India, chemistry was called **Rasayan Shastra, Rasa-Vidya, Rasatantra and Rasakriya** all of which roughly mean '*Science of Liquids*'. There also existed chemical laboratories which were called **Rasakriya-nagaram/Rasakriya-shala**, which literally mean '*School where liquids are activated*. Rigveda (earlier than 1500 BCE) mentions many fermented drinks and methods of fermentation, apart from various metals. Soma juice from the stems of the soma plant was considered a divine drink. The Vedic Indians were acquainted with the art of dyeing with certain natural vegetable colouring matters. A type of pottery, now known as 'Painted Grey Ware', is also associated with the Vedic period.

Ancient chemistry in India grew out of the early efforts to develop an elixir; to turn base metals into gold and on metallurgy. Chemical techniques in India can be traced back all the way to the Indus valley or Harappan civilisation (3rd millennium BCE). Pre-Harappan Indians were acquainted with the art of making baked or burnt clay pottery as well as painting the same with two or more colours (by addition of iron oxide, manganese oxide, etc.). Kautilya's Arthashaastra (3rd or 4th century BCE) has a lot of information on prevailing chemical practices. Apart from mines and minerals, it discusses the details of precious stones (pearl, ruby, beryl, etc.); preparation of fermented juices (sugarcane, jaggery, honey, jambu, jackfruit, mango, etc.) and oil extraction.

It is said that **Maharshi Kanada** was the first to propound that the *Parmanu* (atom) was an indestructible particle of matter and that Universe is made up of *Kana*. When matter is divided and sudivided, we reach a stage beyond which no division is possible, the undivisible element of matter is *Parmanu*. Kanada explained that this indivisible, indestructible y cannot be sensed

through any human organ.

Nagarjuna (931 A.D.) from Somnath in Gujarat was a chemist/alchemist, who concentrated his efforts in transforming the base metals into gold. His reputation was such that people believed Nagarjuna to be in communion with gods and goddesses who had blessed him with the power of changing base

metals into gold and extracting the 'elixir of life'.

Prafulla Chandra Ray (1861-1944), an Indian chemist, is often referred to as the Father of Chemistry in India. He received his BS in 1882 and his PhD in 1887 from University of Edinburgh. In 1896, he announced a major discovery of a new compound, mercurous nitrite.

Today's Science and Technology has been greatly inspired by the contributions of these wise seers. Indians have continued to show their global impact in the Field of Science. In the 21st century, biochemist **Har Gobind Khorana** won the Nobel Prize (1968) for demonstrating how the nucleotides in nucleic acids control the synthesis of proteins.

Thus, the seers of ancient India have contributed significantly in the development of Modern Chemistry.

BIOTECHNOLOGY

Biology for Engineers

Science deals with matter. It is based on starting from scratch with what a human can observe, test, and rationalize. Ancient sages have worked hard to be seen as the only reliable providers of knowledge to the world. In 1875, the Vymaanika Shaastra, a 4th Century BC text written by Sage Bharadwaj was discovered in a temple in India. It contains 3000 shlokas in 8 chapters which was physically delivered by the ancient Hindu Sage Bharadwaj. The book greatly deals with the operation of ancient vimanas and included information on steering, precautions for long flights, protection of the airships from storms and lightning and how to switch the drive of solar energy or some other form of energy. One of the chapter will reveal the secrets of constructing aeroplanes that cannot be broken or cut, that is indestructible, that is fire resistant. It also deals with the secret of making planes motionless and invisible. It also describes how to defeat the enemy planes etc. as per the Sage Bharadwaj the vimanas were classifies as per the Yugas. During the period of Krita Yuga, Dharma was establishes firmly. The pushpak Vimana which was used by Ravan was an Aerial vehicle. He used this vehicle to kidnap Sita from jungle and took him to his Kingdom Srilanka. Ramayana was during the Treta Yug in which the Vimanas were highly discovered. During this period "Laghima" gave them the power to lighten their vehicle do they can travel freely in the air.

COMPUTER AND INFORMATION SCIENCE

The Indians (**Aryabhata**, 476 BC - 550 BC) contributed **Zero (0)** to the number system. So that numeric system and computing world found an ease in solving numerical problems using computer programs.

Acharya **Pingala** was an ancient Indian mathematician who lived around 300 BCE. He wrote the Chandaḥśāstra, where he analysed **Sanskrit poetry mathematically**. It also contained the first known explanations of **digit zero**, **binary numbers**, **Fibonacci numbers and Pascal's triangle**.

Baudhayana (8th century BCE) composed the Baudhayana Sulba Sutra, which contains examples of Pythagorean triples, such as: (3,4,5), (5,12,13), (8,15,17), (7,24,25) and (12,35,37) as well as a statement of the Pythagorean theorem for the sides of a square: "The rope which is stretched across the diagonal of a square produces an area double the size of the original square."

In Indian astronomy, the study of **trigonometric functions** flourished in the Gupta period, especially due to **Aryabhata (sixth century CE)**, who discovered the **sine function**.

Quadratic equation of the form $ax^2 + bx + c = 0$, $a \neq 0$ and is given by $x = (-b \pm \sqrt{b^2 - 4ac})$ / 2a. was discovered by **Sridharacharya** in the 11th century.

The largest numbers the Greeks and Romans used were 106. In 5000 BC **Indians used numbers as big as 10⁵³** (10 to the power 53) with specific names. The largest used number today is **Tera 10¹²**.

Kaṭapayadi numerical notation is an ancient Indian system to depict letters to numbers for easy remembrance of numbers as **words or verses**.

For example: क(Ka)=1 ख(Ka)=2 ग(Ga)=3 घ(Ga)=4 ज़(Gnya)=5 च(Cha)=6 छ(Cha)=7 ज(Ja)=8

झ(Ja)=9 अ(Nya)=0. The modern **Hasing technique in computing system** which is resembling was then being used in the **Indian Katapayadi system**. For example, the hashing number based on Katapayadi system would be as follows for '**Gurudev**'

Gu=Ga(is the consonant)=3, Ru=Ra(is the consonant)=2, De=Da(is the consonant)=8Va=Va(is the consonant)=4, So Gurudeva = 4823.

In the recent decades, following are the few of the major contributors to the computing world:

- In 1996 the USB port invented by the Ajay Bhatt, an Indian at Intel Oregon which involved low level programs delt with embedded C Language to perform flexible IO transfer and opened up an area to use plug-and-play devices efficiently.
- The Pentium chip invented by Vinod Dham, that made C compiler to speed up the program execution and do well with GUI applications (both System and User Level) that are wiritten in C language.

Amit Singhal is an Indian who rewrote (search engine in 2001) the google algorithm (C language coding embedded with Assembly Language service routins in Windows and Unix/Linux). Then on the Google processes over 40,000 search queries every second on average which translates to over 3.5 billion searches per day and 1.2 trillion

searches per year worldwide.

Few of the contribution as Auther of CP and Educators of C language:

- 1. Yashavant Kanetkar is an Indian computer science author, known for his varieties of C Programming books.
- 2. E. Balagurusamy : An Computer scientist known for Programming in ANSI C

ELECTRONICS AND COMMUNICATION ENGINEERING

The idea of a holistic approach to engineering design and education has been envisioned to meet the perceived and emerging needs for innovation in the 21st century. Many engineering educators, practicing engineers and engineering students have already recognized the gaps and areas of potential improvements in the knowledge acquisition process implemented in current engineering degree programs when compared to current societal and technological issues and developments.

Society and humanity have progressed drastically over the past few generations. Engineers as a network of professional problem solvers have been heavily involved in these global communities and the engineering profession is evolving from one that focuses on targeted, isolated issues, to one that embraces challenges that incorporate physical, economic, environmental, and humanitarian aspects.

Currently, engineering students are required to take classes on ethics, liberal studies and technology and society courses, however engineering students are not prefaced with the importance of rounding out their education with these topics, and while social issues are discussed, they are not related to engineering specifically. That being said, explicitly linking the technical aspects of engineering to society is paramount in training effective problem solvers for the 21st century. With some exposure to multi-disciplinary, inter-disciplinary and trans-disciplinary approaches to engineering and design, students will be better prepared for their future careers in industry or research fields.

The functional requirements for the perceived solution were determined by the expected outcomes and what students should take away after experiencing the new educational product. Some of them are:

- students will be inspired and driven to seek opportunities in engineering for environmental, social, medical, and human development/poverty issues.
- students will be able to identify the issues that are emerging from new technology, how to mitigate the negative aspects and reduce the amount of impact, while leveraging the positive outcomes.
- students will have respect and knowledge of the importance of ethics and policy matters in the field of engineering and be able to determine between unethical and an ethical situation in a proactive manner.

The courses should overcome the challenges of the current engineering educational system. Approaching the degree from a holistic perspective. The integrated system that fosters collaboration among faculty and students. A new organizational and pedagogical model, which emphasizes knowledge integration and interweaves thematic content threads throughout the curriculum should be proposed.

• Foundations thread (math and science) Key mathematical concepts lay the foundation for understanding the anchoring concepts in courses throughout the ECE curriculum. The foundations thread unpacks mathematics and physics concepts to help students learn fundamentals in ECE topics like circuits, signals and systems, and electromagnetics. The foundations thread champion spearheads the collaboration between the math and ECE departments to introduce and promote the value and

utility of mathematics in ECE courses, as well as the importance of mathematical thinking.

- Creativity thread (research, design, and optimization tools) The creativity thread is intended to integrate research and design throughout the undergraduate experience. By showing the impact of research, students will see the practical applications and potential breakthroughs of fundamental ECE concepts. Likewise, exposing students to design at every level of the undergraduate experience allows them to experience the excitement of engineering by applying their foundational knowledge to a tangible product.
- Professional formation thread (communications, cultural adaptability, ethics, leadership, and teamwork) Partnering with faculty and industry leaders to ensure students develop professional skills meaningfully and effectively to enhance studentindustry interactions.

ELECTRICAL AND ELECTRONICS ENGINEERING

Agastya Samshita available at Prince's Library of Ujjain in India, dates back to the first millennium BC, contains a detailed description construction of an electric battery/cell along with way to utilize the battery to 'split' water into its constituent gasses. The method of generating electricity using modern battery cell resembles Agastya's method. The materials used by Sage Agastya for generating electricity were an earthen pot, copper plate, copper sulphate, wet saw dust, zinc amalgam. As quoted in Agastya Samhita the open circuit voltage and short circuit current of the prepared cell are 1.138 volts and 23 mA respectively. He articulates 100 earthen pots on water, has the power to change the form of water to oxygen and hydrogen. If hydrogen is contained in an air tight cloth, it can be used in aerodynamics, i.e. it will fly in air. In an iron vessel and in a strong acidic medium, gold or silver nitrate covers copper with a layer of gold or silver. The copper that is covered by gold is called Shatakumbha or artificial gold.

Rao Saheb Krishnaji Vajhe, an engineer from Pune while reading books related to science found the pages of Agastya Samhita with Damodar Tryambak Joshi of Ujjain. Dr. M. C. Sahastrabuddhe, the Head of the Sanskrit Department in Nagpur, when reading Agastya Samhita found the similarity of it with of Daniel Cell. He requested P.P. Hole, the Professor of Engineering at Nagpur to investigate on the same.

On the basis of the descriptions in Agastya Samhita Mr. Hole and his friend started preparing the apparatus for the experiment. While preparing the set up they could not understand the meaning of shikhigreeva and while checking the Sanskrit dictionary, they understood that it meant the neck of a peacock. They went to Maharaja Park and asked the chief when a peacock would die. The chief was very angry and asked them to give in an application. After few days during a conversation with an Ayurveda expert he confirmed that shikhigreeva is copper sulphate, which solved their problem. Thus, a cell was formed and it had an open circuit voltage of 1.38 volts and short circuit current of 23 milli amperes. The results of the experimentation were communicated to Dr. M.C. Sahastryabuddhe. It was exhibited fourth general meeting at the Swadeshi Vigyan Sanshodhan Sanstha, Nagpur on August 7, 1990 to the scholars. It was concluded that the description was of an electric cell

On the basis on Agastya Samhita and other scriptures, Rao Saheb Vajhe, who spent his life in rummaging the Indian scientific scriptures, gave different names to electricity. The six ancient terminologies for electricity are:

- Tadit—produced by friction from leather or silk,
- Saudamini—produced by friction from gems or glass,
- Vidyut— from clouds or steam,
- Shatakoti alias Shatakumbhi—produced from a battery of hundreds of cells,
- Hradini—obtained from storage cells,
- Ashani—the one emanating from a magnetic rod.

MECHANICAL ENGINEERING

Mechanical engineering is one of the oldest disciplines of engineering, which requires the knowledge of mathematics, materials, physics and other engineering technologies. It is concerned with materials, processes and machines and requires the concepts of forces,

moments, energy, entropy, work etc. The developments that are visible in all spheres of life have connection to mechanical engineering. Engineering has made a significant contribution in the development of civilizations and contribution of mechanical engineering in areas like construction of large scale structures including for irrigation, architecture, military etc. is significant. Difficult problems of the society have been solved using simple concepts of mechanical engineering, say for eg. use of lever principle to move heavy objects. In fact, mechanical engineering made a significant contribution to the first cycle of industrial revolution, i.e., industrial revolution 1.0 during the 18th century. James Watt is often called the 'Father of Mechanical Engineering', as his invention of steam engine led to significant developments during the industrial revolution and beyond. The earliest computers were mechanical devices with electronics.

Significant contributions have been made during the Vedic ages and the first ever mechanical device that was invented was wheel and potter. Surmyam Suiramiva identified metals like Fe, Cu, Ag, Au etc., during the Vedic times. People knew about materials and material processing during those times and identified terminologies for the same in Sanskrit and produced gold and silver coins.

Seers like Tritala, Jalayan, Karaa, Vayurathaa and Vidyutrathaa discovered about aerodynamics during Rig Veda period, much before Wright Brothers discovered about aero planes. Computational Fluid Dynamics (CFD) analysis, which we are talking about today for different analysis, was there in the Vimana Shastra slokas.

Mechanical and manufacturing technology of ancient India ensured processing of natural products and their transformation into goods of trade, commerce and export.

Many scientists have made significant contributions to this domain. Leonardo da Vinci (16th century) studied and designed many mechanical systems that were related to transportation and warfare. In 17th century, Isaac Newton contributed the Laws of Motion used in several applications. Rudolf Diesel (18th century) was a German inventor, who created the first successful diesel engine and today diesel engines play a very important role in the transport and power sector in the world. Carl Frederich Benz (18th century) was a German automotive engineer, who developed the first practical automobile.

Mechanical engineering has evolved over the years and today the advent of computer and IT tools has facilitated better mechanical engineering in terms of design, analysis, and manufacturing. A mechanical engineer needs to work in multiple domains and needs to possess multiple skills like design, redesign, analyze, test, manufacture etc. It has been one of the founding disciplines of engineering and has contributed and will keep contributing to the growth and developments in this physical world.

CIVIL ENGINEERING

Indian civilization was the oldest civilization in the world and has a strong tradition of science and technology. It was the land of sages, seers, scholars, and scientists. Hinduism is a knowledge-based civilization, the Vedic texts should not be ignored dismissed as mythologies or as the work of imagination or just containing some moral stories. The Veda means knowledge and they contain relevant knowledge otherwise these texts would not

have survived the millennia years of the historic storm. Let us know some of the great work done in ancient times.

Ancient India not only practised scientific methods of design and construction but also documented them for future generations. Here are some tips given by ancient sages on selection of site and construction

(1) Vishwakarma Vastu Shastra- Vishwakarma explains the first point of construction in the ancient book Vastu Shastra – 'पूर्व भूमिं परिक्ष्येत पश्चात् वास्तु प्रकल्पयेत्', This means that before construction one should test the land. Vishwakarma further says that construction should not be done on the land which is very mountainous or on land with large cracks.

Vastu shastra literally "science of architecture" are texts on the traditional Indian system of architecture. These texts describe principles of design, layout, measurements, ground preparation, space arrangement, and spatial geometry. The designs aim to integrate architecture with nature, the relative functions of various parts of the structure, and ancient beliefs utilising geometric patterns (yantra), symmetry, and directional alignments.

(2) Kashyap Shilpa (Craft) – In this ancient book, Kashyap Rishi has said that the foundation should be dug until water is seen because this way you would ensure that you have reached the rock level and the foundation would be strong.

(3) Bhrigu Samhita – In this scripture saint Bhrigu says that before buying land, one should test it for form, colour, juice, smell and touch. Rishi Bhrigu also explains its methods in his book.

Ancient cities of India found on the basis of archaeological discoveries:

- Rama was the world's first king to build a bridge across the sea. But he did not do it on his own. He sought the help of a great engineer called Nala according to Valmiki Ramayana. Any wise man will seek local knowledge when he ventures into new places. Nala knew the shallow areas across the sea in and around Tamilnadu. American space agency NASA also confirmed that there was a bridge through the satellite pictures. Any wise engineer will use such naturally elevated areas instead of deep waters to build a bridge.
- Bageeratha changed the course of the mighty river Ganges. The vast forest areas of modern Bihar, Uttar Pradesh, and West Bengal were made into fertile lands by his marvelous engineering feat. In those days very few people lived in those jungles. Puranas say that Bageeratha did penance for several thousand years to do this that too 'standing in one foot'. This is a phrase Indians use very often. Even the great Tamil poet Tiruvalluvar uses the simile of Stork that stands in one foot to catch a fish. This is the hidden language to say that he tried for a very long time with focused attention.
- Vedic Saint Agasthya discovered the land route to South India via Vindhyas. The Puranas say that he "subdued the arrogance of the hills", this is hidden language. Till Agastya's this great discovery kings and travellers used only sea routes. Since they knew the secret of monsoon winds they can travel to West Bengal or Maharashtra from Sri Lanka in a few months' time.
- Uparichara Vasu, an ancient king made mountain passes for the benefit of land travellers. He was a Vasu king ruling over the Chedi kingdom. Mahabharata says that

he kicked the Kolahal Mountain which was blocking the flow of the Shaktimati River. This is a hidden language to say that he diverted the river for irrigation by cutting the hills.

- In short Bageerathan, Agastya, and Uparichara Vasu are the earliest engineers who built dams across the rivers. But unlike modern engineers, they did not use cement or mortar but they used the hills themselves. To avoid the force they made checks and balances. They use a hidden language saying that Shiva bore the force when Ganga came down from heaven.
- Parasuraman retrieved a lot of lands and gave it to Indians. A Pandya king called Nilam Tharu Vil Nediyon built sea walls to prevent the sea from invading the land.
- Balraman always travelled with an axe to clear the forests and make them cultivable. He was a great agriculturist. When Krishna spent most of his time in politics, his brother Balarama did constructive work.
- The Mohanjodaro, created 3000 years ago, is considered as a wonderful piece of civil engineering. Found in archaeological excavations even the ruins prove that this town was well settled and its buildings and roads all were made using symmetry and geometrical measurements. The roads found in this city were straight and were made from east to west and north to south and surprisingly they were at an angle of 90 degrees from each other. Buildings were also constructed in proportion. The intersection of the corners, the heights of the walls was equal. The city had public buildings, gardens, a restaurant, a large public bath as well as residential buildings. There was a provision for bathroom, living room etc in the residential buildings. The public buildings were 11.82m long, 7.01m wide and 2.44m high, and there were two streams of water. The building material and bricks of the walls were coated with a substance on which there was no effect of water. Archaeological research shows that people living here were well-versed in the construction techniques.
- Indus Valley Cities such as Harappa, Mohanjadaro, Lothal, Dholavira, Kalibangan need no new interpretations. The well-laid cities with uniform brick structures, Great Bath, most hygienic drainage systems, grain storage barns, and wells are all already well known to the world.
- Dwarka, also known as Lord Krishna's city, also narrates a similar story. Dr S R Rao discovered Dwarka in the archaeological excavation and found that the ancient city (Dwarka Nagar) was well built and settled. There was a wall around the city. The stones used for the construction of buildings did not erode despite the fact that the city was very close to the sea. Two-storey buildings, roads and water system are also found in the city. Copper, bronze and some alloys with zinc mixed up to 34 percent have also been found during the excavation. The size of columns, windows, etc reveals that they were designed with a complete mathematical precision.
- South Indian Tamil saint Appar always travelled with a pickaxe to clear the bushes from the temple towers. He simply followed Balarama. Great Chola king Karikalan built a dam across river Cauvery in Kal Anai. The Grand Anicut was an engineering wonder of ancient Tamils. It was built around the 1st century AD. Big temples of India,

the number of which runs into thousands, stand as monumental proof for the engineering skills of Indians. Mamallapuram and other Pallavacave temples are well-known milestones in Indian architecture.

• The Group of Monuments at Hampi are also recognized as a UNESCO World Heritage Site. The Vittala temple—the stone chariot – is the most iconic symbol of Hampi. The Virupaksha Temple at Hampi was built in the seventh century by the Chalukya rulers.

Virupaksha and Vithala Temple in Hampi

Scheme & Syllabus for

B. Tech. (Electrical and Electronics Engineering)

HIGHER SEMESTER COURSES

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING 2023-24

B.Tech. (EE): Scheme of Teaching and Examinations 2023-27 Outcome Based Education (OBE) and Choice Based Credit System (CBCS)

(Effective from the academic year 2023 - 24)

2nd Year Scheme

			III Sem	ester									
					Teac	hing H	ours /V	Veek		Exami	nation		
SI. No	Course Type	Course Code	Course Title	Teaching Department	Lecture	I Tutorial	Practical/ Drawing	- Self Study/PBL	Duration in hours	CIE Marks	SEE Marks	Total	Credits
					L	I	Р	J					
1	BSC	MA2004-1	Vector Calculus & Transform Techniques	MA	3	0	0	0	03	50	50	100	3
2	IPCC	EE2003-1	Microcontroller	EE	3	0	2	0	03	50	50	100	4
3	IPCC	EE2005-1	Network Analysis	EE	3	0	2	0	03	50	50	100	4
4	PCC	EE2101-1	Analog Signal Processing	EE	3	0	0	0	03	50	50	100	3
5	PCC	EE2104-1	Generation Transmission & Distribution	EE	3	0	0	V	03	50	50	100	3
6	PCC	EE2601-1	Analog Signal Processing Laboratory	EE	0	0	2	0	03	50	50	100	1
7	HSMC	HU1004-1	Universal Human Values	Any Dept.	1	0	0	0	01	50	50	100	1
8	AEC	ME1654-1	Innovations and Design Thinking	ME	1	0	0	0	01	50	50	100	1
9	MNC	HU1003-1	Kannada (Balake / Samskrithika)	Any Dept.	1	0	0	0	-	50	-	50	0
				Total	18	0	6	-	20	450	400	850	20
		Course pr	escribed to lateral entry Diploma holders	admitted	to III s	emeste	r of Eng	gineeri	ng prog	grams			
10	MNC	MA1011-1	Bridge Course- Calculus & Laplace Transforms	MA	3	0	0	0	3	100	0	100	0

N)

B.Tech. (EE): Scheme of Teaching and Examinations 2023-27 Outcome Based Education (OBE) and Choice Based Credit System (CBCS)

(Effective from the academic year 2023 - 24)

2nd Year Scheme

			IV Se	mester									
					Teach	ning Ho	ours /W	eek		Exam	ination		
SI. No	Course Type	Course Code	Course Title	Teaching Departmen	- Lecture	4 Tutorial	Practical/ Drawing	- Self Study/PBL	Duration in hours	CIE Marks	SEE Marks	Total	Credits
1	BSC	MA2009-1	Probability Theory and Numerical Methods	ΜΔ	د ۲	0	P	J	03	50	50	100	2
2	IPCC	FF2002-1	Instrumentation and Measurements	FF	3	0	2	0	03	50	50	100	4
3	IPCC	FF3002-1	Linear Control Systems	FF	3	0	2	0	03	50	50	100	4
4	PCC	EE2102-1	Electrical Machines I	EE	3	0	0	0	03	50	50	100	3
5	PCC	EE2103-1	Electromagnetic Fields	EE	3	0	0	√	03	50	50	100	3
6	PCC (Lab)	EE2602-1	Electrical Machines I Laboratory	EE	0	0	2	0	03	50	50	100	1
7	HSMC	HU2001-1	Enhancing Self Competence	HU	2	0	0	0	03	50	50	100	2
8	VEC	EEx5xx-1	Department specific Vocational Education Course	EE	0	0	2	0	03	50	50	100	1
9	HEC	HU1005-1	Essence of Indian Culture	HU	1	0	0	0	-	50	-	50	0
10	INT	UC1001-1	Internship - I	Mandatory Intra Institutional Activity based Internship of 2 weeks duration (80 - 90 h) to be completed during the vacations of I & II Semesters. Lateral entry students have to complete the Internship - I during the vacation of III					-	100	-	100	2
			·	Total	18	0	8		24	550	400	950	23
		Course	e prescribed to lateral entry Diploma holder	s admitted	to III sem	nester o	f Engir	eering	progra	ms		·	
10	MNC	MA1013-1	Bridge Course- Probability & Differential Equations	MA	3	0	0	0	3	100	0	100	0

B.Tech. (EE): Scheme of Teaching and Examinations 2023-27 Outcome Based Education (OBE) and Choice Based Credit System (CBCS) (Effective from the academic year 2023 - 24)

3rd Year Scheme

			V Sei	nester									
					Teac	hing Ho	urs /W	eek		Exami	nation		
SI. No	Course Type	Course Code	Course Title	Feaching Department	Lecture	Tutorial	Practical/ Drawing	Self Study/PBL	Duration in hours	CIE Marks	SEE Marks	Total	Credits
				· · ·	L	T	Р	J	-				
1	IPCC	EE2001-1	Electrical Machines II	EE	3	0	2	0	3	50	50	100	4
2	IPCC	EE2004-1	Modern Switchgear and Protection	EE	3	0	2	0	3	50	50	100	4
3	PCC	EE3101-1	Power Electronics	EE	3	0	0	0	3	50	50	100	3
4	PCC (Lab)	EE3602-1	Power Electronics Laboratory	EE	0	0	2	0	3	50	50	100	1
5	PEC	EExxxx-1	Professional Elective-I	EE	3	0	0	0	3	50	50	100	3
6	HSMC	HU1006-1	Introduction to IPR	Any Dept.	1	0	0	0	1	50	50	100	1
7	AEC	HU1010-1	Research Methodology	Any Dept.	2	0	0	0	2	50	EO	100	2
/		XXx6xx-1	Program Specific Ability Enhancement Course	EE	1	0	2	0	5	50	50	100	2
8	AEC	HU1007-1	Social Connect & Responsibility	Any Dept.	1	0	0	0	1	50	50	100	1
9	AEC	UM1003-1	Employability Skill Development	EE	1	0	0	0	-	50	-	50	1
				Total	17/16	0	8	-	20	450	400	850	20

			VI Ser	nester									
					Teac	Teaching Hours /Week				Exami	nation		
SI. No	Course Type	Course Code	Course Title	Teaching Departmen	Lecture	Tutorial	Practical/ Drawing	Self Study/PBL	Duration in hours	CIE Marks	SEE Marks	Total	Credits
1	IDCC	FF2002 1	Signal Applyris and Processing		L	T	P	J	2	50	F0	100	4
1	IPCC	EE3003-1	Signal Analysis and Processing	EE	3	0	2	0	3	50	50	100	4
2	PCC	EE3102-1	Power System Analysis and Stability	EE	3	0	0	0	3	50	50	100	3
3	PCC (Lab)	EE3603-1	Power System Analysis and Stability Laboratory	EE	0	0	2	0	3	50	50	100	1
4	PEC	EEx2xx-1	Professional Elective – II (Group -I)	EE	3	0	0	0	3	50	50	100	3
5	PEC	EEx3xx-1	Professional Elective -III (Group-II)	EE	3	0	0	0	3	50	50	100	3
6	OEC	XXX5XX-1	Open Elective –I	Any Dept.	3	0	0	0	3	50	50	100	3
7	HSMC	MG1003-1	Management & Entrepreneurship	Any Dept.	3	0	0	0	3	50	50	100	3
8	AEC	HU1008-1	Life Skills for Engineers	HU	1	0	0	0	1	50	50	100	1
				Total	19	0	4	0	22	400	400	800	21

B.Tech. (EE): Scheme of Teaching and Examinations 2023-27 Outcome Based Education (OBE) and Choice Based Credit System (CBCS)

(Effective from the academic year 2023 - 24)

4 ^t	ⁿ Year	Scheme	

VII Semester										
	Course Title	Tea chi	Teaching Hours /Week	Examination	Cre dits					

N

SI. No	Course Type	Course Code			- Lecture	4 Tutorial	Drawing	- Self Studv/PBL	Duration in hours	CIE Marks	SEE Marks	Total	
1	IPCC	EE3001-1	Industrial Drives and Applications	EE	3	0	2	0	3	50	50	100	4
2	PCC (Lab)	EE3601-1	High Voltage Engineering Laboratory	EE	0	1	1	0	3	50	50	100	1
3	PEC	EEx2xx-1	Professional Elective – IV (Group-I)	EE	3	0	0	0	3	50	50	100	3
4	PEC	EEx3xx-1	Professional Elective – V (Group-II)	EE	3	0	0	0	3	50	50	100	3
5	OEC	XXX5XX-1	Open Elective –II	Any Dept.	3	0	0	0	3	50	50	100	3
6	HSMC	MG1002-1	Financial Management	Any Dept.	3	0	0	0	3	50	50	100	3
7	HEC	HU1009-1	Indian Knowledge Systems	HU	1	0	0	0	-	50	-	50	1
8	UCC	UC3001-1	Major Project Phase I	EE	-	-	4	-	-	100	-	100	2
				Total	16	1	7	-	18	450	300	750	20

			VIII	Semest	er								
				ų	Teach	ing H	ours /We	ek		Examin	ation		
SI. No	Cour se Type	Course Code	Course Title	Teaching Departmen	Lecture	l Tutorial	Practical/ Drawing	Self Study/PBL	Duration in hours	CIE Marks	SEE Marks	Total	Credits
1	UCC	UC2001-1	Internship- II (Societal internship and Research/Industry Internship)		Mandatc internshi 90 h) and Internshi 270 h) or Internshi Internshi weeks (3 complete stretches periods l semestel	pry Soci p for 2 d Rese p / Ind p of 0 r Rese p / Ind p for 2 20 – 3 ed in c s durir poetwe rs	cietal 2 weeks (i aarch dustry 6 weeks (2 arch dustry a total of 8 60 h)to be one/two ng the vaca en IV to V.	30 – 40 – 3 e ation	3	50	50	100	8
2	UCC	UC3002-1	Major Project Phase II		Student should carry out project in research institute/industry/intra institute Center of Excellences. Two contact hours /week for interaction between the project guide and students.				3	100	100	200	8
				Total	-	-	-	-	6	150	150	300	16

B.Tech. (EE): Scheme of Teaching and Examinations 2023-27 Outcome Based Education (OBE) and Choice Based Credit System (CBCS) (Effective from the academic year 2023 - 24)

	Program Specific Ability Enhancement Courses [AEC]						
Course Code	Course Title						
HU1010-1	Research Methodology						
EE3651-1	ECAD (1-0-2)						
EE2651-1	Hardware System Design (1-0-2)						
EE2652-1	Internet of Things (1-0-2)						
EE2653-1	Python Programming for Electrical Engineering (1-0-2)						

Vocational Education Courses [VEC]							
Course Code	Course Title						
EE2551-1	Soldering Practice						
EE2551-2	Troubleshooting Electrical Appliances						

	List of Professio	nal Elective C	ourses [PEC]
	Group-1		Group-2
	Power Elect	ronics & Drives	s Stream
Code	Elective Course Title	Code	Elective Course Title
EE2201-1	Power Semiconductor Devices	EE3301-1	Power Electronics System Design using ICs
EE3201-1	Switched Mode Power Converters	EE3302-1	Solid State Lighting Control
EE4201-1	Computer Control of Electrical drives	EE3303-1	Special Electrical Machines
		EE3304-1	Electrical Machine Design
			J
	Contro	ol System Strea	am
Code	Elective Course Title	Code	Elective Course Title
EE2211-1	Robotics and Automation	EE2311-1	Programmable Logic Controllers
EE3211-1	Physiology Control System Modelling and Simulation	EE2312-1	Micro- and Nano-Scale Sensors and Transducers
EE4211-1	Advanced Control System	EE3311-1	Advanced Instrumentation Systems
EE4212-1	Discrete Control Systems	EE3312-1	Industrial Servo Control Systems
	Energ	y System Strea	m
Code	Elective Course Title	Code	Elective Course Title
EE2221-1	Demand Side Management	EE2321-1	Illumination Technology
EE2222-1	Renewable Energy Sources	EE2322-1	Operation and Maintenance of Solar Electrical Systems
EE2223-1	Electrical Circuits and Power Distribution	EE3321-1	Electrical Power Utilization
EE4221-1	Electrical Power Quality	EE3322-1	Industrial Heating
EE4222-1	Integration of Distributed Generation Systems		
	Powe	r System Strea	<u>m</u>
Code	Elective Course Title	Code	Elective Course Title
EE2231-1	Electrical Estimation and Costing	EE3331-1	High Voltage Engineering
EE3231-1	Power System Planning	EE4331-1	Power System Dynamics and Stability
EE3232-1	Smart Electric Grid	EE4332-1	Reactive Power Management
EE3233-1	FACTS & HVDC	EE4333-1	Power System Operation & Control
EE3234-1	Computer Techniques in Power Systems		
	Microe	electronics Stre	am
Code	Elective Course Title	Code	Elective Course Title
EE3241-1	ARM System Architecture	EE3341-1	Digital Systems Design using Verilog HDL
EE3242-1	VLSI Circuits & Design	EE3342-1	Embedded Systems
EE4241-1	VLSI Layout Techniques	EE3343-1	Introduction to ASIC and FPGA
EE4242-1	High Speed Digital Design	EE3344-1	Linear Integrated Circuits and its Applications
	Electri	ic Vehicle Strea	im
Code	Elective Course Title	Code	Elective Course Title
EE2251-1	Automotive Electronics	EE2351-1	Automotive Security

Hybrid Electric Vehicles Battery storage and Fuel Cells for Electric Vehicles EE2252-1 EE2352-1 EE3251-1 Energy storage & Battery management systems EE3351-1 Electric Vehicle Battery Charging Techniques EE3252-1 Power Electronics & Drives for Electric Vehicles EE3352-1 Modeling and Control of Hybrid Electric Vehicles EE3253-1 Thermal Management of EV systems EE3353-1 Vehicle management control

Information Technology Stream

N

Code	Elective Course Title	Code	Elective Course Title
EE2261-1	Database Management System	EE2361-1	Operating Systems Fundamentals
EE2262-1	Object Oriented Programming using C++	EE3361-1	Introduction to Machine Learning with Python
EE2263-1	MATLAB Programming for Engineers	EE3362-1	Probability and Information Theory
EE3261-1	Computational Linear Algebra		
	Artificial Intellige	ence and Data	a Science
Code	Elective Course Title	Code	Elective Course Title
EE2271-1	Data Science Engineering	EE2371-1	Fuzzy Logic Control
EE2272-1	Introduction to Artificial Intelligence	EE2372-1	Introduction to Big data Analytics
EE2273-1	Introduction to Artificial Neural Networks	EE3371-1	Image Processing
EE4271-1	AI Applications to Power Systems	EE3372-1	Matrix Methods in Machine Learning

N)

Courses from Basic Science

	VECTOR CALCULUS & TRANSFORM TECHNIQUES									
C οι	ırse Code:	MA2004-1	Course Type:	BSC						
Теа	ching Hours/Week (L: T: P: S):	3:0:0:0	Credits:	03						
Tot	al Teaching Hours:	40+0+0	CIE + SEE Marks:	50+50						
Pre	Prerequisite MA1001-2									
	Teaching Department: Mathematics									
Cou	rse Objectives:									
1.	Apply operators like gradient, c functions.	livergence and	curl to both scalar as wel	l as vector						
2.	Evaluate surface and volume interest theorems.	egrals in terms o	of line integrals using vario	ous integral						
3.	Identify the functions in engineering problems as analytic function and their study as									
4.	Study Cauchy's theorem and for appear in applications can be so	ormulae, and sp lved by comple	ecify some difficult integ x integration.	ration that						
5.	Perform Fourier analysis on nor technique to solve difference eq	n-sinusoidal per luations.	iodic signals and apply Z	-transform						
		UNIT-I								
Vect	or Calculus			15 Hours						
curl, ordir Vecto theo	Laplacian, solenoidal and irrotation nates. or integration: Line, surface & vo rems and applications.	onal vectors. Cu olume integrals.	rvilinear, spherical and cy Green's, Gauss divergenc	lindrical co- e & Stoke's						
		UNIT-II								
Theo Func conf Line Taylo intec	Theory of Complex Variables15 HoursFunctions of complex variables, Cauchy Riemann equations, properties of analytic functions, conformal mapping, bilinear transformations.15 HoursLine integrals in complex plane, Cauchy's theorem, Cauchy's integral formula. Power series, Taylor's and Laurent's series. Residues, Cauchy's residue theorem. Evaluation of standard real integrals using contour integration.									
		UNIT-III								
Fourier Series & Z-Transforms 10 Hours										
Periodic functions, Euler's formulae, Trigonometric Fourier series. Z transforms: Z-transforms of standard functions, Bilateral Z- Transform. ROC, linearity, Time shift, Convolution, Scaling & Differentiation in Z-Domain, Time reversal property, Initial and Final Value Theorems. Inverse Z-transform: Partial Fraction Method, Power series/ division method, Contour integral Method. Unilateral Z-Transform: Properties, Solution of difference equations.										

Course Outcomes: At the end of the course student will be able to

- **1.** Solve the vector functions and their derivatives for engineering applications.
- 2. Demonstrate the applications of Gauss divergence and Stoke's theorem.
- **3.** Solve Engineering problems using complex variable techniques.
- **4.** Illustrate the concept of complex variables and line integrals in complex plane.
- **5.** Apply the analytical technique to express periodic function as a Fourier sine and cosine Series and apply the concepts of Z- transforms to solve engineering problems.

Course Outcomes Mapping with Program Outcomes & PSO

Program Outcomes→	1	2	3	4	5	6	7	8	9	10	11	12	PS	O↓
↓ Course Outcomes													1	2
MA2004-1.1	2	3	-	-	-	-	-	-	-	-	-	-	-	-
MA2004-1.2	2	3	-	-	-	-	-	-	-	-	-	-	-	-
MA2004-1.3	2	3	-	-	-	-	-	-	-	-	-	-	-	-
MA2004-1.4	2	3	-	-	-	-	-	-	-	-	-	-	-	-
MA2004-1.5	2	3	-	-	-	-	-	-	-	-	-	-	-	-

1: Low 2: Medium 3: High

TEXTBOOKS:

- **1.** B. S. Grewal, "Higher Engineering Mathematics", 43rd edition.
- **2.** Kreysizg, "Advanced Engineering Mathematics", John Wiley and Sons, 6th Edition.

REFERENCE BOOKS:

- **1.** Wylie Ray, "Advanced Engineering Mathematics", 6th edition, McGraw Hill.Inc.
- **2.** Murray R. Spiegal, "Vector Analysis", Schuam Publishing Co.

E Books / MOOCs/ NPTEL

- **1.** http://nptel.ac.in/courses/111106100
- 2. http://nptel.ac.in/courses/111106139
- 3. http://nptel.ac.in/courses/111107111

PROBABILITY THEORY AND NUMERICAL METHODS								
Course Code:	MA2009-1	Course Type:	BSC					
Teaching Hours/Week (L: T: P: S):	3:0:0:0	Credits:	03					
Total Teaching Hours:	40+0+0	CIE + SEE Marks:	50+50					
Prerequisites	MA1001-1							

Teaching Department: Mathematics

Course Objectives: Understand the concept of probabilistic models for situation involving chance effect. Study different types of probability distributions. Apply interpolation technique in real life problems Apply numerical differentiation and integration methods, where the function is a Complicated expression or given in terms of tabular values or not possible to evaluate

UNIT-I

Probability Theory

Finite sample space, probability and conditional probability and independence, Bayes' theorem. One dimensional random variable: discrete and continuous random variable, probability functions, cumulative distribution function, expectation and variance. Two Distributions: Binomial, Poisson, Normal and exponential distributions

UNIT-II

Finite Differences and Interpolation

Finite differences: forward, backward and central difference operators, Newton-Gregory forward and backward interpolation formulae, Lagrange's interpolation formula, Lagrange's Inverse interpolation formula. Newton's divided difference interpolation formula.

Numerical Differentiation: Numerical differentiation using Newton's forward & backward formulae.

Numerical integration: General quadrature formula, Trapezoidal rule, Simpson's one third rule, Simpson's three eighth rule.

UNIT-III

Numerical Methods10 HoursSolution of algebraic and transcendental equations: Regula falsi Method and Newton
Raphson Method.Newton

Numerical solution of ordinary differential equations: Taylor's series method, modified Euler's method and 4th order Runge –Kutta method, Predictor-Corrector methods

Numerical solution of partial differential equations: Solution of Laplace and Poisson equations by standard five point formulae, solution of heat and wave equations.

Course Outcomes: At the end of the course student will be able to

- **1.** Demonstrate and appreciate probabilistic models for situations involving chance effect.
- **2.** Illustrate the applications different types of distributions for engineering problems.
- 3. Using finite differences and interpolation technique in solving real life problems
- **4.** Understand the numerical differentiation and integration methods and be able to apply these methods to solve engineering problems
- **5.** Apply numerical methods to solve partial differential equations.

Course Outcomes Mapping with Program Outcomes & PSO

15 Hours

15 Hours

Program Outcomes→	1	2	3	4	5	6	7	8	9	10	11	12	PS	O↓	
↓ Course Outcomes													1	2	
MA2009-1.1	2	3	-	-	-	-	-	-	-	-	-	-	-	-	
MA2009-1.2	2	3	-	-	-	-	-	-	-	-	-	-	-	-	
MA2009-1.3	2	3	-	-	-	-	-	-	-	-	-	-	-	-	
MA2009-1.4	2	3	-	-	-	-	-	-	-	-	-	-	-	-	
MA2009-1.5	2	3	-	-	-	-	-	-	-	-	-	-	-	-	
1. Jow 2. Modium 2. High															

ow 2: Mealum 3: High

TEXTBOOKS:									
1.	B. S. Grewal, "Higher Engineering Mathematics", 43 rd Edition, Khanna publishers, 2012.								
2.	P. L. Meyer, "Introduction of probability and Statistical applications", Second Edition,								
	American Publishing Co., 1975.								
REFER	RENCE BOOKS:								
1.	Kreysizg, "Advanced Engineering Mathematics", John Wiley and Sons, 6 th Edition.								

- 2. S. S. Sastry, "Introductory methods of Numerical Analysis", 2nd Edition, Prentice Hall, 1990.
- 3. Wylie Ray, "Advanced Engineering Mathematics", 6th Edition, McGraw Hill.Inc

Bridge Courses for Lateral Entry Students

BRIDGE COURSE - CALCULUS & LAPLACE TRANSFORMS (COMMON TO CV\EC\EE\ME)

Course Code:	MA1011-1	Course Type:	MNC					
Teaching Hours/Week (L: T: P: S):	3:0:0:0	Credits:	00					
Total Teaching Hours:	40+0+0	CIE + SEE Marks:	100+00					
Teaching Department: Mathematics								

Mandatory Non – credit course (MNC):

This course is prescribed to the lateral entry Diploma holders admitted to III semester of BE/B.Tech., programs, they shall attend the classes during the respective semesters to complete all the formalities of the course and appear for the Continuous Internal Evaluation (CIE). In case, any student fails to register for the said course/fails to secure the minimum 40 % of the prescribed CIE marks, he/she shall be deemed to have secured an F grade. In such a case, the student has to fulfill the requirements during subsequent semester/s to appear for CIE.

MNC Courses shall not be considered for vertical progression as well as for the calculation of SGPA and CGPA, but completion of the courses shall be mandatory for the award of degree **Course Objectives:**

This course will enable the students to master the basic tools of differential calculus, partial differentiation, Laplace Transforms and Integration and become skilled for solving problems in science and engineering. **UNIT-I DIFFERENTIAL CALCULUS** 07 Hours Limit, continuity, differentiation rules-product rule, quotient rule and chain rule. Taylor's series, Maclaurin's series of simple functions in single variable. PARTIAL DIFFERENTIATION **08 Hours** Definition, simple problems to find partial differentials, total differentiation, differentiation of composite functions, illustrative examples and problems. Taylor's and Maclaurin's series for a function of 2 variables. **UNIT-II** LAPLACE TRANSFORMS 07 Hours Definitions, transforms of elementary functions, transforms of derivatives and integralsproperties. **INVERSE LAPLACE TRANSFORM 08 Hours** Inverse Laplace transforms and properties. Solutions of ordinary differential equations. Applications to engineering problems. **UNIT-III INTEGRAL CALCULUS-I** 5 Hours Introduction, rules of integration, solution of integrals using the methods-substitution and partial fraction, integrals of standard functions, definite integral, simple problems. **INTEGRAL CALCULUS-II 5 Hours** Double integrals, change of order of integration, change in to polar coordinates. Triple integrals, simple Problems and applications. Course Outcomes: At the end of the course student will be able to Learn the concept of limit, continuity, differentiability and Taylor's theorem. 1. 2. Learn the concept of partial differentiation of a function with two or more independent variables. Apply the concept of Laplace transform in engineering applications. 3. 4. Find the inverse Laplace transform and hence to solve differential equations 5. Apply the notion of multiple integrals to find areas and volumes. **Course Outcomes Mapping with Program Outcomes & PSO**

Program Outcomes→	1	2	3	4	5	6	7	8	9	10	11	12	PS	0 ↓
↓ Course Outcomes													1	2
MA1011-1.1	3	2	-	-	-	-	-	-	-	-	-	-	-	-
MA1011-1.2	2	2	-	-	-	-	-	-	-	-	-	-	-	-
MA1011-1.3	3	1	-	-	-	-	-	-	-	-	-	-	-	-
MA1011-1.4	3	2	-	-	-	-	-	-	-	-	-	-	-	-
MA1011-1.5	3	2	-	-	-	-	-	-	-	-	-	-	-	-

1: Low 2: Medium 3: High

TEXTE	BOOKS:
1.	B.S. Grewal, "Higher Engineering Mathematics", Khanna Publications, 43 rd Edition,
	2015.
2.	Erwin Kreyszig, "Advanced Engineering Mathematics", John Wiley and Sons, 10 th
	Edition (Reprint), 2016.
REFER	RENCE BOOKS:
1.	G. B. Thomas and R. L. Finney, "Calculus and Analytic Geometry", Pearson, 2002.
2.	T. Veerarajan, "Engineering Mathematics", McGraw-Hill, New Delhi, 2008.
3.	B. V. Ramana, "Higher Engineering Mathematics", Tata Mc Graw –Hill, New Delhi,
	2010.

BRIDGE COURSE - PROBABILITY & DIFFERENTIAL EQUATIONS										
(COMMON TO CV\EC\EE\ME)										
Course Code:	MA1013-1	Course Type:	MNC							
Teaching Hours/Week (L: T: P: S):	3:0:0:0	Credits:	00							
Total Teaching Hours:40+0+0CIE + SEE Marks:100+00										
Teaching Department: Mathematics										

Mandatory Non – credit course (MNC):

This course is prescribed to the lateral entry Diploma holders admitted to III semester of BE/B.Tech., programs, they shall attend the classes during the respective semesters to complete all the formalities of the course and appear for the Continuous Internal Evaluation (CIE). In case, any student fails to register for the said course/fails to secure the minimum 40 % of the prescribed CIE marks, he/she shall be deemed to have secured an F grade. In such a case, the student has to fulfill the requirements during subsequent semester/s to appear for CIE.

Course Objectives:

This course will enable the students to master the basic tools of matrix theory, probability, differential equations, partial differential equations and become skilled for solving problems in science and engineering.

UNIT-I

MATRICES08 HoursElementary operations of a matrix, echelon form of a matrix, Rank of a matrix (both
definitions). Consistency and solution of system of linear equations - Gauss elimination
method. Eigen values and eigen vectors of matrices.

PROBABILITTY

Finite sample space, event, mutually exclusive event, equally likely event, probability, addition theorem, conditional probability and independence conditions, multiplication theorem. Bayes' theorem.

UNIT-II

DIFFERENTIAL EQUATIONS

Introduction, order and degree of differential equations, examples. Solution of first order and first-degree differential equations-variable separable method, Linear, Bernoulli's and exact differential equations (without I. F).

SECOND AND HIGHER ORDER LINEAR DIFFERENTIAL EQUATIONS	07 Hours
Second order linear differential equation with constant coefficients, solution	by inverse
differential operator and method of variation of parameters.	

UNIT-III

FIRST AND HIGHER ORDER PARTIAL DIFFERENTIAL EQUATIONS

10 Hours

07 Hours

08 Hours

First and higher order partial differential equations. Formation of partial differential equations by elimination of arbitrary constants/ arbitrary functions. Solution of PDE's by direct integration method.

Cour	rse Outcomes: At the end of the course student will be able to
1.	Reduce the matrix to echelon form and find its rank

2.	Understand the concept of probability and apply Bayes theorem to real life problems
3.	Solve the differential equations
4.	Solve higher order linear differential equations
5.	Form partial differential equations by eliminating the arbitrary constants and
	functions

Course Outcomes Mapping with Program Outcomes & PSO

Program Outcomes→	1	2	3	4	5	6	7	8	9	10	11	12	PS	0 ↓
↓ Course Outcomes													1	2
MA1013-1.1	3	2	-	-	-	-	-	-	-	-	-	-	-	-
MA1013-1.2	3	2	-	-	-	-	-	-	-	-	-	-	-	-
MA1013-1.3	2	2	-	-	-	-	-	-	-	-	-	-	-	-
MA1013-1.4	2	2	-	-	-	-	-	-	-	-	-	-	-	-
MA1013-1.5	3	2	-	-	-	-	-	-	-	-	-	-	-	-

1: Low 2: Medium 3: High

TEXTBOOKS:

1.	B.S. Grewal,	"Higher	Engineering	Mathematics",	Khanna	Publications,	43 rd	Edition,
	2015.							

- **2.** Erwin Kreyszig, "Advanced Engineering Mathematics", John Wiley and Sons, 10th Edition (Reprint), 2016.
- **3.** P. L. Meyer, "Introduction of Probability and Statistical Applications", 2nd Edition, American Publishing, 1975.

REFERENCE BOOKS:

1.	T. Veeraraian,	"Engineering	Mathematics".	McGraw-Hill	, New Delhi, 2008
		Engineering	indenes j		

- **2.** B. V. Ramana, "Higher Engineering Mathematics", Tata Mc Graw Hill, New Delhi, 2010.
- **3.** N.P. Bali and M. Goyal, "A text book of Engineering Mathematics", Laxmi Publications, 2010.

Integrated Professional Core Courses

Г

	ELECT	RICAL MACHIN	ES II									
Cours	se Code:	EE2001-1	Course Type	e: IPCC								
Teac	hing Hours/Week (L: T: P: S):	3:0:2:0	Credit	s: 04								
Total	Teaching Hours:	40+0+26	CIE + SEE Mark	5: 50+50								
Prere	equisite	EE1001-2										
	*One additional tuto	rial class will be	allotted every week									
	Teaching Department	: Electrical & Ele	ctronics Engineering									
Course	e Objectives:											
1.	To understand the working principl	e and operating	characteristics of DC mach	ine								
2.	To understand testing methods of I	DC Machine and	to get introduced to spec	al machines.								
3.	3. To study the working principle and operating characteristics of synchronous machine .											
4. To get acquainted with methods to predetermine voltage regulation of synchronous												
 generator. To understand the process of synchronization of alternator to infinite bus 												
5.	To get familiarized with the working	n principle chara	cteristics testing and appl	ications of								
6.	Synchronous motor.	g principie, enuru	cteristics, testing and app									
		UNIT-I		I								
DC mo	otors			08 Hours								
Review	v of operating principle, Armature	reaction, comm	utation, use of inter pole	es & pole face								
compe	ensating winding Characteristics, Spe	eed control of sh	unt & series motors, loss	es & efficiency,								
condit	ion for maximum efficiency.											
DC Mo	otor Starter: necessity, 3 -point, 4-po	int starter										
Testin	g of DC motors			02 Hours								
Swinbu	urne's test, Hopkinson's test , Retard	ation test, Field's	test on series motor									
Specia	al Motors:			05 Hours								
Princip	ble of operation of Brushless DC mot	or, Stepper moto	or and Permanent magnet	DC motors.								
Synch	ronous machines	0111-11		09 Hours								
Review	of principle of operation construct	tion of salient &	non Salient nole synchro	hous machines								
Genera	ated EMF in a concentrated winding	effect of distrib	ution of winding & use o	chorded coils.								
Regula	ation by EMF, MMF, ZPF Methods											
Paralle	el operation of alternators			06 Hours								
Paralle	l operation of alternators, Synchroni	izing of Alternato	ors to infinite bus bars, ope	erating								
charac	teristics, power angle characteristics	, operation at co	nstant load with variable e	xcitation for								
genera	ating mode											
		UNIT-III	1									
Salien	t pole synchronous machines			05 Hours								
Salient	t pole synchronous machines, two re-	action theory, po	wer angle diagram, relucta	ince power, slip								
synch	rangus motors											
Princin	Ne of operation starting methods. M	lotor at constant	load variable excitation V	and inverted V								
	hunting in synchronous machines	synchronous con	denser and annlications									
Carves	, naming in synchronous machines,											
	Suggest	ed List of Exper	iments									
1.	Load test on DC Motor-Determina	ation of speed to	rque and BHP efficiency c	naracteristics								
2.	Speed control of DC motors by A	rmature Voltage	and Flux control methods.									

		-															
	3.	Swinburne's Test															
	4.	Hopkinson's Test															
	5.	Field test on series mot	ors														
	6.	Load test on BLDC mot	or														
	7.	Voltage Regulation of A	\lter	nato	or by	' EM	F ar	nd M	MF	met	hod						
	8.	Voltage regulation of a	lterr	nato	r by	ZPF	met	hoc									
	9.	Slip test															
	10.	V and inverted V curves	s of	a sy	nchr	ono	us n	noto	r.								
С	ourse	• Outcomes: At the end c	of th	e co	urse	stu	dent	t wil	be	able	to						
	1.	Describe the effect of the	e arr	natu	ire re	eact	ion 1	o iu	stifv	the	use	of in	ter-p	oles a	and		٦
		compensating winding and comprehend speed control of a DC motor.															
	2.	Analyze the characteristics, starters and testing methods to select and evaluate the															
		performance parameters of different DC motors and have a broad idea about special															
		machines such as Brushless DC motor.															
	3.	Outline the constructional features of alternators and describe tests to predetermine the															
		voltage regulation.															
	4.	Describe the process of synchronization of alternators and analyze its performance															
		characteristics.															
	5.	Analyze the performance	of	salie	nt p	ole s	sync	hror	nous	ma	chin	e, sta	rting	meth	nods an	d	
		applications of synchrone	ous	mot	or.		-						_				
С	ourse	e Outcomes Mapping wi	th F	Prog	ram	Ou	tcor	nes	& P	SO							
		Program Outcomes→	1	2	3	4	5	6	7	8	9	10	11	12	PS	O↓	
	↓ Co	ourse Outcomes													1	2	
		EE2001-1.1	3	3	-	-	-	-	-	-	2	2	-	1	-	1	
		EE2001-1.2	3	3	-	-	-	-	-	-	2	2	-	1	-	1	
		EE2001-1.3	3	3	-	-	-	-	-	-	2	2	-	1	-	1	
		EE2001-1.4	3	3	-	-	-	-	-	-	2	2	-	1	-	1	
		EE2001-1.5	3	3	-	-	-	-	-	-	2	2	-	1	-	1	
													L: Lo	w 2: I	Mediun	n 3: Hig	jh
Т	EXTB	OOKS:															
	1.	P. S. Bhimbra, "Electric m	nach	iner	y", K	han	na p	ubli	sher	·s , 7	th E	ditior	n, 201	.1.			
	2.	Ashfaq Hussain, "Electric	al N	/lach	ines	", Dl	nanp	oat F	Rai P	ubli	catic	ons, 2	012.E	lectri	cal Eng	ineerinc	1
		Fundamentals, Vincent Del Toro, 2nd Edition, Pearson, 2015.															
R	EFER	ERENCE BOOKS:															
	1.	AE Clayton & Hancock, '	'Per	form	nanc	e &	desi	gn d	of D0	C ma	chir	ne", E	LBS F	Public	ation, 1	st	
	2	euition,2004.	boo	n,		rnat	ina	<u></u>	ont -	mad	ainc	с″ Т	11 2	nd F	lition	2004	
	۷.	Alexanuel Langsuull, T	IEO	iy Ol	alle	iiidl	шy	curr	enti	IIdC	me	s, in	ип, ∠		aiuon , ⊿	2004.	

3. J.B. Gupta, "AC and DC Machines", S K Kataria and Sons publications, 2012 edition.

E Books / MOOCs/ NPTEL

1.	NPTEL Course on Electrical Machines - I, Prof. Tapas Kumar Bhattacharya, IIT Kharagpur.
2.	NPTEL Course on Electrical Machines - II, Prof. Tapas Kumar Bhattacharya, IIT Kharagpur.
3.	https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-685-electric-
	machines-fall-2013/course-notes/

	INSTRUMEN	TATION AND MEAS	UREMENTS	
	rea Cada:	EE2002 1		IDCC
	ching Hours (Wook (I · T· P· S)·	2.0.2.0	Course Type: Crodits:	
Tot	al Teaching Hours	40+0+26	CIE + SEE Marks:	50±50
Pro	reaching floars.	FF1001-2		J0+J0
	Teaching Departme	nt: Electrical & Elect	ronics Engineering	
Coui	se Objectives:			
1.	To measure the resistance, inducta	ince and capacitance	by using different bridges	
2.	To study the construction and wor	king of various meter	s used for measurement of	
	electrical quantities	-		
3.	To introduce various sensors and t	ransducers, study the	ir working and applications	
4.	To introduce various electronic ins	truments & display d	evices and learn their applica	itions
		UNIT-I		
Instr	uments		03	Hours
Intro	duction, Characteristic of instrument	ts, errors		
Mea	surement of R, L, and C		07	Hours
Meas	surement of Resistance, Inductance,	and Capacitance: WI	neatstone's bridge, KDB, Me	asurement
of Hi	gh resistance, Maxwell's bridge, Sche	ering bridge, Anderso	n's Bridge Shielding of bridg	es, Murray
Loop	Test, Measurement of earth resistar	nce by fall of potentia	I method, LCR Meters	
Exte	nsion of Instrument Ranges		03	Hours
Princ	iples of Shunts and multipliers used	to extend instrument	: range, examples.	
Ener	gy Meter		02	Hours
Error	s, adjustments and calibration of Ir	nduction type energy	meter. Introduction to Digi	tal Energy
Mete	r			
		UNIT-II		
Sens	ors		02	Hours
Roll	of sensors in engineering, classificati	on of transducers		
Freq	uency and Phase		02	Hours
Princ	iple of measurement of frequency ar	nd phase angle, Westo	on frequency meter, power fa	ctor meter
and	phase sequence indicator.			
Line	ar Displacement		05	Hours
Resis	tive Potentiometers, strain gauge,	LVDT, Capacitive Pie	zoelectric, Hall Effect senso	rs, Optical
	tional Diana compart	Jitrasonic distance se		Uaura
Rota	tional Displacement		02	Hours
Optio	car tachometer, Rotary encoder, gyrc	oscope	02	
Class	ification of temperature concert Dec	istanca Tamparatura	Oz	nours
Class	incation of temperature sensors Res	istance remperature		
Mag	nuer notic recording digital recording or	tical recording	02	nours
iviag	netic recording, digital recording, op	nical recording		
Disn	lav devices		05	Hours
7 500	iment display, dot matrix displays 10	CD and LFD display	Photo conductive photo-volt	aic cells
Flect	ronic Instruments			Hours
Intro	duction. True RMS responding volta	neter. Electronic mult	imeters ADC (Flash SAR) D	AC Digital
voltn	neters, block diagram of a digital sto	prage oscilloscope. M	ethod of measuring amplitud	de, period
phas	e, frequency, Use of Lissajous patt	erns, broken ring ar	nd modulated ring method,	Sampling

Oscilloscope

	Suggested List of Experiments																
	1.	Measurement of low res	sista	nce	usin	ig Ke	elvin	Do	uble	Bric	lge						
	2.	Measurement of Capaci	itan	ce u	sing	Sch	ering	g Bri	dge								
	3.	To study the construction	on a	nd v	vork	ing j	prin	ciple	of F	PMM	IC a	nd m	oving	g iron	instrur	nent.	
4	4.	Adjustment & calibratic	on o	f 1-p	bhas	e en	ergy	/ me	ter								
ļ	5.	To study characteristics	of t	emp	perat	ure	tran	sdu	er li	ke t	hern	noco	uple,	therr	nistor a	nd RTD	
		with signal conditioning	g cir	cuits	; like	inst	rum	enta	atior	n am	plifie	er.					
(5.	Measurement of strain	usin	g sti	rain	gau	ge										
-	7.	Study of distance measure	urer	nent	: usir	ng u	ltras	sonic	trai	nsdu	icer						
5	8.	To study differential pre	essu	re tr	ansc	luce	r &	sign	al co	ondit	ioni	ng of	f outp	out si	gnal		
(9.	To study blockwise con	stru	ctior	n of a	a mu	ultin	nete	• & f	requ	ienc	γ ςοι	Inter				
	Course Outcomes: At the end of the course student will be able to																
Course Outcomes: At the end of the course student will be able to																	
1. Apply a suitable measurement technique to determine the value of unknown resistance/capacity																	
	inductance																
	2. I	. Describe the extension of instrument range to measure the large voltages & currents and calib															
	(energy meter															
	3.	Describe the principle of different sensors for the measurement of frequency, and linear displace															
	4.	Describe the principle of different sensors for the measurement of rotational displacement,															
	temperature and recording the measured quantities using recorders																
	5. Illustrate the working of display devices and different electronic instruments to measure analog																
signals																	
Course Outcomes Mapping with Program Outcomes & PSO																	
Г			-				-		_			10		10			
_		Program Outcomes→	1	2	3	4	5	6	/	8	9	10	11	12	PS	.0↓ 	
_	↓ Co	urse Outcomes													1	2	
		EE2002-1.1	3	3	-	-	-	-	-	-	2	2	-	1	1	-	
		EE2002-1.2	3	3	-	-	-	-	-	-	2	2	-	1	1	-	
		EE2002-1.3	3	3	-	-	-	-	-	-	2	2	-	1	1	-	
		EE2002-1.4	3	3	-	-	-	-	-	-		-	-	1	-	-	
		EE2002-1.5	3	3	-	-	-	-	-	-	2	2	-	1	1	-	
													1: Lo	w 2:	Mediu	m 3: Hig	ιh
TE	(ТВС	DOKS:															
	1.	A. K. Sawhney, "Electrica	al ar	nd El	ectro	onic	Mea	asur	eme	nts a	and	Instru	ımen	tatio	ח",Dhar	ipatrai	
		and Sons, New Delhi, 20)04.														
	2.	David A. Bell, "Electronic	c Ins	strur	nent	atio	n an	nd M	easu	irem	ienť	', 2nc	d Edit	ion, F	P.H.I, 20	06.	
	3.	H.S. Kalsi, "Electronic Ins	stru	men	tatic	on"-s	seco	nd e	ditio	on, T	ata	McGi	raw h	ill			
P	-	publications, 2004															
RE	ERE	INCE BOOKS:	<u>.</u>	<i>µ</i> .				•	-						•		
	1.	1. Cooper D. and A.D. Heitrick, "Modern Electronic Instrumentation and Measuring															
		rechniques", P.H.I	-1									-		-			
	2.	Golding and Widdies, "I	lec	trica	I Me	asur	reme	ents	and	Mea	asuri	ng Ir	nstrur	nents	,		
-																	
ΕB	ook	S / MOOCS/ NPTEL		0.01													
	1.	http://nptel.ac.in/course	es/1	0810	506	4/											

Page | 145

MICROCONTROLLER													
Cour	rse Code:	EE2003-1	Course Type:	IPCC									
Teac	hing Hours/Week (L: T: P: S):	3:0:2:0	Credits:	04									
Tota	l Teaching Hours:	40+0+26	CIE + SEE Marks:	50+50									
Prer	equisite	CS1001-1, EC10	02-1										
	*One additional tutori	ial class will be all	lotted every week										
	Teaching Department:	Electrical & Electi	ronics Engineering										
Cours	e Objectives:												
1.	To understand architectural feature	es of microcontrolle	er and addressing mode	s of 8051									
2.	To know working of interrupts, time	ers and serial com	munication principles										
3.	To understand interfacing concepts	S											
4. To perform case studies on applications of microcontrollers													
UNIT-I													
UNIT-I 03 Hours													
Introd	uction Features of SST89x516RD2 A	Architecture and nir	diagram of SST89x516R	D2 Memory									
organ	ization, Stacks I/O port structure and	d configuration		DZ, Memory									
Addre	essing Modes	a comgatation		04 Hours									
Introd	luction, Instruction syntax, Instruction	n timing, Data type	s in C, Addressing mode	s, embedded									
C inst	ructions for data manipulations, C pr	rogram.	, 5										
8051	Interrupts and Timers/counters	0		08 Hours									
Timers	s and Counters, 8051 timers/counte	rs, programming 8	8051 timers in C, Basics of	of interrupts,									
8051 i	interrupt structure.												
		UNIT-II											
8051	Serial Communication			03 Hours									
Data	communication, Basics of Serial	Data Communica	ation, 8051 Serial Con	nmunication,									
conne	ctions to RS-232 (DB-9 only), Serial	communication Pro	ogramming in C.										
8051	Interfacing and Applications			12 Hours									
Interfa	acing 8051 to LED, buzzer, switch, se	ven segment displ	ay, Keyboard, LCD, relay,	parallel and									
serial	ADC, DAC, Stepper motor interfacil	ng, DC motor inte	erfacing and PWM, Exter	nal memory									
Interfa	acing.												
Case	Studios			10 Hours									
Home	Automation System Security Sy	stem Temperatur	re monitoring and Cou	trol Speed									
Measi	rement and Control Automatic Irric	nation System Mea	asurement of Voltage an	d Current									
man			is a remember of voltage an										
	Suggeste	d List of Experim	ents										
1.	Demonstration of various addre	ssing modes											
2.	Applications of logical and arith	metic instructions											
3.	Applications of branch and loop	o instructions											
4.	Embedded C programing to inte	erface LEDs and Bu	izzer										
5.	Embedded C programing to inte	erface Switch and S	Seven Segment Display										
6.	Embedded C programing to inte	erface Hex Keypad	with Seven Segment Dis	play									
7.	Embedded C programing to inte	erface LCD											
8.	Embedded C programing to inte	erface ADC											
9.	Application of serial communica	ation for debugging	g and interfacing of relay	/									
10	 Embedded C programing to interact the second se	erface DAC											
	Demons	stration Experime	nts										

1.	Demonstration of in	terfa	acino	a of	DC r	noto	or								
2.	Demonstration of in	terfa	acino	of:	Step	per	mot	or							
				,											
Cours	e Outcomes: At the end	of t	he c	ours	se st	udei	nt w	ill be	e ab	le to)				
	1. Illustrate the basics of	of m	icro	cont	rolle	rs ar	nd c	utlir	ne th	ne ar	chite	cture	, pin	diagran	٦,
	memory organization	n, di	ffere	ent a	ddre	essir	ng m	node	s of	805	1 mio	croco	ntrol	ler	
	2. Apply the concepts of	of in	terru	ipts,	time	er/co	ount	ter t	o de	velc	рар	orogra	am fo	or given	
	application														
	3. Apply the concepts of	of se	rial	com	mun	icat	ion	to d	evel	ор а	prog	gram	for g	iven	
	4. Apply the programming skills to interface external hardware units with 8051														
	 4. Apply the programming skills to interface external hardware units with 8051 5. Design real world applications using 8051 														
	5. Design real world applications using 8051														
Course Outcomes Mapping with Program Outcomes & PSO															
$\begin{array}{ c c c c c c } \hline Program Outcomes \rightarrow 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & PSO \downarrow \end{array}$															
↓ Co	urse Outcomes													1	2
	EE2003-1.1	3	2	2	-	3	-	-	-	2	2	1	1	1	2
	EE2003-1.2	3	3	3	-	3	-	-	-	2	2	2	1	2	2
	EE2003-1.3	2	2	3	-	2	-	-	-	2	2	1	1	2	2
	EE2003-1.4	3	3	3	-	3	-	-	-	3	3	2	2	2	2
	EE2003-1.5	3	3	3	-	3	-	-	-	3	3	2	2	2	2
-											_				<u> </u>
теуте											1:	LOW	2: IV	ledium	3: High
1	Konnoth I Avala "The	2051	Miz	roci	ontre	ollor	Arc	hita	ctur	n Dr	oara	mmin		Applicat	tions"
1.	2e Penram Internation	נכטכ 1 וב	996	/ Th	ome	on l	earr	nina	200	с , гт 5	Ugrai		iy œ i	Аррпса	
2	Muhammad Ali Mazidi	and	Joo Jani	ice (·	illes	nie	Maz	ridi a	and I	<u>.</u> Rolli	n D I	McKii	nlav: '	"The 80	51
2.	Microcontroller and Em	nbed	lded	Svs	tems	5 – u	sinc	lass	emt	olv a	nd C'	′ -, Pł	HI. 20	06 / Pe	arson.
	2006			-) -			- 3	,				,	,	,	
3.	V.Udayashankar and M	alika	arjun	a Sv	vam	y, "T	he 8	3051	Mic	roco	ontro	ller",	TMH,	, 2009	
REFER	RENCE BOOKS:		2												
1.	Raj Kamal, "Microcontro	oller	s: Ai	chit	ectu	re, P	rog	ram	ming	g, In	terfac	ing a	and S	ystem D	Design",
	Pearson Education, 200	05													-
2.	Micro-LABlet Hardware	and	l Sof	twa	re Do	esig	n Do	ocun	nent	s, Ve	ersior	ם_0D,	Depa	artment	of E&E,
	NMAMIT, Nitte, 2016														
3.	Datasheet, "SST89E516	RD2	-Fla	shfle	ex M	CU",	Mio	crocl	nip 1	Tech	nolog	ду			
E Books / MOOCs/ NPTEL															
1.	https://nptel.ac.in/cours	ses/	1081	L051	02										
2.	https://www.coursera.o	rg/s	peci	aliza	ition	s/io	t								

	MODERN SWI	TCHGEAR AND	PROTECTION										
		[Γ	· · · · · · · · · · · · · · · · · · ·									
Cour	se Code:	EE2004-1	Course Type:	IPCC									
Теас	hing Hours/Week (L: T: P: S):	3:0:2:0	Credits:	04									
Tota	I Teaching Hours:	40+0+26	CIE + SEE Marks:	50+50									
Prere	equisite	EE2104-1, EE2	102-1, EE2001-1										
Cours	e Objectives:	Electrical & Ele	ectronics Engineering										
Cours	e Objectives.												
1.	To understand the basic equipment	in power syster	n/substation.										
2.	To familiarize with the different gro	unding systems	implemented in power system	ms.									
3.	3. To understand the construction and working of different types of circuit breakers used in												
	power systems.												
4.	 To study the characteristics and working of various types of relays To understand the consistent product of the state of t												
5. To understand the various protection schemes of electrical machines.													
UNIT-I													
Cuital	has frees and Cinquit breakans			06110									
SWITC	nes, fuses and Circuit breakers :	law cut off cha	ractoristics Time surrant sha	U6HOURS									
fuse m	ng switch, load breaking switch, ruse	tion of fuse	ractenstics, nime current cha	facteristics,									
Princir	oles of AC Circuit breaking. Principle	es of DC Circuit	breaking problems encour	ntered in DC									
breaki	ng. Initiation of arc. maintenance	of arc. Theory	of arcing and arc quenc	hing circuit									
breakers-types – rating and comparison, RRRV, Resistor switching and capacitor switching.													
Static	Relays	· · · · · · · · · · · · · · · · · · ·		04Hours									
Basic I	Block diagram, Advantages of Static	Relays, Compar	ators, Phase and amplitude (Comparators,									
Gener	al Equations of Comparators, Anal	ysis of Amplitu	ide and Phase Comparator	s, Operating									
princip	oles, Static Overcurrent relays, Differe	ential relays, and	distance relays.										
Basic	Elements of Digital Protection:			05 Hours									
Relay	s – General classification, Principle	of operation, t	ypes, characteristics, Torqu	le equation,									
Relay	ing Schemes, Relay Co-ordination	•											
Basic (Components of a Digital Relay, Signa	I Conditioning S	ubsystems, Transducers, Surg	ge Protection									
Circuit	s, Analogue Filtering, Analogue Mul	tiplexers, Conve	rsion Subsystem, The Sampli	ng Theorem,									
Applo	Allasing Error, Sample and Hold Circ		Iplexing ,Digital-to-Analogue	e Conversion,									
Analog	gue-to-Digital Conversion, Digital Re		benefits of digital felays.										
Load-	Shedding and Frequency Relaving			08 Hours									
Introd	uction, Rate and Frequency Decline	e, Load-Sheddir	ng, Frequency Relays, Induc	tion-Cvlinder									
under	frequency Relays, Digital Freque	ency Relays, r	nicroprocessor-Based Frequ	uency Relay,									
Formu	llating a Load-Shedding Scheme, Ma	ximum Anticipa	ted Overload, Number of Lo	ad-Shedding									
Step, S	Size of the Load Shed at Each Step, F	requency Settin	gs, Time Delay, Special Consi	derations for									
Indust	rial System.												
				07 Hours									
Requi	rement of protective relaying, zones of	of protection, El	ectromechanical relay, primar	y and									
backu	p protection, essential qualities of pro	otective relaying	, classification of Electromecl	hanical									
protec	tive relays	at rolaria IDNAT	nd Directional characteristics	Duchhal-									
rolay	mectional and directional over currer	ic relays, IDIVIT a	ind Directional characteristics										
diagra	m approach	mation, iviteropi		ciay – DIUCK									
ulayia		UNIT-III											

Appar	atus and line protecti	on													07 Hours
Line P	rotection – Distance, D	iffer	enti	al p	rote	ectic	on a	nd (Carr	ier o	curre	nt pi	rotec	tion.	Generator
protec	tion – protection again	st a	bno	rma	l co	ndit	ion,	sta	tor a	and	roto	r pro	tecti	on Tr	ansformer
Protec	tion – Incipient fault–D	iffer	enti	ial p	rote	ectic	on, F	eed	ler a	nd	Bus k	, bar p	rote	ction.	
Develo	poments in New Relavir	na P	rinc	inle	ς		, .					I-			
		.g.		ipie	0										
Introdu	uction, Traveling Wave	e Ba	asec	l Pr	ote	ctio	n o	f Tr	ansi	miss	sion	Line	s, Fro	equer	ncy Based
Relayir	ng , Series Compensate	ed L	ine	Prot	tecti	ion,	Intr	odu	ictic	on, T	he D	egre	e of	com	pensation,
Voltag	e Profile of Series Com	pen	sate	ed Li	ne,	Fau	lts v	vith	Unk	ура	assed	l Seri	es C	apaci	tors, Relay
Proble	ms Due to compens	atic	on,	Volt	tage	e ar	nd	Cur	rent	In	versi	on,	Prob	lems	in reach
measu	rement. Protection of S	Seri	es c	omr	ben	sate	d lir	ne. (Con	cept	t of A	Adap	tive	Relav	ing . Fault
Locatio	Location Algorithms.														
Substa	tion Protoction														
Introdu	uction to substation ar	-hi+		ro o		mat	ion	200	lor	toc	tion	Dro	tocti	00.00	voinct over
Introduction to substation architecture, automation and protection - Protection against over voltages – Causes of over voltage Ground wires. Surge absorbers and diverters. Farthing –															
voltages – Causes of over voltage, Ground wires, Surge absorbers and diverters. Earthing -															
types. Insulation co-ordination.															
	Suggested List of Experiments														
1.	Current -Time characteristics of fuse														
2.	IDMT characteristics of non-directional OCR														
3.	Characteristics of static over-voltage relay.														
4.	DMT characteristics of static under-voltage relay.														
5.	Microcontroller based (JCK	•												
6.	Protection of transform	ers													
/.	Generator protection														
Demor	stration Experiments		- ·												
<u> </u>	Demonstration of Curre	ent -	lim	e cha	arac			of fu	ise						
<u> </u>	Demonstration of Micro	JCOL	itroi	ier b	ased		_K		- - -	4 -					
Course	Outcomes: At the end o	of th	e co	urse	stu	dent		be	able	to					
	Describe the necessity	OT SV	vitcr	1es, 1	ruse	s an	a cir	cuit	brea	aker	S.				
Z.	Describe the working p	rinc	pies	ot r	elay	anc	i neo	cessi	ty o		jital r	elayir	ng		L I. P
3.	Explain the significance	OT 1	requ	lenc	y re	lay a	ina t	o ur	naer	stan	a the	aitte	erent	load s	inedding
	Scheme Describe the working p	rinc		ofu			lave	<u></u>			t rolo	. cott	inac	fordi	forent
4.	protoctive zenes of tra	nnc	ipie	01 Va n lin		is re	lays	anu	sug	iges	t relag	y sett	ings	for all	lierent
5	Apply protection schon		<u>- 2210</u>		e. -+ lin		ono	rato	rc tr	anct	ormo	vrc an	d inc	luctio	n motors
Course	Quitcomos Manning wi	ith E	o pi	ram		tcor	nos		וז, נו כ ה	ansi	onne	15 01		uctio	11101013.
Course		1	10 9		J		nes c		0	0	10	11	12	г	
	$\frac{\text{Program Outcomes}}{\text{Outcomes}}$	1	2	5	4	5	0	/	0	9	10	11	12	r 1	$30\downarrow$
		2	2							2			1		1
		2 2	2 2	-	-	-	-	-	-	2		-	1	-	
	EE2004-1.2 EE2004-1.2	2	2 2	_	-	-		-		_	_	_	1		
		2 2	2 2	-	-	-	-	-	-	- 2	- 2	_	1	_	1
	FF2004-1.4	ר ג	ר ג	-	<u> </u>	+-	+-	-	<u> </u>	2	2		1		
[LL2007-1.J	ر	ر		I	l _	1	I –		2	1		<u>⊥</u> אי 2∙ ו	 Madii	 ım 3∙ Hiah
TEYTP	0085												vv 2. I	vicuit	an 5. mgn
1	Sunil S Rao Switchgear	8, D,	nter	tion	Kh	ann	- D	hlick	Derc	(65) 12	th odi	tion	2008	
1. 2	Badriram & Viewo Kharn	02 FI	Pow			m D	roto	ction	, כרטי ער אר	(03) (11)	, , <u>13</u>	ar" T	<u>ыоп,</u> мц /	2000	2 nd
۷.		пα,	1 0 11	5.5	ysie	III E I		cuol	· U.	J VVIU	ungeo	וו , וו	wii i, (J.,,	<u>~</u>

	edition,2013.
3.	Y G. Painthankar and S R Bhide, "Fundamentals of power system protection", PHI
	publication, , 2 nd edition, 2010.
4.	Bhavesh Bhalja, R.P Maheshwari, N.G.Chothani, "Protection and Switchgear", Oxford
	University Press, 2 nd edition, New Delhi, 2010.
5.	Ramesh Bansal, "Power System Protection in Smart Grid Environment", CRC Press,
	1st Edition, 2019
REFER	ENCE BOOKS:
1.	A. Chakarbarti, M.L. Soni and P.V. Gupta, U.S. Bhatnagar, "Power system engineering" ,
	Published by Gagan Kanur, Dhanapat Rai and Co Pvt. Ltd,2013.
2.	Ravindarnath & Chandra, "Power System Protection & Switchgear", New age Publications.
	(GS),1 st edition,2011.
3.	Phadke A.G and J.S. Thorp, "Computer Relaying for Power Systems", Research Study Press
	Ltd, John Wiley & sons, Taunton, UK, 1988.
4.	B.A Oza and R.P Mehta, "Power System Protection", TMH Publication, 2013.
E Bool	ks / MOOCs/ NPTEL
1.	NPTEL course on Power System Protection and Switchgear By Prof. Bhaveshkumar R. Bhalja,
	IIT Roorkee
2.	NPTEL Course on Power System Protection by By Prof. Ashok Kumar Pradhan, IIT Kharagpur
3.	NPTEL course on Digital Protection of Power System by Prof. Bhaveshkumar R. Bhalja, IIT
	Roorkee

	N	ETWORK ANAL	YSIS								
Cour	rse Code:	EE2005-1	Course Type:	IPCC							
Teac	hing Hours/Week (L: T: P: S):	3:0:2:0	Credits:	04							
Tota	l Teaching Hours:	40+0+26	CIE + SEE Marks:	50+50							
Prer	equisite	EE1001-2									
*One	e additional tutorial class will be a	llotted every w	veek								
	Teaching Departmen	nt: Electrical & E	electronics Engineering								
Cours	e Objectives:										
1.	To familiarize the basic laws, theore	ems and the me	thods of analyzing electrical								
	Circuits including coupled circuits.										
2.	To explain the concept of resonance	ce and coupling	in electric circuits								
3.	To familiarize the analysis of three-	-phase circuits									
4.	To analyze the transient response of	of circuits with D	C and sinusoidal AC input								
5.	To synthesize the given signal in te	erms of basic sig	nals								
6	To solve and obtain the behavioral	equation for a g	given network using Laplace ti	ansforms							
7 To represent the output and input parameters of a given network using two port network											
	parameters.										
		UNIT-I									
Indep	endent and Dependent sources	• • •	· · · · · · · · · · · · · · · · · · ·	08 Hours							
Source	e transformation, DC and AC multi-lo	oop circuit analys	sis- mesh and node analysis (si	uper mesh and							
super	node included) for electric circuit w	ith linearly depe	ndent and independent source	es. Coefficient							
Of COU	ipling, dot convention for coupled c	olis and analysis	of coupled circuits.								
Sorios	and parallel reconance. O factor, ha	ndwidth		04 Hours							
Junha	and parallel resonance, Q lactor, ba	nawiath.									
Analys	sis of throo-phase unbalanced systems	me noutral chift	calculation of real and reactiv								
Analys	sis of three-phase unbalanced system			e powers.							
		UNIT-II									
Trans	ient behaviour and initial conditio	ons		04 Hours							
Behav	ior of circuit elements under switchi	ng. Conditions a	nd their representations, evalu	Jation of							
initial	and final conditions in RL, RC and R	LC circuits with A	AC and DC excitations,								
Wave	form Synthesis			04 Hours							
Impuls	se, Step, Ramp and sinusoidal signal	s. Synthesis of a	periodic and periodic signals a	and their							
Laplac	ce Transforms	,									
Trans	form method of analysis			04 Hours							
Reviev and R	w of Laplace transformation, Laplace	Transform of ne	etwork and time domain solut	ion for RL, RC							
Two	port networks			03 Hours							
Short	circuit admittance parameters(y), Or	pen circuit imped	dance parameters(z), T parame	eters, h							
param	neters, Relationship between parame	ter sets.		·							
	· · ·										
		UNIT-III									
Netw	ork theorems			10 Hours							
Netw	ork reduction, Star-Delta conversion	ion, Superpositi	ion, Reciprocity, Thevenin's	and Norton's							
theore	em, Maximum power transfer theore	em, Millman's the	eorem as applied to AC and D	C circuits.							
	Sugge	sted List of Exp	eriments								
1.	Verification of KVL, KCL for mult	ti-loop electrical	circuits with DC/AC independ	ent sources							
	through simulation software										
1.15				Page 151							

2.	2. Verification of KVL, KCL for multi-loop electrical circuits with DC / AC controlled dependent															
	sources through simula	atio	n sot	ftwa	re.											
3.	Analysis of series resor	nanc	e co	nce	pt ar	nd p	lot o	of cu	irren	t, im	npeda	ance,	X _L , X	c, phase	angle	VS
	frequency			-		-					•				0	
4.	Analysis of parallel reso	onar	nce d	conc	ept	and	plot	of	curre	ent v	s fre	quen	cy.			
5.	Analysis of First order I	R-L	and	R-C	circu	uits										
6.	Analysis of First order I	R-L a	and	R-C	circu	uits a	and	seco	ond	orde	er RLO	C circ	uit th	rough s	imulati	on
	software and validation	ו of	resu	ilts u	isinc	ı Lar	blace	e tra	nsfo	rm r	neth	od.				
7.	Verification of impedar	nce/	′ adr	nitta	nce	para	ame	ters	of t	a ov	ort r	etwo	rk th	rouah s	imulati	on
	software	,				1				- 1-				- <u></u>		
8.	Verification of Theveni	n's t	heo	rem												
9	Verification of Norton'	s the	eore	m ar	nd M	/axir	ทบท	סמ ו	wer	tran	sfer t	heor	em.			
1(). Verification of Superpo	sitio	on a	nd R	ecip	oroci	tv tł	neor	ems							
	··· · · · · · · · · · · · · · · · · ·															
Cours	Course Outcomes: At the end of the course student will be able to															
	1. Apply KCL & KVL to solve the DC and AC circuits including coupled circuits.															
	2 (i) Analyze electrical re	sona	ance	in a	seri	ies a	nd r	hara	llel r	netw	orks		neare			-
	(ii) Analyze the unbala		d thr	ee-r	has	e cir	cuit	s to	com	nute		rent	volta	ne and	nower	
	3 (i) Analyze the initial ar	nd fi	inal (conc	litio		fao	iver	n net	worl	k k	ent,	vonta	ge una	pomen.	
	(ii) Synthesize the give	(ii) Synthesize the given signal in terms of impulse, step, ramp and sinusoidal functions														
	. (i) Solve the given network to study the transient and steady state behavior using															
	Laplace transform method															
	(ii) Obtain the two port network parameters for a given networks															
	 (i) Reduce the given network using star – delta transformation 															
	(ii)Apply the network theorems to estimate steady state response for a given excitation															
<u> </u>	(II)Apply the network theorems to estimate steady state response for a given excitation															
Cours	A Outcomes Manning wit	h D	roar	am	∩ut	com	005 8		50							
cours	Program Outcomes	1	2	2	4	5	6	7	8	9	10	11	12	PC		T
	Course Outcomes	-	2		Т	5	0	ļ '	0		10		12	1		-
↓ `	EF2005-1 1	2	2	_	_	2				2	2	_	1		2	-
	EE2005-1.1 EE2005-1.2	ר ר	2	_		2				2	2		1		2	-
		ר כ	2	-	-		-	-	-	2	2	_	1		2	_
	EE2005-1.5	с С	2 2	-	-	- 2	-	-	-	2	2	-	1	-	2	-
		2 2	2	-	-	2	-	-	-	2	2	-		-	2	-
	EE2005-1.5	3	3	-	-	Z	-	-	-	Z	Z	-			3	
												1: LC	ow 2:	Mediu	<u>m 3: H</u>	ign
IEXIE	BOOKS:	<u> </u>												– 11.1		
1.	W.H. Hayt and J.E Kemme	erley	<u>/, "Ei</u>	ngın	eerii	ng ci	ircui	t An	alys	IS", N	VICGr	aw H	ill, 8ti	h Editio	n 2014.	
2.	Ravish R. Singh, "Networl	k An	alys	is an	id Sy	/nth	esis	<u>′, M</u>	cGra	w H	III Ed		on, 20)17.		
3.	A Chakrabarthi, "Electric of	circu	uits",	Dha	anpa	ith R	lai a	nd c	omp	bany	, 6th	Editio	on.20	14.		
REFER	RENCE BOOKS:															
1.	Charles K Alexander, Mat	the	νN	O Sa	adiku	л, "F	und	ame	ntal	s of I	Elect	ric Ci	rcuits	", Mc G	raw Hill	Ι,
	5th Edition, 2013.												_			
2.	2. M.E Van Valkenberg, "Network Analysis", 3rd Edition, Series Volume: 7, Prentice Hall															
	Publishers. 2014.															
3.	Mahmood Nahvi, "Electri	c Ci	rcuit	s", N	/Ic G	raw	Hill,	5th	Edit	ion,	2009).				
E Boo	ks / MOOCs/ NPTEL															
1.	https://archive.nptel.ac.in	/co	urse	s/10	8/10)5/1	081()515	59/							
2.	https://www.coursera.org	/lea	arn/li	inea	r-cir	cuits	<u>s-dc</u>	ana	lysis							

Page | 153

Ø

	INDUSTRIAL I	DRIVES AND A	PPLICATIONS	
Cou	rse Code:	FE3001-1		IPCC
Top	ching Hours (Week (I · T· P· S)	3.0.2.0	Credits	04
Tota	I Teaching Hours	<u> </u>	CIE + SEE Marks	50+50
Dror		40+0+20 FE3101-1 FE	2102-1 FE2001-1	30+30
Flei	Tooching Doportmont	Eloctricol & E	2102-1, EE2001-1 loctronics Engineering	
Cour			lectronics Engineering	
Cours	se Objectives.			
1	To study the basic principle of Indu	strial Drives its	requirements its charac	rteristics
	selection and design and finally diff	ferent application	nequirements, its endiat	
2	To model an Electrical Drive and un	derstand its ste	eady state transient beh	avior
	To understand the need of industri	al drives its cor	trol and design of differ	rent parameters
4	To differentiate the AC and DC driv	es and their sel	ection based on require	ments, and their
	characteristics			
5.	To apply the knowledge in selection	n of drives for r	eal Industrial application	15.
		UNIT-I		
AN II	NTRODUCTION TO ELECTRICAL DR	IVES & ITS DY	NAMICS	12 Hours
Electr	ical drives. Advantages of electrical c	drives. Parts of	electrical drives, choice	of electrical drives,
status	s of dc and ac drives. Dynamics of ele	ctrical drives, Fu	undamental torque equa	ation, speed torque
conve	entions and multi-quadrant operatio	n. Equivalent v	alues of drive paramete	ers, components of
load	torques, nature and classification o	f load torques	, steady state stability,	load equalization,
nume	rical problems			
Selec	tion of motor power rating			03 Hours
Classe	es of motor duty, Starting and braking	g of DC shunt a	nd series motor.	
6011		UNIT-II		1011
CON	ROL OF DC MOTOR DRIVES	utual of do our		10 Hours
Single	e phase fully controlled rectifier, col	ntrol of ac sep	barately excited motor,	Single-phase half-
contro	Slied rectifier control of dc separately	excited motor.	multi-quadrant operation	on of ac separately
excite	alled de drives chapper controlled	rectilier. Rectil	de motor Chopper cont	tral of series motor
numo	prical problems		uc motor, chopper com	lioi of series motor,
				05 Hours
Stato	r voltage control variable voltage free	nuency control	from voltage sources vo	
invert	er control closed loop control current	nt source invert	er control current regul	lated voltage
sourc	e inverter control, rotor resistance co	ntrol slip nowe	r recovery speed contro	of single-phase
induc	tion motors, numerical problems	naioi, siip powe	r recovery, speed contre	i or single pruse
		UNIT-III		
SYNC	HRONOUS MOTOR DRIVES			07 Hours
Opera	ation form fixed frequency supply, syr	nchronous mot	or variable speed drives,	variable frequency
contr	ol of multiple synchronous motors.	Self-controlled	synchronous motor dri	ve employing load
comn	nutated thyristor inverter.			
INDU	STRIAL DRIVES			03 Hours
Rollin	g mill drives, cement mill drives and	paper mill drive	S	
	Suggest	ed List of Expe	eriments	
Simu	lation			
1.	Simulation of single-phase half	wave phase-co	ontrolled converter wi	th R and R-L load

3.		-											_	• -	
- •	Simulation of single-phase using MATLAB	se fu	ill wa	ave	pha	se-c	ont	rolle	ed co	onv	erter	with	R ai	nd R-	-L load
4.	To study open loop and o	close	ed lo	оор	con	trol	of B	LDC	C ma	otor	•				
5.	To study open loop and o	close	ed lo	oop	con	trol	of D	DC m	notc	or.					
6.	To Study Simulation of Si	ngle	e Ph	ase	Full-	-Wa	ve B	Bride	ge ir	iver	ter o	n MA	ATLA	B.	
lardv	vare	3						-							
1.	To control speed of induc	ctior	n mo	otor	usir	ng st	ato	r vo	ltag	e co	ontro	Ι.			
2.	Speed control of DC shur	nt m	otoi	r by	arm	atu	e v	olta	ge c	ont	rol m	netho	d		
3.	To study the speed contr	ol o	f inc	lucti	on r	not	or b	y va	iryin	g si	upply	/ frec	luen	су	
	, , ,							,	,	<u> </u>					
ours	e Outcomes: At the end of th	ne co	ourse	e stu	dent	t will	be a	able	to						
1.	Analyze basic principle of In requirements	dust	rial [Drive	es an	id th	eir s	elec	tion	bas	ed or	n sou	rce /	load	
2.	Explain starting and braking	of d	lc se	ries a	and	shur	nt m	otor	S						
3.	Explain the operation of pow	ver e	elect	ronic	c cor	nvert	ers i	in D	C dri	ves.					
4.	Develop steady / transient n	node	els of	f Ind	uctio	on m	oto	r dri	ve to	о со	ntrol	using	j pov	ver	
	electronics controllers														
5.	Control the Synchronous Me	otor	Driv	es us	sing	pow	er e	lectr	ronic	s co	ontrol	lers.	And	apply	' the
	acquired knowledge in selec	tion	of c	lrive	s for	real	WOI	rld Ir	ndus	trial	appl	icatio	ns.		
ours	e Outcomes Mapping with	Prog	gram	1 Ou	tcor	nes	& P	SO							
	Due avera Outre mee	1	2	2	4	-	C	7	0	0	10	11	10		
		1	2	3	4	Э	0	/	ð	9	10	11	12	1	
Ţ		2	2										1	<u> </u>	2
	FF3001-1.1	ך 2	ך כ	_	_	-	_	_	_	_	_	_	1	_	_
		5	5				_	_	_	-		_	-	<u> </u>	_
	FF3001-1.3	3	3	-	-	-					-				
	EE3001-1.3 EE3001-1.4	3	3	-	-	-	_	_	-	_	-	_	1 1	_	_
	EE3001-1.3 EE3001-1.4 EE3001-1.5	3 3 3	3	- - -	- - -	-	-	-	-	-	-	-	1 1	-	-
	EE3001-1.3 EE3001-1.4 EE3001-1.5	3 3 3	3 3 3	- -	- -	-	-	-	-	-	- - 1: Lo	- - w 2:	1 1 1 Mec	- - lium	- - 3: Hiał
	EE3001-1.3 EE3001-1.4 EE3001-1.5	3 3 3	3 3 3	- -	- -	-	-	-	-	-	- - 1: Lo	- - ow 2:	1 1 Mec	- - lium	- - 3: Higł
	EE3001-1.3 EE3001-1.4 EE3001-1.5	3 3 3	3 3 3	-	-	-	-	-	-	-	- - 1: Lo	- - w 2:	1 1 Mec	- - lium	- - 3: Higł
EXTB 1.	EE3001-1.3 EE3001-1.4 EE3001-1.5 BOOK: G.K Dubey, "Fundamentals	3 3 3 of El	3 3 3 ectri	- - - cal D	- - Drive	- - s″-2	- -	- - Jitio	- - n, Na	- -	- - 1: Lo	- - w 2: olishir	1 1 Mec	lium	- - 3: Higł
EXTB 1.	EE3001-1.3 EE3001-1.4 EE3001-1.5 SOOK: G.K Dubey, "Fundamentals Chennai, 2010	3 3 3 of El	3 3 3 ectri	- - cal D	- - Drive	- - s″-2	- -	- -	- - n, Na	- -	- - 1: Lo	- - ow 2: Dlishir	1 1 Mec	- lium	- - 3: Higł
EXTE 1. EFER	EE3001-1.3 EE3001-1.4 EE3001-1.5 BOOK: G.K Dubey, "Fundamentals Chennai, 2010 EENCE BOOKS:	3 3 3 of El	3 3 3 ectri	- - cal D	- - Drive	- - s"-2	- -	- - ditio	- - n, Na	- - aros	- - 1: Lo	- - - - - - - - - - - - - - - - - - -	1 1 Mec	ium	- - 3: Higł
EXTB 1. EFER 1.	EE3001-1.3 EE3001-1.4 EE3001-1.5 BOOK: G.K Dubey, "Fundamentals Chennai, 2010 EENCE BOOKS: N.K De and P.K. Sen-, "Elect	3 3 3 of El	3 3 ectri	- - cal D	- - Drive	- - s"-2	- - nd Ec	- - dition	- - n, Na	- - aros	- - 1: Lo	- - ow 2:	1 1 Mec	ium	- 3: Higł
EXTE 1. EFER 1. 2.	EE3001-1.3 EE3001-1.4 EE3001-1.5 SOOK: G.K Dubey, "Fundamentals Chennai, 2010 ENCE BOOKS: N.K De and P.K. Sen-, "Elect S.K Pillai, "A First Course Or	3 3 of El	3 3 ectri Driv	- - cal D ves" l	- - Drive PHI, es″ \	- - - s"-2 <u>1st e Wiley</u>	- - ditic	- dition	- - n, Na 009	- - aros	- - 1: Lc	- ow 2:	1 1 Mec	- lium	- - 3: Higł
EXTE 1. 1. 2. 3.	EE3001-1.3 EE3001-1.4 EE3001-1.5 SOOK: G.K Dubey, "Fundamentals Chennai, 2010 ENCE BOOKS: N.K De and P.K. Sen-, "Elect S.K Pillai, "A First Course Or V.R. Moorthi, "Power Electro	3 3 of El	3 3 ectri Driv ctric 5, De	cal D ves" l Drive	- - Drive PHI, es" \ s, Cir	- - - - - - - - - - - - - - - - - - -	- - ditic / Eas	- dition	- - n, Na 009 n Ltd Justi	- - aros	- - 1: Lo a put	- ow 2: olishir	1 1 Mec	- lium Duse	- 3: High
EXTE 1. EFER 1. 2. 3.	EE3001-1.3 EE3001-1.4 EE3001-1.5 SOOK: G.K Dubey, "Fundamentals Chennai, 2010 ENCE BOOKS: N.K De and P.K. Sen-, "Elect S.K Pillai, "A First Course Or V.R. Moorthi, "Power Electro University Press, 2005.	3 3 of El	3 3 3 ectri <u>Driv</u> ctric 5, De	cal D ves" I Driv	- - Drive PHI, s, Cir	s"-2	- - ditic <u>/ Eas</u>	- - - - - - - - - - - - - - - - - - -	- - - 009 1 Ltd	- - aros 199	- - 1: Lo a puk	- - ow 2: Dishir	1 1 Mec	- lium Duse	- - 3: Higł
EXTE 1. 2. 3. Bool	EE3001-1.3 EE3001-1.4 EE3001-1.5 BOOK: G.K Dubey, "Fundamentals Chennai, 2010 ENCE BOOKS: N.K De and P.K. Sen-, "Elect S.K Pillai, "A First Course Or V.R. Moorthi, "Power Electro University Press, 2005. ks / MOOCs/ NPTEL	3 3 3 of El	3 3 3 ectri Driv ctric 5, De	cal Drive	- - Drive PHI, es" \ s, Cir	s"-2	- - - ditic <u>/ Eas</u>	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - aros <u>199</u>	- - 1: Lo a put	- ow 2: plishir	1 1 Mec	- lium Duse	- 3: High
EXTE 1. 2. 3. Boo 1.	EE3001-1.3 EE3001-1.4 EE3001-1.5 BOOK: G.K Dubey, "Fundamentals Chennai, 2010 ENCE BOOKS: N.K De and P.K. Sen-, "Elect S.K Pillai, "A First Course Or V.R. Moorthi, "Power Electro University Press, 2005. ks / MOOCs/ NPTEL http://nptel.ac.in/courses/1	3 3 of El Electrical	3 3 3 ectri <u>Driv</u> ctric ;, De	cal D ves" I Driv vices	- - Drive PHI, s, Cir	s"-2	- - - ditic / Eas	- - - dition - - - - - - - - - - - - - - - - - - -	- - n, Na 009 1 Ltd	- - aros 199	- - 1: Lo a puk	- ow 2: Dishir	1 1 Mec	- lium Duse	- - 3: High
EXTE 1. 2. 3. Bool 1. 2.	EE3001-1.3 EE3001-1.4 EE3001-1.5 SOOK: G.K Dubey, "Fundamentals Chennai, 2010 ENCE BOOKS: N.K De and P.K. Sen-, "Elect S.K Pillai, "A First Course Or V.R. Moorthi, "Power Electro University Press, 2005. ks / MOOCs/ NPTEL http://nptel.ac.in/courses/1 https://ocw.tudelft.nl/cours	3 3 3 of El Denics 0810 es/el	3 3 3 ectri ctric 5, De	cal Drives	- - Drive PHI, es″ \ s, Cir macl	s"-2	- - - ditic <u>/ Eas</u> 5 and 5 and	dition	n, Ni	- - aros 199 rial /	- - 1: Lo a put a put	- ow 2: plishir	1 1 Mec ng ho	- lium Duse	- 3: High
EXTE 1. 2. 3. Bool 1. 2.	EE3001-1.3 EE3001-1.4 EE3001-1.5 BOOK: G.K Dubey, "Fundamentals Chennai, 2010 ENCE BOOKS: N.K De and P.K. Sen-, "Elect S.K Pillai, "A First Course Or V.R. Moorthi, "Power Electro University Press, 2005. ks / MOOCs/ NPTEL http://nptel.ac.in/courses/1 https://ocw.tudelft.nl/cours	3 3 of El DElectorics	3 3 3 ectri ctric ;, De 0807 lectr NEA	cal D cal D Driv vices 7/ ical-I R CC	- - Drive PHI, s, Cir macl	s"-2 s"-2 <u>1st e</u> Wiley rcuits	ditic / Eas s and s-an SYS	- - - ditition - - - - - - - - - - - - - - - - - - -	- - n, Na 009 n Ltd dusti	- - - - - - - - - - - - - - - - - - -	- - 1: Lo a puk	- ow 2: olishir	1 1 Mec ng ha	- lium Duse	- - 3: High
EXTE 1. 2. 3. Bool 1. 2. Cour	EE3001-1.3 EE3001-1.4 EE3001-1.5 SOOK: G.K Dubey, "Fundamentals Chennai, 2010 ENCE BOOKS: N.K De and P.K. Sen-, "Elect S.K Pillai, "A First Course Or V.R. Moorthi, "Power Electro University Press, 2005. ks / MOOCs/ NPTEL http://nptel.ac.in/courses/1 https://ocw.tudelft.nl/cours	3 3 of El Denics 0810 es/el	3 3 3 ectri 5, De 0807 lectr NEA	- - - cal D Driv vices 7/ ical- R CC EE3(- - Drive PHI, es" \ s, Cir macl DNTI 002-	s"-2	ditic / Eas s and s-an SYS	dition dition d Inc d-di TEN	- - n, Ni 009 1 Ltd dusti	- - aros 199 rial /	- - 1: Lo a put a put - - - - - - - - - - - - - - - - - - -	- ow 2: olishir catior	1 1 Mec ng ho ns" "(es	- lium Duse Dxfor	- 3: High
EXTE 1. 2. 3. Bool 1. 2. Cour Teac	EE3001-1.3 EE3001-1.4 EE3001-1.5 BOOK: G.K Dubey, "Fundamentals Chennai, 2010 ENCE BOOKS: N.K De and P.K. Sen-, "Elect S.K Pillai, "A First Course Or V.R. Moorthi, "Power Electro University Press, 2005. Ks / MOOCs/ NPTEL http://nptel.ac.in/courses/1 https://ocw.tudelft.nl/cours se Code: hing Hours/Week (L: T: P: S	3 3 of El DElectorics 0810 es/el LII	3 3 3 ectri ctric ;, De	- - - - - - - - - - - - - - - - - - -	- - Drive PHI, - S, Cir macl DNTI 002- 2:0	s"-2 1 st e Wiley cuits	ditic / Eas s and s- an SYS	- - - dition - - - - - - - - - - - - - - - - - - -	- - n, Na 009 n Ltd dusti	- - - aros 199 rial /	- - 1: Lo a puk - a puk - - - - - - - - - - - - - - - - - - -	- pw 2: plishir catior ecture se Ty Cred	1 1 1 Mec ng ha ns" "(es pe: its:	- lium Duse Dxfor	- - 3: High
EXTE 1. EFER 1. 2. 3. Bool 1. 2. Cour Teac Total	EE3001-1.3 EE3001-1.4 EE3001-1.5 SOOK: G.K Dubey, "Fundamentals Chennai, 2010 ENCE BOOKS: N.K De and P.K. Sen-, "Elect S.K Pillai, "A First Course Or V.R. Moorthi, "Power Electro University Press, 2005. ks / MOOCs/ NPTEL http://nptel.ac.in/courses/1 https://ocw.tudelft.nl/cours se Code: hing Hours/Week (L: T: P: S I Teaching Hours:	3 3 3 of El Defension Defe	3 3 3 ectri ctric 5, De 0807 NEA	- - - - - - - - - - - - - - - - - - -	- - - Drive PHI, es" \ cir mac DNTI 002- 2:0 0+2	s"-2 s"-2 1 st e Wiley cuits hine ROL	ditic / Eas s and s-an SYS	dition	- - n, Ni 009 1 Ltd dustr rives 1S	- - aros 199 /?viu	- - 1: Lo a put a put a put - - - - - - - - - - - - - - - - - - -	- ow 2: olishir catior ecture se Ty Cred E Mar	1 1 1 Mec ng ho ns" "(es pe: its:	- lium Duse Dxfor IPCC 04 50+	- 3: High d

*One additional tutorial class will be allotted every week

Teaching Department: Electrical & Electronics Engineering

Cour	se Objectives:
1.	To introduce modeling and analysis of electrical, electromechanical and mechanical systems.
2.	To familiarize the students with analytical and graphical techniques to study the system
	stability
3.	To make the students familiar with the time and frequency domain analysis of the system

Modelling of systems

08 Hours

04 Hours

06 Hours

Mathematical modelling of physical system - electrical, mechanical, electromechanical systems, gear train, analogous system, Force voltage and force current analogy, Torque voltage and torque current analogy.

UNIT-I

Block diagrams and signal flow graphs03 HoursTransfer functions, Block diagram algebra, Signal Flow graphs (State variable formulation excluded)Time Response of feedback control systems04 Hours

Standard test signals, Unit step response of first and second order systems, time response specifications of first & second order systems, steady-state static errors, and error constants.

UNIT-II	
Stability analysis	03 Hours
Concepts of stability, necessary conditions for stability, Routh- stability criterion, relative stab	ility analysis.
Root–Locus Techniques	04 Hours
Introduction, root locus concepts, construction of root loci, effect of addition of poles and z	eroes
Frequency domain analysis	08 Hours
Frequency response specification, correlation between time and frequency response, Bode pl	lots. All pass,
minimum & non-minimum phase systems, assessment of relative stability using	Bode plots,

determination of transfer functions from Bode plots.

UNIT-III

Compensators and Controllers

Compensators, lead, lag, lag-lead networks, controllers P, PI, PID (qualitative analysis)

State Space Analysis:

Definition of state, state variables, state vectors and state space. State-Space equations and Block diagram representation, State space equations and block diagram of mechanical and electrical systems. Correlation between transfer functions and state-space equations. State-Space representation of scalar differential equation systems.

	Suggested List of Experiments
1.	Introduction to MATLAB and Simulink
2.	Mathematical modeling of physical system and applying Force Voltage and Force Current
	analogy using differential equation
3.	Mathematical modeling of physical system and applying Force Voltage and Force Current
	analogy in 's' domain
4.	Transient analysis of an armature-controlled DC motor
5.	Time response analysis of first order system
6.	Time response analysis of second order system and finding performance parameters
7.	Root locus and bode plot of a given system
8.	Lead, lag and lag-lead compensator
9.	Effect of PD, PI and PID controller
10.	Conversion of transfer function to state space model

Со	urse	Outcomes: At the end of	the	cou	rse s	tude	ent v	vill k	oe al	ole t	0						
_																	
	1.	Develop mathematical m	ode	els of	fele	ctric	al, m	nech	anic	al ar	nd e	lectro	omec	hanic	al linea	r systen	ns
		to study the system dyna	mic	S.													
	2.	Perform time response an	naly	sis c	of firs	st ar	nd se	econ	d or	der	syst	ems t	o det	termi	ne perf	ormanc	е
		parameters															
	3.	Apply Routh- stability cri	terio	on a	and r	oot	Ιοςι	is te	chni	que	to c	leterr	nine	syste	m stabi	lity	
	4.	To apply bode plot to as	sess	syst	tem	stab	ility.										
	5.	Develop various compen-	sato	ors, c	ontr	olle	rs ar	nd d	eter	mine	e sta	te sp	ace r	epres	sentatio	n for th	e giv
		transfer function															
Co	Course Outcomes Mapping with Program Outcomes & PSO																
	Program Outcomes→ 1 2 3 4 5 6 7 8 9 10 11 12 PSO↓																
	↓ C	ourse Outcomes													1	2	
		EE3002-1.1	3	3	-	-	-	-	-	-			-	1	-	2	
		EE3002-1.2	3	3	-	-	2	-	-	-	2	2	-	1	-	2	
		EE3002-1.3	3	3	-	-	2	-	-	-	2	2	-	1	-	2	
		EE3002-1.4	3	3	-	-	2	-	-	-	2	2	-	1	-	2	
		EE3002-1.5	3	3	-	-	2	-	-	-	2	2	-	1	-	2	
													1: L	ow 2	: Mediu	um 3: H	ligh
TEX	ктво	DOKS:															
	1.	K. Ogata, "Modern Contro	ol Ei	ngin	eerir	ng ",	Pea	rsor	n Edi	ucat	ion /	Asia/	PHI,	4th E	dition, 2	2002.	
	2.	J. Nagarath and M.Gopal,	, "Co	ontro	ol Sy	sten	ns Ei	ngin	eeri	ng",	Nev	v Age	e Inte	rnatio	onal (P)	Limited	l,
		Publishers, 5th edition – 2	200	7													
RE	FERE	NCE BOOKS:															
	1.	Richard C. Dorf and Robe	ert ⊢	l Bis	hop,	"Mo	oder	n Co	ontro	ol Sy	rster	ns Bc	ok",	Prent	ice Hall	, 12 edi	tion
	2.	Norman S. Nise, "Control	Sys	tem	s En	gine	erin	g″, ∖	Viley	y Inc	lia P	vt. Lt	d, 7th	n edit	ion, 201	4	
ΕB	ook	s / MOOCs/ NPTEL															
	1.	https://onlinecourses.npt	el.a	c.in/	noc2	21_d	e08,	/pre	view								
	2.	https://onlinecourses.npt	el.a	c.in/	noc2	20 e	e22/	/prev	view								

2. https://onlinecourses.nptel.ac.in/noc20_ee22/preview

SIGNAL ANALYSIS AND PROCESSING								
Cou	rse Code:	EE3003-1	Course Typ	be: IPCC				
Teac	hing Hours/Week (L: T: P: S):	3:0:2:0	Credi	ts: 04				
Tota	I Teaching Hours:	40+0+26	CIE + SEE Marl	ks: 50+50				
Prer	equisite	MA2009-1, M	A2004-1, EE2005-1					
*One	e additional tutorial class will be all	lotted every we	ek 🤅					
	Teaching Department:	Electrical & Ele	ectronics Engineering					
Cours	e Objectives:							
1.	To understand the basic operations	on signals and	properties of systems.					
2.	To explain the properties of linear ti	ime invariant sys	tems in terms of impulse	response				
	description.							
3.	To know the Fourier representation	of continuous ti	me & discrete time perio	dic &				
	aperiodic signals and their propertie	es.						
4.	To evaluate DFT of various signals u	ising its properti	es.	• • •				
5.	To evaluate the effective computation	on of DFT using	tast fourier Transform alg	jorithms.				
<u> </u>	To know the importance of sampling	g theorem in sig	nal processing.					
/.	To design infinite impulse response	digital filters us	ng bilinear transformatio	n technique				
8.	roctangular window	for the design of	of linear phase FIR filters t	lsing				
Intro	duction:	0111-1		06 Hours				
Conti	nuous time and Discrete time signals	transformation		exponential and				
sinuso	pidal signals, unit impulse, unit step :	and Sine functio	ons. The sampling theore	m. The effect of				
under	sampling: Aliasing, Discrete time pro	ocessing of cont	inuous time signals, Sam	pling of discrete				
time s	signals, Quantization.	5	5					
Conti	nuous time and Discrete time syste	ems		09 Hours				
Conti	nuous time and Discrete time system	s, Properties of s	system. Continuous time	LTI systems: The				
Convo	olution Integral. Discrete time LTI syste	em: Convolution	Sum. Properties of LTI sy	stem (Numerical				
exclud	ded), Causal LTI systems described by	Difference and	Differential equations.					
		UNIT-II						
Fouri	er Representation of Periodic Signa	als		08 Hours				
Introc	luction, Fourier representation of o	continuous-time	periodic signals in ex	ponential form,				
Conve	rgence of the Fourier series. Fourier r	representation o	f Discrete-time periodic s	signals				
The (continuous-time Fourier transform:	Properties of	continuous-time Fourier	transform, The				
Discre	te-lime Fourier Transform: Represent	tations of aperio	dic signals, duality. Syster	ns characterized				
Discr	ear Constant Coefficient Difference e	quations]					
Eouric	are rourier fransform	auoncos: Discrot	to Fourier Transform (DET	Droportios of				
	Computation of DET: Decimation-in-T	ime FET algorith	ms (Radiv-2 Algorithm)), Properties of Decimation_in_				
Frequ	ency FET algorithms (Radix-2 Algorith	nne i i aigontii m)	ms, (Naux-2 Aigorithin), i					
Trequ								
		UNIT-III						
Struc	ture for discrete time systems			10 Hours				
Block	diagram representation of Linear Cor	nstant coefficient	difference equations. Ba	sic structures for				
IIR sy	stems(Direct Form I & II only), Basi	c Structure of F	IR systems. (Direct form	s and Cascaded				
Struct	ures). Design of Discrete time II	R filters from	continuous time filters	using Bilinear				
Trans	formation (Butterworth LPF only). Frec	quency Transforr	nation of Low pass IIR filte	ers (theory only).				
Desig	n of FIR filters by rectangular window	. (Low Pass Filte	design only)					

	Suggested List of Experiments 1 Depresentation of basic signals and varification of properties of signals															
	1. Representation of basic signals and verification of properties of signals.															
	2. Realization of Sampling theorem and Aliasing															
	3.	Finite and Infinite Respo	nse	of a	n Ll	I Sys	stem) .								
	4. -	Linear & Circular Convol	utic	n of	two	giv	en s	equ	ence	es.						
	5.	Realization of Dirichlet C	onc	litio	ns to	or Fo	urie	r Se	ries.							-
	6. Verification of Properties of Continuous time Fourier transform.															
	7. Verification of DFT properties: i) Frequency shift ii) Time shift iii) Linearity iv) Auto Correlation															
	& Cross Correlation v) Parseval's Theorems.															
	8. Computation of N point DFT of a given sequence.															
	9. Design and Implementation of Analog and Digital IIR filter to meet the given specifications for the Low pass filter.															
	10. Design and implementation of FIR filter to meet the given specifications using Rectangular LPF.															
Сс	Course Outcomes: At the end of the course student will be able to															
1	1. Analyse signals and systems to study the behavioural aspects & determine the impulse response of CT & DT systems using convolution.										ılse					
2		Analyse Continuous and	Disc	crete	e LTI	syst	ems	to o	dete	rmin	e th	e im	oulse	respo	onse an	d
	convolution.															
3		Apply Fourier technique	to o	btai	n th	e fre	que	ncy	dom	nain	repr	esen	tatior	n of c	ontinuc	ous-time
		& discrete-time aperiodi	c sic	gnals	5			5			•					
4		Apply FFT to compute th	e fre	eque	ency	don	nain	rep	rese	ntat	ion c	of dis	crete	time	sequer	nce
5		Design of IIR and FIR filte	ers t	o de	tern	nine	the	filte	r co	effic	ients	for a	a give	en spo	ecificati	on
Сс	ourse	e Outcomes Mapping wi	th F	Prog	ram	Ou	tcor	nes	& P	SO						
		Program Outcomes→	1	2	3	4	5	6	7	8	9	10	11	12	PS	JO↓
	↓ Co	ourse Outcomes														
		EE3003-1.1	3	3	-	-	3	-	-	-	2	2	-	1	-	
		EE3003-1.2	3	3	-	-	3	-	-	-	2	2	-	-	-	2
		EE3003-1.3	3	3	-	-	3	-	-	-	2	2	-	-	-	2
		EE3003-1.4	3	3	-	-	3	-	-	-	2	2	-	-	-	2
		EE3003-1.5	3	3	3	-	3	-	-	-	2	2	-	-	-	2
													1: Lo	w 2:	Mediur	n 3: High
TE	ХТВ	OOKS:														
	1.	Alan V Oppenheim, Alar edition, 2009.	۱S. ۱	Wills	ky a	nd S	5. Ha	mid	Nav	wab,	"Sig	jnals	and S	Syste	ms", PH	I, 2nd
	2.	Alan V Oppenheim and	Ron	ald \	W So	chafe	er. "[Disci	rete	time	e sia	nal p	roces	sina"	PHL 5	th Indian
		Reprint, 2015	-								5	- 1-		- 5	, , -	
		-1,														
R	FER	ENCE BOOKS:														
	1.	John G Proakis and Dimt	ris (G Ma	anola	akis,	"Dic	ital	Sigr	nal P	roce	ssinc	y Prin	ciples	s, Algori	thms and
		Application", Electronic I	ndu	stry	Pres	ss, 20	013,	, 4T⊦	l Edi	tion	•		•	•	, 5	
	2.	Simon Haykin and Barry	Var	n Ve	en, "	Sign	als a	and	Syst	ems	," W	iley I	ndia I	Pvt Lt	d, 2nd	Edition
		2008				2			2			,				
	3.	S.Narayan Iyer, "Signals	and	syst	ems	", Ce	enga	ige l	ear	ning	,Indi	a,201	11			
Ε	Bool	<pre>ks / MOOCs/ NPTEL</pre>		-				-								
	1.	Signal Processing: Conti	nuo	us a	nd D	Discr	ete d	on N	1IT C	Dper	า coเ	ursew	/are			
										•						

N)

2.	NPTEL Course on Principles of Signals and Systems by Prof. Aditya K. Jagannatham, IIT
	Kanpur
3.	NPTEL Course on Digital Signal Processing by Dr.C. S. Ramalingam, IIT Madras

Professional Core Courses (Theory)

ANALOG	SIGNAL PROC	CESSING	
Course Code:	EE2101-1	Course Type	PCC
Teaching Hours/Week (L:T: P: S)	3:0:0:0	Credits	03
Total Teaching Hours	40+0+0	CIE + SEE Marks	50+50
Prerequisite	EC1001-1		
*One additional tota	rial daga will b	a allattad avamente	
		e allotted every week	
Course Objectives:		ectronics Engineering	
Course Objectives:			
1 To analyze the differential & operat	ional amplifiers	and various parameters	associated with
them		and various parameters	associated with
2 To understand the structural proper	rties characteris	stics and operation of M	
2. To didderstand the structural proper	then used as an	amplifier and as a switch	
4 To use MOSET as a single stage an	nolifier and ana	lyze its behavior at vario	us frequencies
5 To introduce the concent of feedba	ack and analyze	the oscillator circuits usi	na MOSEET
	ack and analyze		
	UNIT-I		
Operational Amplifier			03 Hours
Op-Amp internal architecture. Ideal and pro-	actical Op-Amp	. Offset error voltages ar	nd currents. OP-
AMP as an AC Amplifier: Capacitor Coupled	d Voltage Follov	wer, non-inverting amplif	ier, inverting
amplifier, and difference amplifier. Effect or	n input impedai	nce and its improvement	. Setting upper
cut-off frequency, Use of single polarity su	pply.		
OP-AMP in Signal Processing Circuits			05 Hours
Precision Half wave and full wave rectifiers,	limiting circuits	s, clamping circuits, peak	detectors,
sample and hold circuits.: Op-Amps in Swit	ching, Different	tiating, and Integrating C	ircuits, crossing
detectors, inverting Schmitt trigger circuits			
MOSFET			03 Hours
Device structure and Physical operation, I-V	V Characteristics	5	
MOSFET as an amplifier and as a switch			04 Hours
Large signal operation, Graphical derivation	on of the trans	fer characteristics, operation	ation as a switch
operations as a linear amplifier, Analytical e	expressions.		
	UNIT-II		
Biasing in MOS Amplifier circuits			04 Hours
Biasing by Fixing VGS, biasing by fixing VG	S and connectir	ng a resistance in the sou	rce, Biasing using
a Drain-to-gate feedback amplifier, Biasing	i using a consta	nt current source.	
Small-signal operation and models			04 Hours
DC bias point, signal current in the drain te	erminal, voltage	gain, DC analysis and sig	Jnal analysis,
small signal equivalent, Transconductance,	T equivalent cir	rcuit model.	
Single Stage MOS Amplifiers			04 Hours
Basic Structure, characterizing amplifiers,	Common sour	rce amplifier, CS amplifi	er with a source
resistance, Common gate amplifier, Comm	on drain amplif	ier.	
MOSFET Internal Capacitances and high	frequency mo	del	03 Hours
Gate capacitive effect, junction capacitance	es, high frequen	cy MOSFET model, Unity	- Gain frequency,
Circuit operation of CMOS Logic Inverter			
	UNIT-III		
MOS Amplifiers			04 Hours
Frequency Response of CS amplifier, Miller	effect		
Feedback Amplifiers & Oscillators			04 Hours
General Feedback structure, Properties of r	negative feedba	ck, Feedback topologies,	FET based RC
phase shift oscillator.			

FET C	Differential Amplifiers													02	Hour	S
MOS	Differential pair with common	n m	ode	and	diffe	eren	tial i	npu	t vol	tage	e, Sm	all-si	gnal	oper	ation	of
MOS	Differential pair															
Cour	se Outcomes: At the end of th	ne co	ourse	e stu	den	t will	be a	able	to							
1.	Analyze the differential and	ope	ratio	nala	amp	lifier	s to	com	pute	e cir	cuit p	aram	neters	1		
2.	Analyze internal structure ar	nd w	orkiı	ng o	f MC	DSFE	T to	infe	r the	е ор	eratir	ng ch	aracte	eristi	CS	
3.	Analyze the large-signal beh	avio	or of	the	MOS	SFET	, des	sign	bias	circ	uits t	o loc	ate o	pera	ting	
	point and small-signal opera	atior	n to d	obta	in th	e tra	ansc	ondu	uctai	nce						
4.	Analyze CS, CG & CD MOSF	ET s	ingle	e-sta	ge a	mpli	fier	circu	uits t	o oł	otain	perfc	ormar	ice		
	parameters															
5.	Perform frequency sweep or	ר CS	MO	S an	nplifi	ier ci	rcui	t to	obta	in tł	ne res	spons	se cur	ve		
	and analyze feedback conce	pts	to de	esigr	osc	cillate	or ci	rcuit	S							
Cours	se Outcomes Mapping with	Prog	gran	ו Ou	tcor	nes	& P	SO								
				-	<u> </u>	<u> </u>		_	-	_		<u> </u>				I
	Program Outcomes→	1	2	3	4	5	6	7	8	9	10	11	12	PS	;O↓ ↓	
Ļ	Course Outcomes					_								1	2	
	EE2101-1.1	1	2	3	-	2	-	-	-	1	-	-	-	-	-	
	EE2101-1.2	1	2	3	-	2	-	-	-	1	-	-	-	1	1	
	EE2101-1.3	1	2	3	-	2	-	-	-	1	-	-	-	-	1	
	EE2101-1.4	2	3	-	-	2	-	-	-	1	-	-	-	1	1	
	EE2101-1.5	1	2	3	-	2	-	-	-	1	-	-	-	1	1	
											1: Lo	w 2:	Med	ium	3: Hi	gh
TEXT	BOOKS:				. 41-											
1.	Sedra /Smith, "Microelectro	nic	Circu	its"	6 ^{τη} Ε	ditic	on, C)xfor	d Ur	nive	rsity I	Press	-New	Delł	1i,201	3.
2.	David A Bell, "Operational A	Amp	lifier	and	Lin	ear I	C's",	Oxf	ord	Univ	/ersity	y Pre	ss-Ne	w D	elhi, 3	Brd
	Edition, 2011.															
REFE																
1.	Behzad Razavi, "Fundament	als (Dt M	icroe	elect	roni	CS," \	Wile	y & .	Son,	2014	1 • th •				
2.	Nashelesky & Boylestead, "	Elec	troni	C De	vice	s & (ut I	heor	<u>y", F</u>	<u>'HI, 1</u>	1" EC	dition	.201	<u>5.</u> · · · ·	
3.	Ramakanth Gayakwad, "Op	erat	iona	I Am	plifi	ers a	nd I	linea	ar IC	′S″, 4	4th e	ditior	ו — F	rent	ice H	all,
	2000.								• "		_		<u> </u>			
4.	Jacob Millman & Christos C	Ha	alkias	s, "In	tegr	ateo	Ele	ctroi	nics	, Mo	Grav	v Hill	Publi	catio	ons, 2	nd
	Edition, 2011															
F ROC	DKS / MOOCS/ NPIEL		101	•		1		1.	.1			L .				
1.	<u>nttps://ocw.mit.edu/courses</u>	5/6-	101-	intro	auc	tory	ana	<u>iog-</u>	elec	tron	ics-la	pora	tory-s	sprin	<u>g-</u>	
2	<u>2007/</u>		1	-20	01) /	:									
2.	<u>nttps://onlinecourses.nptel.</u>	ac.ir	<u>1/1100</u>	C20	eess	v/pre	eviev	V								

ELI	ECTRICAL MACH	IINES I	
Course Code:	EE2102-1	Course Type	PCC
Teaching Hours/Week (L:T: P: S)	3:0:0:0	Credits	03
Total Teaching Hours	40+0+0	CIE + SEE Marks	50+50

Regulations and curriculum for B. Tech. Electrical and Electronics Engineering

Prer	equisite EE1001-2	
	Teaching Department: Electrical & Electronics Engineering	
Cours	se Objectives:	
1.	To study the principle, types and analysis of the performance of single phase tran	sformer
2.	To get introduced the concept of testing the transformer for its efficiency and rec	gulation.
3.	To understand the construction, types, and analysis of the three phase induction	machine.
4.	To study various tests performed on an induction machine.	
5.	To know various starting methods of a three phase induction machine.	
6.	To comprehend the theory and types of single phase induction motor.	
	UNIT-I	
Singl	e phase transformers: analysis & performance	06 Hours
Revie	w of construction and working principle, ideal & practical transformers on no	load, EMF
equat	ion, transformer on load phasor diagrams, equivalent circuit, losses, power & all da	y efficiency,
Regul	ation.	
Testi	ng	02 Hours
Polari	ty test, SC, OC test, Sumpner's test.	
Paral	lel operation	02 Hours
With	equal voltage ratios and unequal voltage ratios.	
Auto	transformers	02 Hours
Princi	ple of autotransformers, calculation of saving of copper, advantages/disadvantages	5.
Three	e-phase transformers	03 Hours
Opera	ational aspects, 3-phase transformer connection including open delta, bank	of 1-phase
transf	ormer for 3-phase operation, Tertiary winding and its importance.	·
	UNIT-II	
Three	P-Phase Induction Machines	03Hours
Opera	ating principle, Concept of rotating magnetic field, Classification & types.	
Analy	rsis and Performance of Three-Phase Induction Motor	12 Hours
Induc	tion motor on no load & load, efficiency and losses, phasor diagram, power facto	r evaluation,
equiv	alent circuit. HP, Torque, slip torque characteristics covering regions of motoring g	enerating &
Brakir	ng, Induction generator. No load & BR tests.	
	UNIT-III	
Doub	le Cage and Deep Bar Rotor Induction Motors, Starting of Induction Motor	06 Hours
Equiv	alent circuit and performance of double cage & deep bar motors, cogging and	crawling of
induc	tion motors. Need for starter, DOL, Y- Δ autotransformer starting, rotor resistance s	tarting.
Singl	e-Phase Induction Motor	04 Hours
Doub	le field revolving theory, Principle of operation Types of single- phase induction n	notor - split
phase	, capacitor start.	
Cours	se Outcomes: At the end of the course student will be able to	
1.	Appreciate the construction of single-phase transformer and conduct tests to efficiency & regulation.	determine
2.		
-	Describe the operation of autotransformers and analyze various three-phase t	ransformer
	Describe the operation of autotransformers and analyze various three-phase t configurations.	ransformer
3.	Describe the operation of autotransformers and analyze various three-phase t configurations. Describe the constructional features of different types of three-phase Induction r	ransformer notors.
3. 4.	Describe the operation of autotransformers and analyze various three-phase t configurations. Describe the constructional features of different types of three-phase Induction r Comprehend the characteristics of three-phase induction machine.	ransformer notors.

principle of single-phase induction motor.

Course Outcomes Mapping with Program Outcomes & PSO

Program Outcomes→	1	2	3	4	5	6	7	8	9	10	11	12	PS	PSO↓	
↓ Course Outcomes													1	2	
EE2102-1.1	3	3	-	-	-	-	-	-	-	-	-	1	-	1	
EE2102-1.2	3	3	-	-	-	-	-	-	-	-	-	1	-	1	
EE2102-1.3	3	3	-	-	-	I	-	-	-	-	-	1	I	-	
EE2102-1.4	3	3	-	-	-	I	-	-	-	-	-	1	-	1	
EE2102-1.5	3	3	-	-	-	-	-	-	-	-	-	1	-	1	

1: Low 2: Medium 3: High

TEXTBOOKS:

- 1. P. S. Bimbhra, "Electrical Machinery", Khanna Publishers,7th edition,201.
- 2. A. Langsdortf, "Theory of alternating current machine", TMH,2nd edition,2004.
- 3. Ashfaq Husain, "Electrical Machines", Dhanapathrai & co,2nd edition,2014.

REFERENCE BOOKS:

- 1. M.G Say, "Performance & design of AC machines", CBS publishers,3rd edition,2002.
 - 2. Nagarath and Kothari, "Electrical Machine", TMH,4th edition,2010.
- 3. Kosow, "Electrical Machines and Transformers", 2/e, PHI,1990.
- 4. Transformers, BHEL, Tata Mc Graw Hill ,2nd edition,2003.

E Books / MOOCs/ NPTEL

- 1. https://nptel.ac.in/courses/108105155
 - 2. https://onlinecourses.nptel.ac.in/noc22_ee06/preview
- 3. https://ocw.mit.edu/courses/6-685-electric-machines-fall-2013/pages/course-notes/

	ELECTR	ROMAGNETIC F	IELDS					
Cou	rse Code:	EE2103-1	Course Type	PCC				
Tead	:hing Hours/Week (L:T: P: J)	3:0:0:1	Credits	03				
Tota	I Teaching Hours	40+0+0	CIE + SEE Marks	50+50				
Prer	equisite	EE1001-2						
	*One additional tutor	rial class will be	allotted every week					
	Teaching Department:	Electrical & Ele	ectronics Engineering					
Cours	se Objectives:							
1.	To study the application of Coulon	nb's Law and G	auss Law for electric fie	lds produced by				
	different charge configurations.							
2.	To evaluate the energy and potentia	al due to a syste	m of charges					
3.	To study the behavior of electric fiel	ld across a boun	dary between a conduct	tor and dielectric				
	and between two different dielectric							
4	To study the magnetic fields and magnetic	agnetic material	ς					
5	To study the time varying fields and	propagation of	waves in different medi	ia				
5.		UNIT-I	waves in amerene mea	u				
Could	mh's law and Electric field intensi	tv		04 Hours				
Evner	imental law of coulomb Electric fi	-y eld intensity F	ield due to continuou	s volume charge				
distrik	pution Field of a line charge (only the	ony)		s volume charge				
Flect	ric flux density. Gauss's law and Div	ergence		04 Hours				
Flectr	ic flux density, Gauss's law and Diverc	ience Vector on	erator V and Divergence	e theorem				
Energ	iv and Potential		erator v and Divergence					
Energ	ly expanded in moving a point charge	in an electric fie	ld the line integral. Defi	nition of Potential				
differ	ence and Potential, the potential fie	Id of a point of	harge and system of a	charges. Potential				
gradie	ent		indige and system of t	indiges, rotertidi				
Cond	uctors			02 Hours				
Curre	nt and current density. Continuity of	current. Metall	ic Conductors. Conduct	or properties and				
boun	dary conditions.			o. p. op o				
		UNIT-II						
Diele	ctrics and Capacitance			02 Hours				
Boun	dary conditions for perfect dielectrics.	Capacitance.						
Poiss	on's and Laplace's equations			03 Hours				
Deriv	ation of Poisson's and Laplace's equat	tions.						
The s	teady magnetic field			05 Hours				
Biot-	Savart's law. Ampere's circuital law.	curl. Stokes the	eorem. Magnetic flux a	nd magnetic flux				
densi	ty, Scalar and vector magnetic potent	ials.	,	Je nagress new				
Magr	netic forces. Magnetic Materials and	d Inductance		05 Hours				
Force	on a moving charge, Magnetic bound	dary conditions,	Inductance.	I				
		<u> </u>						
		UNIT-III						
Time	varving fields and Maxwell's equat	tions		06 Hours				
Farad	av's law. Displacement current. Maxw	ell's equation in	point and integral form					
Trans	mission Lines		p =	04 Hours				
Physic	Physical description of Transmission line propagation Transmission line equations Lossless							
propa	propagation Lossless propagation of sinusoidal voltages voltage standing wave ratio							
Cours	Course Outcomes: At the end of the course student will be able to							
1.	State and apply the Coulomb's, Gau	ss's Law to dete	rmine the electric field ir	ntensity resulting				

	from various charge distri	buti	ons.													
2.	Describe the electric potential to compute electric field intensity and analyze the boundary															
	conditions for various inte	erfac	es to	o un	ders	tand	the	vari	atio	n in	elect	ric file	ed int	ensit	y.	
3.	Apply Poisson's and Lapla	ice's	equ	atio	ns to	o cal	cula	te ca	арас	itan	ce of	vario	us ge	eome	trics	and
	apply Biot- Savart's, Ampe	ere's	Law	to o	comp	oute	ma	gnet	ic fie	eld i	ntens	sity.				
4.	Apply the concept of ma	agne	etic f	force	es, b	oun	dary	cor	nditi	ons	and	Maxv	vell's	equa	ation	s to
	determine inductance and	l pa	rame	eters	of t	ime	vary	ing f	field	S.						
5.	Describe plane wave ref	lecti	on a	and	tran	smis	sior	at at	the	bou	unda	ries t	o stu	ıdy t	he w	/ave
	propagation and skin effe	ct.														
Cours	e Outcomes Mapping wit	h Pı	ogr	am (Outo	omo	es &	PSC	0							
	Program Outcomes \rightarrow	1	2	3	4	5	6	7	8	9	10	11	12	PS	O↓	
↓ Co	urse Outcomes													1	2	
	EE2103-1.1	3	3	-	-	-	-	-	-	2	2	-	1	2	2	
	EE2103-1.2	3	3	-	-	-	-	-	-	2	2	-	1	2	2	
	EE2103-1.3	3	3	-	-	-	-	-	-	2	2	-	1	2	2	
	EE2103-1.4	3	3	-	-	-	-	-	-	2	2	-	1	2	2	
	EE2103-1.5	3	3	-	-	-	-	-	-	2	2	-	1	2	2	
											1.		2∙ М	odiu	m 3.	Hiah
											±.	LOW	2. 191	eulu	II 5 .	nign
TEXT	BOOK:															
1.	William H Havt Ir and Jo	ohn	AB	uck.	"End	nine	erino	n Fle	octro	mac	netio	rs″ Ta	ita M	cGrav	∧-Hil	l. 8th
	edition. 2017.			0.014		9e		9			j					.,
REFEF	RENCE BOOKS:															
1.	John Krauss and Daniel	A.	Fleis	ch, "	Elec	trom	nagn	etics	s wit	th A	oilga	ation	s", N	lcGra	wHill	, 5th
	edition, 1999.						5									
2.	Matthew N. O. Sadiku, "E	lem	ents	of E	lectr	oma	gne	tics"	, OU	P U	SA					
3.	Edward C. Jorden and K	eith	GE	Balm	ain,	"Ele	ctro	mag	neti	c W	aves	and	Radia	ating	Syst	ems"
	Prentice – Hall of India / I	Pear	son	Eduo	catio	n, 2	nd e	ditic	n, 1	968.				5	5	
4.	David K. Cheng, Field an	d W	/ave	s Ele	ctro	maq	neti	cs",	Pear	son	Edu	catior	n Asia	a,2nd	edit	ion –
	1989.					0										
E Boo	ks / MOOCs/ NPTEL															
1.	https://nptel.ac.in/course	s/10	810	4087	7											

	GENERATION TRA	NSMISSION A	ND DISTRIBUTION				
6		FF2104 1	Course Tons				
Cou	rse Lode:	EE2104-1	Course Type				
Teac	Ling Hours/Week (L:1: P: S)			<u> </u>			
Dror	aquicito	40+0+0+0	CIE + SEE WIATKS	50+50			
Fier	Tooching Doportmont	ELIUUI-2	loctronics Engineering				
Cours	e Objectives:		lectronics Engineering				
Cours	be Objectives.						
1	To understand the concepts of vari	ous methods of	f generation of nower				
2	To find various parameters of econ	omic aspects	generation of power				
2.	To calculate the parameters of the	transmission li	ne for different configurat	ions and assess			
J.	the performance of the line		le for unerent configurat				
4	To understand the characteristics 8	v performance o	of nower transmission line				
5	To understand the concept of under	arground cables	and distribution systems				
J.			and distribution systems				
		I INIT_T					
Elect	ical Power Generation	0111-1		07* Hours			
Hydro	Power generation-selection of site	classification of	hydroelectric plants gen	eral arrangement			
and o	peration bydroelectric plant powers	station structure	and control	siai arrangement			
Thern	peration, nyuroelectric plant power a	nain narts work	ring plant lavout Diesel Fl	ectric plants Gas			
turbir	e plants-components lavout advant	tages over stear	n turbine plant	cettie plants, das			
Nucle	ar Power Station- Introduction, A	dverse effects	of fossil fuels, compone	onts of reactors			
Descr	intion of fuel sources Pros and Cons	of nuclear now	er generation Safety of n	iclear			
Econ	omic Aspects		er generation, barety of h	06* Hours			
Introd	luction. Terms commonly used in sys	stem operation.	diversity factor, load facto	or, plant capacity			
factor	plant use factor, plant utilization f	actor, loss facto	or, load duration curve, en	ergy load curve,			
interc	onnection of power station, Effect of	variable load o	n power system, classificat	ion of costs, cost			
analy	sis. Interest and Depreciation, Tarif	fs, objective, fa	ctors affecting the tariff,	types. Types of			
consu	mers and their tariff. Most economic	al power factor	, importance of high load	factor.			
Typic	al transmission & distribution syst	ems scheme		02 Hours			
Gene	ral layout of power system, Standar	d voltages for	transmission: HVAC, EHV	AC, UHVAC, and			
Adva	ntage of high voltage transmission. F	eeders, distribu	tors & service mains.				
		UNIT-II					
Sag c	alculation in conductors			06* Hours			
Sag c	alculation for a) suspended on level s	supports b) sup	port at different levels. Effe	ect of wind & ice			
tensic	on & sag at erection, line vibration da	amper.					
Insula	tors: Types, Material used: porcela	in, toughened	glass and polymer (comp	oosite), potential			
distrik	distribution over a string of suspension insulators. String efficiency & methods of increasing strings						
efficie	ncy, Arcing horns. Testing of insulate	ors					
Line	parameters			05 Hours			
Calcu	lation of inductance of single phase	e, 3phase lines	with equilateral $\frac{1}{8}$ unsymi	metrical spacing.			
Induc	tance of composite conductor lines	(GMR and GME), capacitance calculation	for single circuit			
and double circuit three-phase line with equilateral & unsymmetrical spacing, Bundle conductor and							
its ad	its advantages, Double circuit and transposed lines, Advantages of single circuit and double circuit						
lines.							
Chara	cteristics & performance of powe	r transmission	lines	05 Hours			
Classi	fication of lines, Transmission line r	nodel for Short	t transmission lines, medi	um transmission			
lines-	nominal T, end condenser and pi mo	dels, long transr	nission lines, line regulatio	n. Ferranti effect,			

03* Hours

06* Hours

ABCD constants of transmission lines.

Corona: Phenomena, Methods of reducing corona

UNIT-III

Underground cables

Types, material used, insulation resistance, thermal rating of cables, charging current, Grading of cables, capacitance grading.

Distribution

Requirements of power distribution, ac distribution - radial & ring main systems, calculation for concentrated loads.

Introduction to HVDC transmission and FACTS, Application of HVDC and FACTS

Course Outcomes: At the end of the course student will be able to

4	
⊥.	Illustrate methods of generation of electrical power and their pros and cons
2.	Appreciate the economic aspects of electrical power and typical transmission & distribution
	systems scheme.
3.	Demonstrate the concepts associated with overhead transmission line and insulators
4.	Explain the characteristics & performance of power transmission lines.
5.	Interpret the concepts associated with underground cables and introduce the concept of
	FACTS and HVDC

Course Outcomes Mapping with Program Outcomes & PSO

Program Outcomes→	1	2	3	4	5	6	7	8	9	10	11	12	PS	PSO↓	
↓ Course Outcomes													1	2	
EE2104-1.1	3	3	-	-	-	-	-	-	2	2	-	1	2	2	
EE2104-1.2	3	3	-	-	-	-	-	-	2	2	-	1	2	2	
EE2104-1.3	3	3	-	-	-	-	-	-	2	2	-	1	2	2	
EE2104-1.4	3	3	-	-	-	-	-	-	2	2	-	1	2	2	
EE2104-1.5	3	3	-	-	-	-	-	-	2	2	-	1	2	2	

TEXTBOOKS:

1.	S. M. Singh, "Elements of Power Generation, Transmission and Distribution", 2nd edition PHI,
	New Delhi. 2008

- 2. A. Chakarbarti, M.L. Soni and P.V. Gupta, U.S. Bhatnagar, "Power system engineering", Published by Gagan Kanur, Dhanapat Rai and Co Pvt. Ltd,2013.
- 3. M.V. Deshpande, Elements of Power Station Design, 1st edition, PHI learning, 2009.
- 4. S. L. Uppal "Electrical Power: Generation, Transmission, Distribution, Switchgear and Protection, Utilization of Electrical Energy and Electric Traction" Khanna Publishers,15th edition, 1995.

REFERENCE BOOKS:

1.	Sivanagaraju S. Satyanarayana S.," Electric Power Transmission and Distribution" Pearson
	Learning, New Delhi, 2008.
2.	Gupta J. B.," Transmission and Distribution of electrical energy", S.K. Kataria & Sons, New
	Delhi, 2012.
3.	W.D. Stevenson, "Elements of Power System Analysis", 4th edition, 1994, Mc.Graw - Hill.
	Comp. Ltd.

E Books / MOOCs/ NPTEL

1: Low 2: Medium 3: High

1. https://nptel.ac.in/courses/108102047

POWER ELECTRONICS												
Course Code:	EE3101-1	Course Type	PCC									
Teaching Hours/Week (L: T: P: S) 3:0:0:0 Credits 03												
Total Teaching Hours40+0+0CIE + SEE Marks50+50												
Prerequisite EC1001-1, EE2101-1												
*One additional tuto	orial class will l	be allotted every week										
Teaching Department: Electrical & Electronics Engineering												
Course Objectives:												

1	To understand the types and characteristics of power semiconductor devices						
2. To describe the principle of operation of AC voltage controller							
2.	To get acquainted with the different types of chopper configurations and met	hods of					
3.	control						
4	To understand the operation of controlled rectifier circuits and performance a	nalvsis					
5.	To understand the principle of operation of single-phase and three-phase inve	erter circuits.					
	UNIT-I						
Intro	duction	03 Hours					
Intro	duction. Power Semiconductor Devices: Applications of Power Electronics. Power	semiconductor					
devic	es. Control Characteristics. Types of power electronic circuits. Peripheral effects.						
Powe	er Semiconductor Devices	08 Hours					
Powe	r MOSFET's – static characteristics, switching characteristics, gate drive	. IGBT- static					
chara	cteristics, switching characteristics, di/dt and dv/dt limitations. Isolation of gate a	nd base drives.					
Thyris	stor: SCR- static characteristics, turn on and off characteristics, thyristor firing ci	rcuit using UJT,					
comn	nutation- natural and forced (LC commutation only), Static characteristics of TRIA	AC, DIAC					
AC V	oltage Controllers	04 Hours					
Intro	duction. Principle of ON-OFF and phase control. Single -phase bidirectional cont	rollers with R					
and F	-L loads						
	UNIT-II	1					
DC C	hoppers	08 Hours					
Intro	duction. Principle of step-down and step-up chopper with R-L load. Performan	ce parameters.					
Chop	per classification. Analysis of impulse commutated thyristor chopper (only qualit	ative analysis)					
Cont	rolled Rectifiers	07 Hours					
Intro	duction. Principle of phase controlled converter operation. Single- phase and thr	ee phase					
semi-	converters & Full converters.						
	UNIT-III	10.00					
Inver	ters Institus Driverials of an autica, Darfamana a nanatara Cianta, abase bridas i	10 Hours					
Intro	auction, Principle of operation, Performance parameters, Single -phase bridge i	nverters. Inree					
phase	inverters. Voltage control of single-phase inverters – single pulse width, multip	vortor					
	indisordal pulse width modulation. Current source inverters. Variable D.C. link inv	erter					
Cour	Se Outcomes: At the end of the course student will be able to						
Cour							
	Describe the characteristics of power semiconductor devices used in various P	ower					
1.	Electronic Applications						
2.	Describe the principle of operation of AC voltage controller to study its param	eters					
3.	Analyze the various DC choppers to evaluate their performance parameters.						
	Analyze various controlled rectifier configurations to regulate dc voltage and c	alculate their					
4.	performance parameters.						
	Comprehend the operation of single and three phase inverter circuits to obtain	n desired AC					
5.	voltage and analyze various associated parameters.						
Cour	se Outcomes Mapping with Program Outcomes & PSO						
Cour	se Outcomes Mapping with Program Outcomes & PSO						
Cour	Se Outcomes Mapping with Program Outcomes & PSO Program Outcomes→ 1 2 3 4 5 6 7 8 9 10 11 1	2 PSO ↓					

2

EE3101-1.1

EE3101-1.2

N

3 3

-

_

_

_

-

-

- -

-

- -

-

-

-

-

-

-

_

-

_

-

-

2

2

	EE3101-1.3	1	2	3	-	-	-	-	-	-	-	-	-	-	2	
	EE3101-1.4	1	2	2	-	-	-	-	-	-	-	-	-	2	2	
	EE3101-1.5	1	2	3	-	-	-	-	-	-	-	-	-	2	2	
											1: Lo	w 2:	Med	ium	3: Hi	gh
TEXT	BOOKS:															
1.	1. M.H.Rashid "Power Electronics", 3Rd Edition, P.H.I. /Pearson, New Delhi, 2014.															
REFE	FERENCE BOOKS:															
1.	L.Umanand, "Power Electron	nics:	Esse	entia	ls &	Арр	licat	ions	", W	iley	Publi	shers	, 200	9.		
2.	P.S Bimbra, Power Electroni	cs, F	ifth	Editi	on, k	Khan	na F	Publi	sher	s, 19	90.					
3.	Ned Mohan, Tore M. Undel	and,	anc	l Wil	liam	P. R	obin	ns, "P	owe	er Ele	ectror	nics –	Con	verte	rs,	
	Applications and Design", T	hird	Edit	tion,	Johr	וWil ו	ey a	nd S	Sons	. 201	LO.					
E Boo	oks / MOOCs/ NPTEL															
1.	NPTEL Course on Power Ele	ctro	nics	By F	Prof.	G.Bh	nuva	nesh	wari	i, IIT	Delh	i				
2.	Power Electronics, IIT Bomb	ay ,	Prof	. B.G	. Fer	nano	des,	Prof	. Kis	hore	Cha	tterje	e,			
	https://nptel.ac.in/courses/2	L081	.010	38												

POWER SYS	TEM ANALYSIS		
Course Code:	EE3102-1	Course Type	PCC
Teaching Hours/Week (L: T: P: S)	3:0:0:0	Credits	03
Total Teaching Hours	40+0+0	CIE + SEE Marks	50+50
Prerequisite	EE2005-1, E	E2001-1, EE2102-1	
*One additional tu	torial class will	be allotted every week	
Teaching Departme	nt: Electrical &	Electronics Engineering	
Course Objectives:			
1. To introduce the per-unit system	n and explain its	advantages.	
2. To understand the concept of or	ne-line diagram	and its application in the	power system.
3. To derive impedance & reactand	ce diagrams and	compute the per-unit qu	iantities.
4. To understand the response of a	a synchronous m	achine under symmetrica	al short circuit
conditions.			
5. To resolve unbalanced three-ph	ase quantities to	symmetrical component	S.
6. To understand the concept of se	equence networ	s to solve various unsym	metrical faults.
8 To understand the equal area or	riterion for the a	e and derive the swing ec	sample system
		valuation of stability of a	sample system.
Poprosontation of Power System Com			
Steady-state models of Transmission lin	o Synchronous	machines Transformer	and Load One-li
diagram Impedance diagram per unit no	ntation Selection	n and change of base for	r per unit quantitie
per unit Impedance diagram of power sy	stem Power flow	w through Transmission li	ne
Symmetrical Three-Phase Faults		t through transmission h	06 Hours
- j			
Transients in RL series circuits, short-circu	it current and re	eactance of synchronous r	machine on no-loa
Transients in RL series circuits, short-circu Internal voltage of loaded synchronous	it current and re machine under	eactance of synchronous r transient conditions, syn	machine on no-loa nmetric short circi
Transients in RL series circuits, short-circu Internal voltage of loaded synchronous MVA calculations, short-circuit current co	uit current and re machine under omputation thro	eactance of synchronous r transient conditions, syn ugh Thevenin's theorem,	machine on no-loa nmetric short circ Problems
Transients in RL series circuits, short-circu Internal voltage of loaded synchronous MVA calculations, short-circuit current co	uit current and re machine under omputation thro	eactance of synchronous i transient conditions, syn ugh Thevenin's theorem,	machine on no-loa nmetric short circ Problems
Transients in RL series circuits, short-circu Internal voltage of loaded synchronous MVA calculations, short-circuit current co	uit current and re machine under omputation thro UNIT-II	eactance of synchronous i transient conditions, syn ugh Thevenin's theorem,	machine on no-loa nmetric short circ Problems
Transients in RL series circuits, short-circu Internal voltage of loaded synchronous MVA calculations, short-circuit current co Symmetrical Components	it current and re machine under omputation thro UNIT-II	eactance of synchronous i transient conditions, syn ugh Thevenin's theorem,	machine on no-loa nmetric short circo Problems 08 Hours
Transients in RL series circuits, short-circu Internal voltage of loaded synchronous MVA calculations, short-circuit current co Symmetrical Components Symmetrical component transformation	uit current and re machine under omputation thro UNIT-II , Resolution of	eactance of synchronous i transient conditions, syn ugh Thevenin's theorem, unbalanced phasors int	machine on no-loa nmetric short circo Problems 08 Hours o their symmetric
Transients in RL series circuits, short-circu Internal voltage of loaded synchronous MVA calculations, short-circuit current co Symmetrical Components Symmetrical component transformation components and vice-versa, Power in te	uit current and re machine under omputation thro UNIT-II , Resolution of erms of symmetr	actance of synchronous i transient conditions, syn ugh Thevenin's theorem, unbalanced phasors int ical components, Phase	machine on no-loa nmetric short circo Problems 08 Hours o their symmetric shift of symmetric
Transients in RL series circuits, short-circu Internal voltage of loaded synchronous MVA calculations, short-circuit current co Symmetrical Components Symmetrical component transformation components and vice-versa, Power in te components in Star – Delta transformer l	uit current and re machine under omputation thro UNIT-II , Resolution of erms of symmetri bank. Positive, N	eactance of synchronous in transient conditions, syn ugh Thevenin's theorem, unbalanced phasors int ical components, Phase legative and Zero Sequer	machine on no-loa nmetric short circo Problems 08 Hours o their symmetric shift of symmetric nce impedances an
Transients in RL series circuits, short-circu Internal voltage of loaded synchronous MVA calculations, short-circuit current co Symmetrical Components Symmetrical component transformation components and vice-versa, Power in te components in Star – Delta transformer I Sequence networks of power system	uit current and re machine under omputation thro UNIT-II , Resolution of erms of symmetri bank. Positive, N elements (Tra	actance of synchronous i transient conditions, syn ugh Thevenin's theorem, unbalanced phasors int ical components, Phase legative and Zero Sequer nsmission line, Synchro	machine on no-loa nmetric short circo Problems 08 Hours o their symmetric shift of symmetric nce impedances an nous machine an
Transients in RL series circuits, short-circu Internal voltage of loaded synchronous MVA calculations, short-circuit current co Symmetrical Components Symmetrical component transformation components and vice-versa, Power in te components in Star – Delta transformer I Sequence networks of power system Transformer).	uit current and re machine under omputation thro UNIT-II , Resolution of erms of symmetri bank. Positive, N elements (Tra	actance of synchronous in transient conditions, syn ugh Thevenin's theorem, unbalanced phasors int ical components, Phase legative and Zero Sequer nsmission line, Synchro	machine on no-loa nmetric short circo Problems 0 8 Hours o their symmetric shift of symmetric nce impedances an nous machine an
Transients in RL series circuits, short-circu Internal voltage of loaded synchronous MVA calculations, short-circuit current co Symmetrical Components Symmetrical component transformation components and vice-versa, Power in te components in Star – Delta transformer I Sequence networks of power system Transformer). Unsymmetrical Faults	uit current and re machine under omputation thro UNIT-II , Resolution of erms of symmetri bank. Positive, N elements (Tra	actance of synchronous in transient conditions, syn ugh Thevenin's theorem, unbalanced phasors int ical components, Phase legative and Zero Sequer hsmission line, Synchro	machine on no-loa nmetric short circo Problems 08 Hours o their symmetric shift of symmetric nce impedances an nous machine an 07 Hours
Transients in RL series circuits, short-circu Internal voltage of loaded synchronous MVA calculations, short-circuit current co Symmetrical Components Symmetrical component transformation components and vice-versa, Power in te components in Star – Delta transformer I Sequence networks of power system Transformer). Unsymmetrical Faults Symmetrical component analysis of Unsy Dauble Line, To Ground (L.L. G) faults on	uit current and re machine under omputation thro UNIT-II , Resolution of erms of symmetri bank. Positive, N elements (Tra	unbalanced phasors int ical components, Phase legative and Zero Sequer hsmission line, Synchro	machine on no-loa nmetric short circo Problems o their symmetric shift of symmetric nce impedances an nous machine an 07 Hours ine-To-Line (L-L),
Transients in RL series circuits, short-circu Internal voltage of loaded synchronous MVA calculations, short-circuit current co Symmetrical Components Symmetrical component transformation components and vice-versa, Power in te components in Star – Delta transformer I Sequence networks of power system Transformer). Unsymmetrical Faults Symmetrical component analysis of Unsy Double Line-To-Ground (L-L-G) faults on fault impedance and connections of con	uit current and re- machine under omputation thro UNIT-II , Resolution of erms of symmetri bank. Positive, N elements (Tran rmmetrical faults an Unloaded Al	actance of synchronous in transient conditions, syn ugh Thevenin's theorem, unbalanced phasors int ical components, Phase legative and Zero Sequer hsmission line, Synchro :: Line-To-Ground (L-G), L ternator and Power Syste Open conductor faults in	machine on no-loa nmetric short circu Problems 08 Hours o their symmetric shift of symmetric nce impedances an nous machine an 07 Hours ine-To-Line (L-L), em with and witho
Transients in RL series circuits, short-circu Internal voltage of loaded synchronous MVA calculations, short-circuit current co Symmetrical Components Symmetrical component transformation components and vice-versa, Power in te components in Star – Delta transformer I Sequence networks of power system Transformer). Unsymmetrical Faults Symmetrical component analysis of Unsy Double Line-To-Ground (L-L-G) faults on fault impedance and connections of sequ	uit current and re machine under omputation thro UNIT-II , Resolution of erms of symmetri bank. Positive, N elements (Tra mmetrical faults an Unloaded Al uence networks.	actance of synchronous in transient conditions, syn ugh Thevenin's theorem, unbalanced phasors int ical components, Phase legative and Zero Sequer hsmission line, Synchro :: Line-To-Ground (L-G), L ternator and Power Syste Open conductor faults in	machine on no-loa nmetric short circl Problems 08 Hours o their symmetric shift of symmetric nous machine and 07 Hours ine-To-Line (L-L), em with and witho power systems.
Transients in RL series circuits, short-circu Internal voltage of loaded synchronous MVA calculations, short-circuit current co Symmetrical Components Symmetrical component transformation components and vice-versa, Power in te components in Star – Delta transformer I Sequence networks of power system Transformer). Unsymmetrical Faults Symmetrical component analysis of Unsy Double Line-To-Ground (L-L-G) faults on fault impedance and connections of sequ	uit current and re- machine under omputation thro UNIT-II Mark Resolution of erms of symmetric bank. Positive, N elements (Tra mmetrical faults an Unloaded Al uence networks.	actance of synchronous in transient conditions, syn ugh Thevenin's theorem, unbalanced phasors int ical components, Phase legative and Zero Sequer hsmission line, Synchro :: Line-To-Ground (L-G), L ternator and Power Syste Open conductor faults in	machine on no-loa nmetric short circl Problems 08 Hours o their symmetric shift of symmetric nce impedances an nous machine an 07 Hours ine-To-Line (L-L), m with and witho power systems.
Transients in RL series circuits, short-circu Internal voltage of loaded synchronous MVA calculations, short-circuit current co Symmetrical Components Symmetrical component transformation components and vice-versa, Power in te components in Star – Delta transformer I Sequence networks of power system Transformer). Unsymmetrical Faults Symmetrical component analysis of Unsy Double Line-To-Ground (L-L-G) faults on fault impedance and connections of sequ Power System Stability	uit current and re machine under omputation thro UNIT-II , Resolution of erms of symmetri bank. Positive, N elements (Tra mmetrical faults an Unloaded Al uence networks. UNIT-III	actance of synchronous r transient conditions, syn ugh Thevenin's theorem, unbalanced phasors int ical components, Phase legative and Zero Sequer nsmission line, Synchro : Line-To-Ground (L-G), L ternator and Power Syste Open conductor faults in	nachine on no-loa nmetric short circl Problems 08 Hours o their symmetric shift of symmetric nous machine and 07 Hours ine-To-Line (L-L), em with and witho power systems.
Transients in RL series circuits, short-circu Internal voltage of loaded synchronous MVA calculations, short-circuit current co Symmetrical Components Symmetrical component transformation components and vice-versa, Power in te components in Star – Delta transformer I Sequence networks of power system Transformer). Unsymmetrical Faults Symmetrical component analysis of Unsy Double Line-To-Ground (L-L-G) faults on fault impedance and connections of sequ Power System Stability Steady-state and Transient stability. Bote	uit current and re machine under omputation thro UNIT-II Mark Resolution of erms of symmetric bank. Positive, N elements (Tra mmetrical faults an Unloaded Al uence networks. UNIT-III	actance of synchronous in transient conditions, syn ugh Thevenin's theorem, unbalanced phasors int ical components, Phase legative and Zero Sequer hsmission line, Synchro :: Line-To-Ground (L-G), L ternator and Power Syste Open conductor faults in	machine on no-loa nmetric short circu Problems 08 Hours o their symmetric shift of symmetric nous machine and 07 Hours ine-To-Line (L-L), em with and witho power systems. 10 Hours wer angle equatic
Transients in RL series circuits, short-circu Internal voltage of loaded synchronous MVA calculations, short-circuit current co Symmetrical Components Symmetrical component transformation components and vice-versa, Power in te components in Star – Delta transformer l Sequence networks of power system Transformer). Unsymmetrical Faults Symmetrical component analysis of Unsy Double Line-To-Ground (L-L-G) faults on fault impedance and connections of sequ Power System Stability Steady-state and Transient stability, Roto Equal – Area criterion of stability and its an	uit current and re machine under omputation thro UNIT-II , Resolution of erms of symmetri bank. Positive, N elements (Tra mmetrical faults an Unloaded Al uence networks. UNIT-III	actance of synchronous in transient conditions, syn ugh Thevenin's theorem, unbalanced phasors int ical components, Phase legative and Zero Sequer hsmission line, Synchro : Line-To-Ground (L-G), L ternator and Power Syste Open conductor faults in I the Swing equation, Po nsient stability evaluation	machine on no-loa nmetric short circle Problems 08 Hours o their symmetric shift of symmetric shift of symmetric nous machine and 07 Hours ine-To-Line (L-L), em with and witho power systems. 10 Hours wer angle equation Numerical solution
Transients in RL series circuits, short-circu Internal voltage of loaded synchronous MVA calculations, short-circuit current co Symmetrical Components Symmetrical component transformation components and vice-versa, Power in te components in Star – Delta transformer I Sequence networks of power system Transformer). Unsymmetrical Faults Symmetrical component analysis of Unsy Double Line-To-Ground (L-L-G) faults on fault impedance and connections of sequ Power System Stability Steady-state and Transient stability, Roto Equal – Area criterion of stability and its ap of swing equation by point-by-point met	uit current and re machine under omputation thro UNIT-II Mark Resolution of erms of symmetric bank. Positive, N elements (Tra mmetrical faults an Unloaded Al uence networks. UNIT-III or dynamics and pplication for tra thod & Runge-K	actance of synchronous in transient conditions, syn ugh Thevenin's theorem, unbalanced phasors int ical components, Phase legative and Zero Sequer hsmission line, Synchro :: Line-To-Ground (L-G), L ternator and Power Syste Open conductor faults in l the Swing equation, Po nsient stability evaluation utta 4th order method.	nachine on no-loa nmetric short circe Problems 08 Hours o their symmetric shift of symmetric nous machine and 07 Hours ine-To-Line (L-L), em with and witho power systems. 10 Hours wer angle equation Numerical solution
Transients in RL series circuits, short-circu Internal voltage of loaded synchronous MVA calculations, short-circuit current co Symmetrical Components Symmetrical component transformation components and vice-versa, Power in te components in Star – Delta transformer I Sequence networks of power system Transformer). Unsymmetrical Faults Symmetrical component analysis of Unsy Double Line-To-Ground (L-L-G) faults on fault impedance and connections of sequ Power System Stability Steady-state and Transient stability, Roto Equal – Area criterion of stability and its ap of swing equation by point-by-point met	ait current and re machine under omputation thro UNIT-II , Resolution of erms of symmetri bank. Positive, N elements (Tra mmetrical faults an Unloaded Al uence networks. UNIT-III or dynamics and pplication for tra thod & Runge-K	actance of synchronous in transient conditions, syn ugh Thevenin's theorem, unbalanced phasors intrical components, Phase legative and Zero Sequer hsmission line, Synchro : Line-To-Ground (L-G), L ternator and Power Syste Open conductor faults in Open conductor faults in I the Swing equation, Po nsient stability evaluation utta 4th order method.	nachine on no-loa nmetric short circl Problems 08 Hours o their symmetric shift of symmetric nous machine and 07 Hours ine-To-Line (L-L), em with and witho power systems. 10 Hours wer angle equation Numerical solution
Transients in RL series circuits, short-circu Internal voltage of loaded synchronous MVA calculations, short-circuit current co Symmetrical Components Symmetrical component transformation components and vice-versa, Power in te components in Star – Delta transformer I Sequence networks of power system Transformer). Unsymmetrical Faults Symmetrical component analysis of Unsy Double Line-To-Ground (L-L-G) faults on fault impedance and connections of sequ Power System Stability Steady-state and Transient stability, Roto Equal – Area criterion of stability and its ap of swing equation by point-by-point met	uit current and re machine under omputation thro UNIT-II Mark Resolution of erms of symmetric bank. Positive, N elements (Tra mmetrical faults an Unloaded Al uence networks. UNIT-III or dynamics and pplication for tra thod & Runge-K	actance of synchronous in transient conditions, syn ugh Thevenin's theorem, unbalanced phasors int ical components, Phase legative and Zero Sequer hsmission line, Synchro :: Line-To-Ground (L-G), L ternator and Power Syste Open conductor faults in l the Swing equation, Po nsient stability evaluation utta 4th order method. be able to	nachine on no-loa nmetric short circl Problems 08 Hours o their symmetric shift of symmetric nous machine and 07 Hours ine-To-Line (L-L), em with and witho power systems. 10 Hours wer angle equation Numerical solution
Transients in RL series circuits, short-circu Internal voltage of loaded synchronous MVA calculations, short-circuit current co Symmetrical Components Symmetrical component transformation components and vice-versa, Power in te components in Star – Delta transformer I Sequence networks of power system Transformer). Unsymmetrical Faults Symmetrical component analysis of Unsy Double Line-To-Ground (L-L-G) faults on fault impedance and connections of sequ Power System Stability Steady-state and Transient stability, Rote Equal – Area criterion of stability and its ap of swing equation by point-by-point met Course Outcomes: At the end of the cou	ait current and re machine under omputation thro UNIT-II Mark Resolution of erms of symmetri bank. Positive, N elements (Tra metrical faults an Unloaded Al uence networks. UNIT-III or dynamics and pplication for tra thod & Runge-K urse student will	actance of synchronous in transient conditions, syn ugh Thevenin's theorem, unbalanced phasors int ical components, Phase legative and Zero Sequer hsmission line, Synchro : Line-To-Ground (L-G), L ternator and Power Syste Open conductor faults in Open conductor faults in I the Swing equation, Po nsient stability evaluation utta 4th order method. be able to	nachine on no-loa nmetric short circe Problems 08 Hours o their symmetric shift of symmetric nous machine and 07 Hours ine-To-Line (L-L), em with and witho power systems. 10 Hours wer angle equation Numerical solution
Transients in RL series circuits, short-circu Internal voltage of loaded synchronous MVA calculations, short-circuit current co Symmetrical Components Symmetrical component transformation components and vice-versa, Power in te components in Star – Delta transformer I Sequence networks of power system Transformer). Unsymmetrical Faults Symmetrical component analysis of Unsy Double Line-To-Ground (L-L-G) faults on fault impedance and connections of sequ Power System Stability Steady-state and Transient stability, Roto Equal – Area criterion of stability and its a of swing equation by point-by-point met Course Outcomes: At the end of the cou 1. Model the power system compon	uit current and re machine under omputation thro UNIT-II Mark Resolution of erms of symmetric bank. Positive, N elements (Tra mmetrical faults an Unloaded Al uence networks. UNIT-III or dynamics and pplication for tra thod & Runge-K urse student will eents to construct	actance of synchronous in transient conditions, syn ugh Thevenin's theorem, unbalanced phasors int ical components, Phase legative and Zero Sequer hsmission line, Synchro :: Line-To-Ground (L-G), L ternator and Power Syste Open conductor faults in I the Swing equation, Po nsient stability evaluation utta 4th order method. be able to	machine on no-loa nmetric short circe Problems o their symmetric shift of symmetric nce impedances an nous machine an 07 Hours ine-To-Line (L-L), em with and witho power systems. 10 Hours wer angle equation Numerical solution
Transients in RL series circuits, short-circu Internal voltage of loaded synchronous MVA calculations, short-circuit current co Symmetrical Components Symmetrical component transformation components and vice-versa, Power in te components in Star – Delta transformer I Sequence networks of power system Transformer). Unsymmetrical Faults Symmetrical component analysis of Unsy Double Line-To-Ground (L-L-G) faults on fault impedance and connections of sequ Power System Stability Steady-state and Transient stability, Roto Equal – Area criterion of stability and its a of swing equation by point-by-point met Course Outcomes: At the end of the cou 1. Model the power system compon 2. Analyze symmetrical three phase	ait current and re machine under mutation thro UNIT-II Mark Resolution of erms of symmetri bank. Positive, N elements (Tra metrical faults an Unloaded Al uence networks. UNIT-III or dynamics and pplication for tra thod & Runge-K urse student will eents to construct faults in power s	actance of synchronous in transient conditions, syn ugh Thevenin's theorem, unbalanced phasors int ical components, Phase legative and Zero Sequer hsmission line, Synchro :: Line-To-Ground (L-G), L ternator and Power Syste Open conductor faults in Uppen conductor faults in I the Swing equation, Po nsient stability evaluation utta 4th order method. be able to the per unit impedance dia system to determine shor	machine on no-loa nmetric short circe Problems o their symmetric shift of symmetric nce impedances an nous machine an 07 Hours ine-To-Line (L-L), em with and witho power systems. 10 Hours wer angle equation . Numerical solution gram t circuit kVA.

- 3. Apply the concept of symmetrical components to calculate sequence components
- 4. Analyze the power system using sequence networks for unsymmetrical faults.

5. Analyze dynamics of synchronous machine to evaluate transient stability.

Cou	irse O	utcomes Mapping with P	rog	ram	Out	com	nes 8	k PS	50							
F						1				1		•				
		Program Outcomes→	1	2	3	4	5	6	7	8	9	10	11	12	PS	O↓
	↓ Coι	urse Outcomes													1	2
		EE3102-1.1	3	3	-	-		-	-	-	-	-	-	1	-	1
		EE3102-1.2	3	3	-	-		-	-	-	-	-	-	1	-	2
		EE3102-1.3	3	3	-	-	-	-	-	-	-	-	-	1	-	2
		EE3102-1.4	3	3	-	-	-	-	-	-	-	-	-	1	-	2
		EE3102-1.5	3	3	-	-	-	-	-	-	-	-	-	1	-	2
-	1: Low 2: Medium 3: High															
TEX	твос	DKS:														
	1.	Nagrath and Kothari, "Mc	deri	n Po	wer	Syst	em A	Anal	ysis"	, 4 [™]	edi	tion,	MHE	2011		
	2.	John J Grainger, William D) Ste	even	son,	"Po	wer S	Syste	em A	Analy	/sis″	, Tata	n McG	Graw-	Hill	
		Education India, 2014						,								
	3.	W.D Stevenson, "Element	s of	Pow	er Sy	/ster	n Ar	alys	sis". 4	4 [™] e	ditio	n,TM	H,20	01		
REF	EREN	CE BOOKS:				·										
	1. Arthur Bergen "Power System Analysis", 2 nd edition, Pearson, 1999															
E Bo	ooks /	/ MOOCs/ NPTEL			<u> </u>											
	1.	NPTEL Course on Power s	yste	m a	nalys	sis b	y Pro	of. D	eba	priya	Da	s, IIT	Khara	agpur		
	2. NPTEL Course on Computer-Aided Power System Analysis by Prof. Biswarup Das, IIT															
	Roorkee															

Professional Core Courses (Lab)

	ANALOG	SIG	NAI	. PR	OCE	SSIN	IG L	ABC)RA [.]	TOR	Y				
Cour	se Code:			EE2	601·	·1	(Cou	rse 7	Гуре):			PCC	Lab
Teac	hing Hours/Week (L: T: P: S):		0:0:	2:0		(Crec	lits:					01	
Tota	I Teaching Hours:			0+0	+26	;	(CIE ·	+ SE	ΕM	arks:			50+	50
Prer	equisite			EC1	001	-1									
	•						_								
	Teaching Depar	rtme	ent:	Elec	trica	8	Elec	tror	nics	Engi	neer	ing			
Cours	e Objectives:														
1.	To design and test OpAmp of	circu	its												
2.	To study the MOSFET charac	cteri	stics												
3.	To design and test biasing c	ircui	ts of	MO	SFE	Γ.									
4.	To use MOSFET as an amplif	ier a	nd \	/erify	/ its	freq	ueno	cy re	spor	nse.					
5.	To design and test MOSFET	base	ed os	scilla	tor	circu	it.								
	S	ugg	este	d Li	st of	[:] Exp	berir	nen	ts						
1.	Design and testing of capa	acito	r co	uple	vol	tage	fol	lowe	er ar	nd ir	nverti	ng a	mplif	ier fo	or gain,
	frequency response, Zin.														
2.	Design and testing of capa	acito	r co	uple	d n	on i	nver	ting	and	d dif	ferer	nce a	mplif	ier fo	or gain,
	frequency response and Zin	calc	ulati	on											
3.	Design and testing of uni	pola	r O	p-Ar	np	circu	its	for	gain	, fre	quer	ncy r	espor	nse a	nd Zin
	calculations								-			-			
4.	Study of MOSFET characteri	stics	and	det	ermi	ne t	rans	cond	ducta	ance	80	utput	resis	tance	2.
5.	Design different types of bia	sing) circ	uits	and	valio	date	the	ope	ratin	ig po	int			
6.	Design Common Source (CS) M(OSFE	T ar	nplif	ier to	o de	term	nine	freq	uenc	y res	oonse	ē	
7.	Application of MOSFET as a	swit	ch.												
8.	Design MOSFET source follo	wer	to d	leter	mine	e inp	out 8	k ou	tput	imp	edan	ce			
9.	Design and test MOSFET ba	sed	RC p	hase	e shi	ft os	cilla	tor.							
10.	Design MOSFET based diffe	eren	tial	amp	lifier	to	dete	ermi	ne d	liffer	entia	l and	d con	nmor	n mode
	gains.														
Cours	e Outcomes: At the end of th	ne co	ourse	e stu	dent	t will	be a	able	to						
1.	Use of Op-Amp to design a	oplic	atio	n spe	ecifio	c circ	cuit								
2.	Use of Op-Amp to design u	nipo	lar a	pplic	catio	n sp	ecifi	c cir	cuit						
3	Verify MOSFET characteristic	s ar	nd bi	asin	g cir	cuits	to v	/alid	ate d	oper	ating	poir	nt.		
4.	Use MOSFET for amplifier an	oplic	atio	ns to	det	ermi	ine t	he c	ain,	frea	uenc	v res	ponse	e, inp	ut &
	output impedances.	'							, ,			,		, I	
5.	Design MOSFET based oscill	ator	circ	uits	to a	ener	ate i	requ	ired	frea	uenc	y siai	nals		
				-	5			1							
Cours	e Outcomes Mapping with	Prog	gram	ו Ou	tcor	nes	& P	SO	1				T		
	Program Outcomes→	1	2	3	4	5	6	7	8	9	10	11	12	PS	O↓
\downarrow (Course Outcomes													1	2
	EE2601-1.1	3	3	-	-	-	-	-	-	2	2	-	-	-	2
	EE2601-1.2	3	3	-	-	-	-	-	-	2	2	-	-	-	2
	EE2601-1.3	3	3	-	-	-	-	-	-	2	2	-	-	-	2
	EE2601-1.4	3	3	-	-	-	-	-	-	-	2	-2	-	-	2
	EE2601-1.5	3	3	-	-	-	-	-	-	-	2	2	-	-	2
											1: Lo	w 2:	Med	ium	3: High
TEXTE	BOOKS:														
1.	Sedra /Smith, "Microelectroni	c Cir	cuits	s" 6t	h Ed	ition	, Ox	ford	Uni	versi	ity Pr	ess-N	lew [Delhi,	2013.

2. David A Bell, "Operational Amplifier and Linear IC's", Oxford University Press-New Delhi, 3rd Edition, 2011.

_	ELECTR	RICA	LM	ACH	IINE	S LA	BO	RAT	ORY ·	– I				
Course Code: EE2602-1 Course Type:								PCC	: Lab					
Теа	ching Hours/Week (L: T: P: S):		0:0:	2:0		(Crec	lits:				01	
Tot	al Teaching Hours:			0+0)+26	5	(CIE ·	+ SEE	Marks	5:		50+	50
Pre	requisite			EE1	001	-2								
	Teaching Depar	tme	nt:	Elec	trica	8	Elec	tron	ics E	nainee	rina			
Cour	se Obiectives:									<u> </u>				
1	To get familiarized with the	meth	nods	of t	estir	na tr	ansf	orm	er eff	iciency	and r	equla	tion.	
2	To understand torque-slip c	nara	cteri	stics	ofa	n in	duct	tion	mach	ine.		- 9		
3	To perform speed control of	thre	e-p	hase	slip	-rinc	a inc	lucti	on m	otor.				
4	To get acquainted with par	ralle	l op	erati	ion	and	thre	e-n	hase	connec	tions	of si	nale	-phase
	transformers.		P	0.0.0				,				0. 0.		p
	S	uaa	este	d Li	st of	Exp	berir	nen	ts					
		-99		<u> </u>										
1	Load test on single phase tra	ansfo	orme	r										
2.	OC. SC test on single-phase	tran	sfor	mer.	pre	dete	rmir	natio	n of e	efficien	cv & r	egula	ation.	
3	Sumpner's test				p. e							<u>e g</u> ane		
4	Parallel operation of two dis	simi	ar (d	liffe	rent	κva) Sir	nale	-nha	se trans	forme	ors		
5	Polarity test & connection	<u>ר הי</u>	f th	ree-	sin	ale-	nha•	se t	ransf	ormers	in s	tar -	- de	Ita and
5.	determination of efficiency 8	k re	ula [.]	tion	– fo	r bal	ance	ed di	irect I	oading	for U	PF.	ae	and
6.	Three-phase power transfor	mati	on b	ov tw	o tra	ansfo	orme	ers w	/ith o	pen de	lta.			
7.	Load test on 3-phase indu	uctio	on r	noto	or- r	perfo	orma	nce	evalu	Jation	(Tora	ue- s	speed	J. BHP-
	efficiency, BHP-PF, slip- BHP).			· r				e run		(, poor	.,
8.	Speed control of 3-phase slip	o-rir	ig in	duct	ion	mote	or- r	otor	resis	tance c	ontro	(per	forma	ance for
	at least two different rotor re	esist	ance	e vali	ues).							N		
9.	Load test on induction gene	rato	r.		,									
10	. Load test on single-phase in	duct	tion	mot	or.									
Cour	se Outcomes: At the end of th	ie co	ourse	e stu	dent	: will	be a	able	to					
1	Perform suitable tests on tra	nsfo	rme	r to	prec	leter	min	e/ de	eterm	ine effi	ciency	/ and		
	regulation.													
2.	Operate two single-phase tra	ansf	orm	ers i	n pa	ralle	l to o	com	pute	load sh	aring.			
3.	Connect three single-phase	tran	sforr	ners	bar	ıks to	o ob	tain	diffe	rent thr	ee-ph	ase		
	connections.													
4	Perform suitable test to anal	yze	torq	ue-s	lip c	hara	cter	istics	s of a	n induc	tion n	nachi	ne	
5.	Apply rotor resistance techn	ique	to c	conti	rol tł	ne sp	beed	l of t	hree-	phase	slip-ri	ng in	ducti	on
	machine.													
Cour	se Outcomes Mapping with I	Prog	ram	n Ou	tcor	nes	& P:	SO						
	Program Outcomes→	1	2	3	4	5	6	7	8	9 10	11	12	PS	O↓
↓	Course Outcomes												1	2
	EE2602-1.1 3 3 2 2													
	EE2602-1.2 3 3 2 2													
	EE2602-1.3	З	3	-	-	-	-	-	-	2 2	-	-	-	-
	EE2602-1.4	3	3	-	-	-	-	-	-	2 2	-	-	-	-
	EE2602-1.5	3	3	-	-	-	-	-	-	2 2	-	-	-	-
										1: L	ow 2:	Med	ium	3: High
TEXT	BOOKS:													
1.	1. P. S. Bimbhra, "Electrical Machinery", Khanna Publishers,7th edition,201.													
2.	2. A. Langsdorf, "Theory of alternating current machine", TMH,2nd edition,2004.													

3. Ashfaq Husain, "Electrical Machines", Dhanapathrai & co,2nd edition,2014.

		HIGH VO	LTA	GE	ENG	INE	ERIN	IG L	ABC)RA	TOR	Y				
Cour	200	Code:			FF3	601	.1		<u></u>	rco '	Tvn	٥.			DCC	lah
Teac	hin	a Hours/Week (I · T· P· S	<u>۱</u> .		0.1.	<u>1.0</u>	- T		Cro	lite dite	<u>'yp</u>				01	
Tota	I T2	aching Hours	<i>.</i>		0.1.	<u>+.0</u> +26				+ SF	FM	arks			504	-50
Dror	<u>- 10</u>	isite			FF2	104	, .1 F	F21	02-	<u> </u>	200	1_1	•		501	50
	equ	Teaching Dena	tma	ont.	Floc	trica	- <u>1</u> , L	Flor	tror	L, LL	.200 Ena	-1-1 inoor	ina			
Cours	e O	bjectives:	une	5116.	LICC	unca	i u	Liet		iics	Liig	meer	ing			
1.	Тс	find the breakdown volta	qe a	and c	diele	ctric	stre	ngtl	ר of	tran	sfori	mer c	oil			
2.	Тс	familiarize the concepts of	of ea	rth r	esist	tanc	e me	easu	rem	ents						
3.	Тс	understand HVDC and H	VAC	mea	asure	emei	nts u	isinc	ı sta	ndar	rd rc	d an	d sph	eres		
4.	Тс	study field mapping using	a ele	ectro	lytic	tan	k		,							
5.	Тс	get acquainted with parti	al d	ischa	arae	test	ina r	netł	nods							
		<u>S</u>	uaa	este	d Li	st of	Ext	peri	men	ts						
1	L.	Break-down voltage of tra	ansf	orm	er oi											
2	2.	Measurement of Earth Re	sista	ance	of ⊦	ligh	Volt	age	Lab	and	Hig	h-Te	nsion	Sup	ply P	ole
3	3.	Spark over characteristics	of a	air in	sula	tion	sub	iecte	ed to) hia	h vc	ltage	DC			
Δ	1.	Measurement of HVDC b	v sp	here	dap).										
5	5.	Measurement of break-de	own	volt	ade	bv r	od c	ap (ΉVΑ	AC) (unif	orm a	and n	on-u	nifor	m field)
6	5.	Measurement of break-de	own	volt	age	by r	od c	iap (HVE) () C	unif	orm a	and n	on-u	nifor	m field)
7	7.	Measurement of HVAC by	v sp	here	gap	s				, ,						,
3	3.	Field mapping using elect	roly	tic ta	ank f	or a	ny o	ne-r	nod	el ca	ble/	capa	citor/	trans	missi	on line/
1		Sphere gap models	,				5					'				•
ç).	Measurement of partial d	isch	arge	usir	ng P	D se	t up								
1	LO.	Study solid dielectrics use	ed ir	voa r	ver a	appa	ratu	S								
						1-1		-								
Cours	e O	utcomes: At the end of th	ie co	ourse	e stu	dent	t will	be	able	to						
1.	Te	st the given transformer o	il ar	nd m	easu	re it	s br	eakc	lowr	וסע ו	tage	e & d	ielect	ric st	reng	th.
2.	Pe	erform suitable test to mea	sure	e ear	th re	esista	ance	of	nigh	volt	age	lab a	nd su	pply	pole	
3.	Ar	halyze the concept field ma	appi	ng u	sing	eleo	ctrol	ytic	tank	for	the	meas	urem	ient c	of	
	са	pacitance for different elec	ctro	des	5			,								
4.	Ap	pply concept of HV techno	logy	/ for	the	mea	sure	mer	nt of	HV	DC a	nd H	VAC I	by sp	here	gap
	an	d rod gap techniques														
5.	De	emonstrate the measurem	ent	of pa	artial	disc	har	ge u	sing	PD	set ı	лр				
Cours	e O	utcomes Mapping with I	Prog	gram	<mark>۱ Ou</mark>	tcor	nes	& P	SO							
		Program Outcomes \rightarrow	1	2	3	4	5	6	7	8	9	10	11	12	PS	SO↓
↓ (Cou	rse Outcomes													1	2
		EE3601-1.1	3	3	-	-	-	-	-	-	-	-	-	-	-	-
		EE3601-1.2	3	3	-	-	-	-	-	-	-	-	-	-	-	-
		EE3601-1.3	3	3	-	-	-	-	-	-	-	-	-	-	-	-
		EE3601-1.4	3	3	-	-	-	-	-	-	-	-	-	-	-	-
		EE3601-1.5	3	3	-	-	-	-	-	-	-	-	-	-	-	-
												1: Lo	ow 2:	Med	lium	3: High
REFER	REN	CE BOOKS:														
	1.	M S Naidu & V Kamaraju,	"Hi	gh V	/olta	ge E	ngir	neeri	ng",	4th	Edit	ion, 1	ΓΗM,	2008	8	
	2	C I Wadhwa, "High Volta	ige l	Engiı	neer	ing",	Ne	w Ag	ge Ir	ntern	atio	nal P	rivate	limit	ted, 3	rd
	2	C I Wadhwa, "High Volta	ige l	Engiı	neer	ing",	Ne	w Ag	ge Ir	ntern	atio	nal P	rivate	limit	ted, 3	rd

3. E Kuffel & W S Zeengl , "High Voltage Engineering Fundamentals", 2nd edition, Elsevier, press, 2005.

			POW	/ER	ELEC	CTRO	DNIC	CS L/	ABO	RAT	OR	1					
															r		
C	our	se	Code:			EE3	602-	-1	(Cou	rse 1	Гуре	:			PCC	Lab
Т	eac	hin	g Hours/Week (L: T: P: S):		0:0:	2:0		(Crec	lits:					01	
Т	ota	I Te	eaching Hours:			0+0	+26		(CIE ·	+ SE	ΕM	arks:			50+	50
P	rere	equ	iisite			EC1	001	-1, E	E21	01-1	L						
Te	ach	ing	Department: Electrical 8	k Ele	ectro	onic	s Eng	gine	erin	g							
Сс	ours	e C	bjectives:														
	1.	Тс	study the Static character	istic	s of	SCR	, MC)SFE	T an	d IG	BT.						
	2.	To	o design and test the UJT r	elax	atior		cillate	or fo	r tri	gger	ring	SCR.	•				
	3.	To	study AC voltage controll	er, s	singl	e -pl	nase	con	troll	ed r	ectif	ier, s	single	e-pha	se inv	verte	r, and
		ch	opper circuits														
			S	ugg	este	d Li	st of	Exp	berir	nen	ts						
	1	<u></u>	Static characteristics of SC				CDT										
		<u>.</u>	Static characteristics of M		EL a	nd I	GB1.										
	3	3.	Gate drive circuit for MOS	SFEI													
		ł.	SCR turn-off using LC cor	nmu	itatio	on 		T		•	:1	1-4-					
	5). -	SCR turn-on circuit using	syn		nize	מ ט	i rei	axat	lon		lato	r və ə ətə		اممط		
	-). 7	A.C. voitage controller us	ng					LOIM	oina	tion	con	necte		LOau		
	/	'. >	Single -phase full-wave of	3000 .+6 [de									
	<u> </u>).)	DC step down chopper w			<u>л к-</u> і		us.									
	1	,. 0	IGBT-Based Single phase		M In		aus. ar										
6	,urc	<u> </u>	utcomes. At the end of th				dent	will	he	ahle	to						
	Juis				20130	5 510	acm		000								
		D	raw the static characteristic	s of	MO	SFE	L. IG	BT a	nd S	CR t	o id	entif	fv diff	feren	t reai	ons d	of
	1.	o	peration.		-	-	, -	-					J -				-
	2.	D	esign and test MOSFET and	d SC	R tri	ggei	ring	circu	iit.								
	3.	Ve	erify LC commutation circu	it to	turr	n-off	SCR	l use	d in	cho	ppe	rs.					
	4.	Вι	uild AC voltage controller ι	Ising	g TR	AIC-	DIAC	C trig	geri	ing c	circu	it to	prod	luce v	variat	ole vo	oltage.
	5	Вι	uild and test single-phase f	ull-\	wave	e and	thr	ee p	hase	e hal	f-wa	ve r	ectifie	er to	check	< circ	uit
	٦.	be	ehavior with R & R-L load.														
	6.	Ve	erify operation of step up a	nd :	step	-dov	vn cł	nopp	per f	or R	and	RL I	oad				
	7	Te	est IGBT based single-phas	e fu	ll-br	idge	inve	erter	to c	bsei	rve t	he e	effect	of va	rious		
		m	odulation techniques.														
Сс	ours	e C	outcomes Mapping with I	Prog	gran	n Ou	tcor	nes	& P:	SO			1	1	1	1	
			Program Outcomes→	1	2	3	4	5	6	7	8	9	10	11	12	PS	O↓
	↓ (Ξοι	Irse Outcomes										_			1	2
			EE3602-1.1	3	3	-	-	-	-	-	-	2	2	-	-	1	-
			EE3602-1.2	3	3	-	-	-	-	-	-	2	2	-	-	2	-
			EE3602-1.3	3	3	-	-	-	-	-	-	2	2	-	-	2	-
			EE3602-1.4	3	3	-	-	-	-	-	-	2	2	-	-	2	-
			EE3602-1.5	3	5	-	-	-	-	-	-	2	2	-	-	2	-
			EE3602-1.6	<u>ל</u>	5 7	-	-	-	-	-	-	2	2	-	-	1	
			EE30U2-1./	3	3	-	-	-	-	-	-	2	2	-	-	L	-
	L						I						 1 · l ~		Mod	ium	3. Hiah
RF	FFP	FN											I. LU	W Z.	wieu	ulli	J. ITIGII
		1	M.H.Rashid "Power Flectro	onic	·s″. ٦	Rd F	ditic	on. P	HI	/Pe;	arso	n. Ne	ew D	elhi 2	2014		

Course Code: EE3603-1 **Course Type:** PCC Lab Teaching Hours/Week (L: T: P: S): **Credits:** 0:0:2:0 01 CIE + SEE Marks: **Total Teaching Hours:** 0+0+26 50+50 Prerequisite EE2005-1, EE2001-1, EE2102-1 **Teaching Department: Electrical & Electronics Engineering Course Objectives:** To get familiarized with modelling of power systems using PSCAD and MATLAB 1. 2. To analyze the transient response of RL circuit for sinusoidal input. 3. To analyze the symmetrical fault in power system To analyze the unsymmetrical fault in power system 4. To get familiarized with numerical techniques to solve nonlinear differential equations. 5. **Suggested List of Experiments** Performance analysis of transmission lines using Nominal T and Nominal Pi Methods. 1. Transient Analysis of RL circuit for sinusoidal input 2. Analysis of Symmetrical fault on unloaded synchronous generator 3. Analysis of Symmetrical fault on power system. 4. Analysis of Symmetrical components from unbalanced phasors for power system 5. Verification of Phase shift in symmetrical components different winding configurations of 6. Transformer during unsymmetrical fault. Analysis of unsymmetrical faults in power system with and without fault impedance for i] LG 7. ii]LL and iii] LLG Transient Analysis of Synchronous machine during fault. 8. Power angle curve characteristics of salient and non-salient pole machine 9. 10. Solution of Swing equation using Runge Kutta method Course Outcomes: At the end of the course student will be able to 1. Model the interconnected power system and construct the reactance diagram 2. Analyze symmetrical three phase faults in power system to determine short circuit kVA. 3. Apply the concept of symmetrical components to calculate sequence components 4. Analyze Unsymmetrical faults in power system to determine the fault currents 5. Analyze dynamics of synchronous machine to evaluate transient stability **Course Outcomes Mapping with Program Outcomes & PSO** 5 **Program Outcomes**→ 2 3 4 6 7 8 9 10 11 12 **PSO** 1 **Course Outcomes** 1 2 2 EE3603-1.1 3 3 3 3 EE3603-1.2 3 3 2 _ _ _ _ _ _ _ _ _ 3 3 3 _ 2 EE3603-1.3 ----_ -_ --2 3 3 3 EE3603-1.4 _ _ _ _ _ _ _ _ _ _ 3 3 3 EE3603-1.5 _ _ _ _ _ _ _ _ 2 _ 1: Low 2: Medium 3: High **REFERENCE BOOKS:** Nagrath and Kothari: Modern Power System Analysis, 4th edition, MHE 2011 1. John J Grainger, William D Stevenson, Power System Analysis, Tata McGraw-Hill Education 2. India, 2014

POWER SYSTEM ANALYSIS AND STABILITY LABORATORY

- 3. W.D Stevenson: Elements of Power System Analysis. 4th edition,TMH,2001
- 4. Power System Analysis by Arthur Bergen, 2nd edition, Pearson, 1999

Professional Elective Courses (Power Electronics and Drives)

POWER SEMICONDUCTOR DEVICES									
Course Code:	EE2201-1	Course Type	PEC						
Teaching Hours/Week (L: T: P: S)	3:0:0:0	Credits	03						
Total Teaching Hours	40+0+0	CIE + SEE Marks	50+50						
Prerequisite	EC1001-1, E	E3101-1							
Teaching Department: Electrical & Electronics Engineering									
Course Objectives:									

Course Objectives:

_

2

_

2

Basic structure & operation, I-V Characteristics, On-state operation, Turn-on, turn-off process, Switching characteristics: Turn-on transient, dv/dt capability, Turn-off transient, turn-off time, Switching losses, Safe operating Area, Effect of reverse recovery transients on switching stresses & losses, dv/dt limitations

Basic structure & operation, i-v characteristics, Latch-up in IGBT, Switching characteristics: turn-on, Turn-off transient, current tailing, Switching losses, Device limits & SOA, Over-current & short-circuit protection of IGBT

UNIT-II

Power Electronics Devices 08 Hours Construction and features of - Phase Controlled thyristors, inverter graded thyristors, Wide band gap semiconductors - SiC and GaN Comparison of power devices.

Firing and Protecting Circuits 10 Hours Necessity of isolation, pulse transformer, optocoupler – Gate drives circuit for: SCR, MOSFET, IGBTs SiC and GaN devices. Over voltage, over current and gate protections; Design of snubbers, Guidance for heat sink selection, heat sink types and design – Mounting types.

Course Outcomes: At the end of the course student will be able to Analyze characteristics of power semiconductor devices to select an appropriate device for given application Summarize switching and I-V characteristics of MOSFET to know the maximum switching 2. frequency limit Analyze the I-V and switching characteristics to summarize dv/dt and di/dt limitations, over 3. current and short circuit protections to ensure safe operation of IGBT Describe the construction and features of the emerging power electronic devices 4. 5. Analyze the importance of gate drive and protection circuits to switch power electronic converters

2 5 7 8 9 10 12 **Program Outcomes**→ 1 3 4 6 11 **PSO Course Outcomes** 1 EE2201-1.1 2 3 _ _

UNIT-III

Course Outcomes Mapping with Program Outcomes & PSO

EE2201-1.2

2 3

1.

2.

3.

– rating

Introduction

Power MOSFET

Power IGBT

devices

08 Hours

		EE2201-1.3	2	3	-	-	-	-	-	-	-	-	-	-	-	2	
		EE2201-1.4	3	-	-	-	-	-	-	-	-	-	-	-	-	-	
		EE2201-1.5	2	2	3	-	-	-	-	-	-	-	-	-	-	-	
												1: Lo	w 2:	Med	ium	3: Hi	gh
TE	ΧТВ	OOKS:															
	1.	Mohan, Undeland and Robi	ns, "	Pow	er El	ectr	onic	s – C	Conv	erte	rs, a	pplica	ation	s and	Desi	gn,	
		John Wiley and Sons, Singa	pore	, 20	00											-	
	2.	Modern Power Electronic D	evice	es: P	hysio	cs, a	oplic	atio	ns, a	nd r	relial	bility,	Edite	ed by	Fran	cesco	C
		Iannuzzo, IET Digital Library			-	-	-					-		-			
	3.	Power Electronics Semiconc	lucto	or Sv	vitch	es, F	r.s r	lams	haw	, Spi	ringe	er; 2n	d edi	ition :	1993		
RE	FER	ENCE BOOKS:															
	1.	Rashid M.H., "Power Electro	nics	Circ	uits,	Dev	ices	and	Арр	olica	tions	5 ", Pr	rentic	e Hal	l Ind	ia,	
		Third Edition, New Delhi, 20	04														
	2.	B.W Williams 'Power Electro	nics	Circ	uit D	Devic	ces a	nd A	Appl	icati	ons'	. Palg	rave	publi	shers	5,1987	7.
EE	Bool	cs / MOOCs/ NPTEL															
	1.	https://nptel.ac.in/courses/1	.081	050	66												
	2.	https://www.coursera.org/le	ectur	e/cc	nve	rter-	circu	uits/s	sect-	4-2-	-0-ir	trod	uctio	n-to-	powe	er-	
		semiconductors-b5VYY															

SWITCHED M	ODE POWER C	ONVERTERS	
Course Code:	EE3201-1	Course Type	PCC
Teaching Hours/Week (L: T: P: S)	3:0:0:0	Credits	03
Total Teaching Hours	40+0+0	CIE + SEE Marks	50+50
Prerequisite	EE3101-1		
Teaching Department:	Electrical & Ele	ectronics Engineering	
Course Objectives:			
1. To introduce the concept of switche	ed mode power	converters	
2. To study the working of non-isolate	d and isolated E	DC-DC switching power con	verters
3. To understand the working of switch	hed mode DC-A	C inverters	
4. To understand the concept of reson	ant converter	11.1	
5. To study various power line disturba	ance and power	conditioners	
6. 10 design high frequency transform	er and inductor		
	UNIT-I		14.11.0.000
Linear voltage regulators (L)(Ps) a basis s	witching convo	tor (SMDC) comparison by	
SMPC principle of operation and analysis	of buck convert	ter (SIVIPC), comparison be	
ripple Numerical Problems Canacitor	resistance eff	er, inductor current ripple, c	ation design
considerations buck converter for disco	ntinuous curren	t operation principle of c	operation and
analysis of boost converter, inductor currer	nt ripple and out	put voltage ripple, design c	onsiderations.
boost converter for discontinuous current	operation, Prin	ciple of operation and ana	alysis of buck-
boost converter analysis inductors current	ripple and outp	out voltage ripple, design c	onsiderations,
design problems, buck-boost converter fo	r discontinuous	current operation, principle	e of operation
and analysis of CUK converter, inductor cur	rent ripple and o	output voltage ripple, capac	itor resistance
effect, design considerations, design prob	lems Single End	ed Primary Inductance Cor	verter (SEPIC)
Converter Design consideration, problems			
	UNIT-II		
Magnetics	•••••		04 Hours
Design of high frequency Inductor and	transformers	Design examples for buc	k. boost. and
flyback converter.			
Derived Converters:			08 Hours
Introduction transformer models princ	inle of operation	on and analysis of fly bac	k converter-
continuous and discontinuous current r	node of operat	tion design consideration	s Numerical
problems principle of operation and an	alvsis of forwar	rd converter design cons	iderations
double ended (Two switch) forward cor	werter princip	le of operation and analy	sis of push-
null converter design considerations in	rinciple of one	ration and analysis of hal	f bridge DC-
DC converters and full bridge DC-DC co	nverters desig	n considerations	i biluge DC
DC-AC switched mode inverters	Silverters desig		04 Hours
Basic concept of switch-mode Inverters sin	ale-phase inver	ter with hipolar and unipola	ar switching
scheme, three phase inverter with unipolar	scheme.		in switching
	UNIT-III		
Resonant switch converters			05 Hours
Classification of resonant converter, Resor	nant switch con	verter – ZCS, ZVS, dc-dc co	onverters with
buck converter; Resonant dc-link inverter w	vith ZVS.		
Control of DC-DC Converter			05 Hours
Modeling of DC-DC converters, Types of	converter cont	rol mechanism - Voltage	mode control,
			Page 188

Current mode control, control loop stability, small signal analysis switch transfer function, filter transfer function PWM transfer function, closed loop control of buck and boost converter.

Course Outcomes: At the end of the course student will be able to

1.	Compare the Linear Voltage Regulator & SMPC and list the advantages of SMPC.
2.	Describe the working principle of various non-isolated dc-dc converters and design the
	converter for a given specification.
3.	Design magnetic components used in the SMPC and Describe the principle of operation of
	various isolated dc-dc converter to understand the design steps to be followed & calculate
	performance parameters.
4.	Describe the principle of operation of DC-AC inverters to calculate performance parameters.
5.	Analyze the performance of different resonant converters to list their advantages in
	improving the efficiency of SMPC & Model the DC-DC converter to design of compensators

Course Outcomes Mapping with Program Outcomes & PSO

Program Outcomes→	1	2	3	4	5	6	7	8	9	10	11	12	PS	O↓
↓ Course Outcomes													1	2
EE3201-1.1	3	3	-	-	-	-	-	-	-	1	-	1	-	-
EE3201-1.2	3	3	-	-	-	-	-	-	-	I	-	1	-	-
EE3201-1.3	3	3	-	-	-	-	-	-	-	-	-	1		-
EE3201-1.4	3	3	-	-	-	-	-	-	-	-	-	1		-
EE3201-1.5	3	3	-	-	-	-	-	-	-	I	-	1	-	-

1: Low 2: Medium 3: High; *- If PBL is carried out as a team

TEXTBOOKS:

1.	Ned Mohan, Tore M. Undeland, and William P. Robins, "Power Electronics – Converters,										
	Applications and Design", Third Edition, John Wiley and Sons. 2010.										
2.	Daniel W Hart, "Power Electronics", Tata McGraw Hill, 2011										
REFER	REFERENCE BOOKS:										
1.	L Umanand, "Power Electronics: Essentials & Applications", Wiley, 2009										
2.	Modern Power Electronics- Cyril Lander, 3rd edition, TMH, 2015										
3.	Christophe P. Basso, "Switch-Mode Power Supplies Spice Simulations and Practical Designs"										
	Revised edition, TMH, 2014										
4.	L Umanand and Bhatt S R, "Design of Magnetic Components for Switched Mode Power										
	Converters", New Age International, New Delhi, 2009										
E Book	cs / MOOCs/ NPTEL										
1.	http://nptel.ac.in/courses/108108036/										
2.	https://www.coursera.org/learn/electronic-converters										
3.	https://www.mooc-list.com/course/converter-control-coursera										

COMPUTER CONTROL OF ELECTRICAL DRIVES											
Course Code:	EE4201-1	Course Type	PCC								
Teaching Hours/Week (L: T: P: S)	3:0:0:0	Credits	03								
Total Teaching Hours	40+0+0	CIE + SEE Marks	50+50								
Prerequisite	EE3101-1										

Teaching Department: Electrical & Electronics Engineering

Course Objectives:

1. Review the applications of microcontrollers and power electronics in industrial dri
--

2. Explain the classification and control of AC drive using digital logic

3. Illustrate the control of synchronous machine and phase controlled converters

4. Explain the principles of slip power recovery schemes and effect of EMI

5. Identify the use of expert system application to drives and understand the concept of vector control of ac drives

UNIT-I

04 Hours

04 Hours

08 Hours

05 Hours

05 Hours

05 Hours

Typical Microcontrollers: 8 bit, 16 bit (only block diagram), Digital Data Acquisition system, voltage sensors, current sensors, frequency sensors and speed sensors

Evolution of Power Electronics in Drives

Review of Microcontrollers in Industrial Drives System

Power semiconductors devices used for drives control, Ratings, comparison and their applications, Block diagram of power integrated circuit for DC motor drives

AC Machine Drives

General classification and National Electrical Manufacturer Association (NEMA) classification, speed control of Induction motors with variable voltage constant frequency, constant voltage variable frequency, (v/f) constant operation, drive operating regions. Variable stator current operation, Effect of Harmonics

UNIT-II

Synchronous Machine Drives

Wound field machine, comparison of Induction and wound field synchronous machines, Torque angle characteristics of salient pole synchronous machines, synchronous reluctance permanent magnet synchronous machines (SPM), variable reluctance machines (VRM)

Phase Controlled Converters

Converter controls, Linear firing angle control, cosine wave crossing control, phase locked oscillator principle, Electromagnetic Interference (EMI) and line power quality problems, cyclo converters, voltage fed converters, rectifiers, current fed converters

Principles of Slip Power Recovery Schemes

Static Kramer's drive system, block diagram, phasor diagram and limitations, Static Scherbins scheme system using D.C link converters with cyclo converter modes of operation, modified Scherbins drive for variable source, constant frequency (VSCF) generation

UNIT-IIIPrinciple of Vector Control of AC Drives05 HoursPhasor diagram, digital Implementation block diagram, Flux vector estimation, indirect vector control
block diagram with open loop flux control, synchronous motor control with compensation04 HoursExpert System Application to Drives (Only Block Diagram)04 HoursExpert system shell, Design methodology, ES based P-I tuning of vector controlled drives system,
Fuzzy logic control for speed controller inverter control drives, structure of fuzzy control in feedback
system

Course Outcomes: At the end of the course student will be able to

1. Describe the advances in microcontrollers and power electronics to understand their application in industrial drives

Analyze different speed control methods of AC drives to choose appropriate method for a

2.

	given drive requirements
3.	Analyze torque angle characteristics of synchronous motor drive, synchronous reluctance
	and variable reluctance machines, understand phase-controlled converters used in control of
	electrical drives
4.	Describe the principles of slip power recovery schemes to improve the efficiency of drive
5.	Describe principle of vector control of AC drives and application of expert systems for control
	of electrical drives

Course Outcomes Mapping with Program Outcomes & PSO

Program Outcomes $ ightarrow$	1	2	3	4	5	6	7	8	9	10	11	12	PS	0 ↓
↓ Course Outcomes													1	2
EE4201-1.1	3	3	-	-	-	-	-	-	-	-	-	1	-	-
EE4201-1.2	3	3	-	-	-	-	-	-	-	-	-	1	-	-
EE4201-1.3	3	3	-	-	-	-	-	-	-	-	-	1	-	-
EE4201-1.4	3	3	-	-	-	-	-	-	-	-	-	1	-	-
EE4201-1.5	3	3	-	-	-	-	-	-	-	-	-	2	-	-
										1: La	w 2:	Med	ium	3: Hi

TEXTB	TEXTBOOKS:										
1.	Bimal Bose, "Power Electronics & Motor Drives", Elsevier 2006										
2.	Bimal K. Bose, "Modern Power Electronics & Drives", Pearson Education 2003										
REFER	REFERENCE BOOKS:										
1.	Badri Ram "Advanced Microprocessor and Interfacing", TMH,2001										
2.	BK Bose, "Microcomputer Control of Power Electronics & Drives", IEEE press 1987										

Г

POWER ELECTRONICS SYSTEM DESIGN USING ICS												
		1										
Course Code:	EE3301-1	Course Type	PCC									
Teaching Hours/Week (L: T: P: S)	3:0:0:0	Credits	03									
Total Teaching Hours	40+0+0	CIE + SEE Marks	50+50									
Prerequisite	EE3101-1											
I eaching Departme	nt: Electrical & I	Electronics Engineering										
Course Objectives:												
1 Analyza navyar alastronis system		anly the knowledge in a th	oratical contaut									
1. Analyze power electronic systems using its and apply the knowledge in a theoretical context												
2. Onderstand switching regulator of	oloctronic circuits	using different ICs for var	ious applications									
4 Think laterally and originally to	solve power elec	tronic circuits and evaluation	te problems for									
switching power supplies												
5 Analyze Power Plant control usin	g Programmable	Logic Controller										
	griogrammable	Logic controller										
	UNIT-I											
Introduction			08 Hours									
Measurement techniques for voltages, c	urrent, power, po	wer factor in power electro	onic circuits, other									
recording and analysis of waveforms, se	nsing of speed											
Switching Regulator Control Circuits			07 Hours									
Introduction, isolation techniques of switching regulator systems, PWM systems												
	UNIT-II											
Commercial PWM Control ICs and the	eir Application		08 Hours									
IL 494 PWM Control IC, UC 1840 Programmable off line PWM controller, UC 1524 PWM control IC,												
Switching Power Supply Aprillary		8 Perinheral Circuits	and 08 Hours									
Components	Supervisory											
Introduction, Opto-couplers, self-biased	techniques used	in primary side of reference	e power supplies,									
Soft/Start in switching power supplies,	current limit circ	cuits, over voltage protec	tion, AC line loss									
detection, Implementation of different g	ating circuits											
	UNIT-III											
Programmable Logic Controllers (PLC)		09 Hours									
Basic configuration of a PLC, Programmin	ng and PLC, prog	ram modification, power p	lant control using									
PLCs												
Course Outcomes: At the end of the co	urco ctudopt will	ha abla ta										
Course Outcomes. At the end of the co												
1 Describe the techniques used for	moscuromonte	of parameter in a power of	octropics circuit									
Describe the operation of switch	ing regulator con	trol circuits										
3 Understand the architecture of co	ommercial D\//M	control ICs										
4 Describe switching power supply	ancillary supervi	sory & perinheral circuits	and components									
used in designing switching power supply	er supply											
5. Apply Programmable Logic Cont	roller in power pl	ant control										
Course Outcomes Mapping with Prog	ram Outcomes &	& PSO										
Program Outcomes \rightarrow 1	2 3 4 5	6 7 8 9 10 11	12 PSO ↓									
N			Page 192									

\downarrow (Course Outcomes													1	2	
	EE3301-1.1	3	3	-	-	-	-	-	-	-	I	-	1	-	-	
	EE3301-1.2	3	3	-	-	-	-	-	-	-	1	-	1	-	-	
	EE3301-1.3	3	3	-	-	-	-	-	-	-	-	-	1	-	-	
	EE3301-1.4	3	3	-	-	-	-	-	-	-	-	-	1	-	-	
	EE3301-1.5	3	3	-	-	-	-	-	-	-	-	-	2	-	-	
1: Low 2: Medium 3: High																
	*															
TEXTE	BOOKS:															
1.	G. K. Dubey, S. R. Doradla, /	A. Jo	hsi, a	and I	R. M	. K. S	Sinha	a, "T	hyris	storis	sed P	ower	Cont	trolle	rs", 2	nd
	Edition, New Age Internation	onal,	201	0												
2.	Chryssis "High Frequency S	witc	hing	Pow	/er S	uppl	ies",	, 2nc	dEdit	ion,	MG⊦	I, 198	39			
E Boo	ks / MOOCs/ NPTEL															
1.	https://www.smps.us/smps	desid	gn.ht	tml												

SOLID STATE LIGHTING CONTROL											
Course Code:EE3302-1Course TypePCC											
Teaching Hours/Week (L: T: P: S)	3:0:0:0	Credits	03								
Total Teaching Hours	40+0+0	CIE + SEE Marks	50+50								
Prerequisite	EE3101-1										

	Teaching Depa	rtm	ent:	Elec	trica	1&	Elec	tror	nics	Engi	ineer	ing		
Cours	e Objectives:													
1.	To acquaint knowledge diff	eren	t typ	es o	f ligł	nt so	urce	e and	d its	utili	ty			
2.	To know the integration of	light	ing i	n div	/erse	e app	olica	tion						
3.	3. To upgrade the knowledge in smart lighting													
4. To enumerate the skill in energy saving using solid state lighting														
5. To give insight to design steps involved in building solid state lighting														
	UNIT-I													
Introd	duction													07 Hours
Differe	Different types of light source –black body radiator, human vision, mesopic, scotopic, photopic vision,													
huma	n light transduction mode	l, lu	mer	i, lu	mino	ous	inte	ensit	y, il	lumi	natio	n, lu	iminc	ous efficacy,
maint	enance factor, depreciation fa	actor	, ph	otom	netri	c ana	alysi	S						1
Color	science													08 Hours
Introd	uction to solid state lightin	g, co	onstr	uctio	on o	f so	lid s	tate	ligł	nting	g sou	rce, d	color	renderance,
correl	ated color temperature, bi	nnin	g, N	laca	dam	elli	pse,	dif	fere	nt s	teps	in N	Ласас	dam ellipse,
chrom	naticity diagram, color mixir	ng, c	color	eva	luat	ion	tech	niqu	Jes	obje	ctive	and	subj	ective color
analys	sis –problems													
				U	NIT	·II								
Conve	erters for Lighting													08 Hours
Drivers, linear regulator, switch mode regulators using buck, boost and buck boost converter														
Light	and health													09 Hours
Light as radiation, tissue damage by ultraviolet radiation, Tissue Damage by Visible and Near Infrared														
Radiation, Tissue Damage from Infrared Radiation beyond 1400 nm, Threshold Limit Values, Practical														
Consid	derations, Aging Effects, Risk	ot Ex	ceed	ding	Limi	ts, U	sing	Tas	k Lig	hts,	Eyest	rain,	Migra	aine, Autism,
Visual	Comfort and Human Variat	ollity,	Lig	ht O	pera	ting	thr	ougl	n th	e Cii	rcadia	in Sy	stem,	Sleep, blue
light r	hazard													
				U	NI I -	ш								00.11
Appli	cation of Solid-state lightin	g		·• •		1: l 4	••••				1: 1- +:			U8 Hours
Hortic	ulture lighting, Hospital light	ing,	arcn	πεστ	urai	ligni	ing,	con	nme	rciai	light	ing, S	easo	nal Affective
disord	ier, Alzheimer, museum lighti	ng												
Cours	• Outcomes: At the end of t	hoc	ourc	o ctu	dani		ha	abla	to					
	A palvzo the color discrimina	tion	ofth		bt co		be			ubia	ctivo	anda	hiact	ivo analysis
	Analyze the Color discrimina	1001	oru	ie iig		Durce		seu	Mag	ubje adar			bject	ive analysis
2.	Cotomorize the color shares		strat	e the	e im Lieb	port	ance	2 01	wac	adar	n ein	ose		
5.	Categorize the drivers for LEDs	hace			ngn	t SOL	urce	h			lator	_		
4. Г	Design the unversion LEDs	base			ear a		wite		bue In h	regu		5	weigt	
5.	comprehend the applicat	ion	or s	sona	-stat	e n	gnti	ng	in n	eart	n, co	mme	ercial	and non-
Cours		Dree		<u> </u>	+ c o r		0, 0	50						
Cours	e outcomes wapping with	Pro	yran	JUU	icor	nes	αr	30						
		-	2	_	4	-		-	0		10		10	DCO
	Program Outcomes→	↓ ⊥	2	5	4	5	6	/	ð	9	10		12	۲50 ↓
	Course Outcomes													

_

-

_

_

-

_

-

_

-

-

EE3302-1.1

EE3302-1.2

EE3302-1.3

EE3302-1.4

EE3302-1.5

3

3

3

3

3

3 -

3

3

3

3

-

-

-

-

_

-

_

-

-

- - -

-

_

-

- -

- | -

_

_

- -

- -

-

- -

-

-

-

_

-

_

_

-

-

_

-

_

-

_

-

-

_

-

_

_

-

TEXTB	OOKS:
1.	Fred Schubert, "Light emitting diodes", 2nd Edition, Rensselaer Polytechnic Institute, New
	York, Cambridge University Press, 2006.
2.	Patrick Mottier, "LED for lighting Applications", 1st Edition, Wiley, 2009
REFER	ENCE BOOKS:
1.	Sal Cangeloso, "LED lighting a primer to lighting the future ", Maker press, 2012
2.	M Nisa Khan, "Understanding the LED illumination", CRC Press, 2013

	SPECIAL	ELECTRICAL N	ACHINES	
Cour	rse Code:	FF3303-1		PCC
Top	bing Hours/Week (I · T· P· S)	3.0.0.0	Credite	03
Tota	I Teaching Hours	40+0+0	CIE + SEE Marks	50+50
Prer	equisite	FF2102-1 F	F2001-1	
	Teaching Department	· Flectrical &	lectronics Engineering	
Cours	se Objectives:		Lieetronies Engineering	
1	To study the working principle of st	tenner motor a	ind its control	
2	To understand working of switched	reluctance mo	ntor	
3	To know the difference between PN		notors	
4	To understand principle of operation	on of permaner	nt magnet synchronous m	otor
5	To introduce single phase special m	nachines	te magnet synem onous m	
5.	To introduce single phase special in	UNIT-I		
Stepr	per Motor	•••••		08 Hours
Switc Const Conve Contr	hed Reluctance Motor (SRM) ruction, Principle of working, Basic S erter Circuits, Control of SRM, Rotor F ol of SRM, Sensorless Control of SRM	RM analysis, co Position sensor 1	onstraints on pole arc and s, Current Regulator, Micr	07 Hours tooth arc, Power oprocessor Based
		UNIT-II		
Synch	nronous Reluctance Motor (SyRM)			03 Hours
Const	ruction, Working, Control of SyRM, A	dvantage, App	olications	
PMD	C and BLDC Motors			09 Hours
Perma Perma princi Micro	anent Magnet DC (PMDC)Motor – C anent Magnet DC (BLDC) Motors ple of operation, BLDC square wave processor Based control, DSP Based r Applications	Construction, v – Classificatio e motor, Type Control, Senso	vorking, Types of PMDC on, construction, Electror s of BLDC motor, Contro orless Control, Comparisor	Motors, Brushless nic commutation, I of BLDC motor, n of DC and BLDC
Perm	Course Code: EE3303-1 Course Type Teaching Hours/Week (L: T: P: S) 3:0:0:0 Credits Total Teaching Hours 40+0+0 CIE + SEE Marks Prerequisite EE2102-1, EE2001-1 Teaching Department: Electrical & Electronics Engineering Course Objectives: To understand working principle of stepper motor and its control 2. To understand working of switched reluctance motor 3. To know the difference between PMDC & BLDC motors 4. To understand principle of operation of permanent magnet synchronous motor 5. To introduce single phase special machines UNIT-I Stepper Motor Variable reluctance (VR) Stepper Motor, Permanent Magnet Stepper Motor, Hybrid St Other Types, Windings of Stepper Motor, open -loop, closed loop control of st Microprocessor based control of SRM Construction, Principle of working, Basic SRM analysis, constraints on pole arc and too Converter Circuits, Control of SRM, Rotor Position sensors, Current Regulator, Microproc Control of SRM, Sensorless Control of SRM Control of SRM, Advantage, Applications PMDC and BLDC Motors <t< td=""><td>03 Hours</td></t<>			03 Hours
Const	ruction, principle of operation. Contr	ol of PMSM A	pplications of PMSM	
201130				
		UNIT-III		

Single Phase Special Electrical Machines

AC Series Motor – Construction, Working Principle, torque-speed characteristics. Repulsive Motor – Construction, types. Hysteresis Motor, Single Phase Reluctance Motor, Universal Motor – Types, Construction, principle of operation, speed control

Servo Motors

DC Servo Motors – Construction, Principle of operation, voltage equation, control of DC servo motor. AC Servo Motor – Construction, working, torque speed characteristics

Course Outcomes: At the end of the course student will be able to

1. Describe working principle of different stepper motor types to achieve microprocessor based control

05 Hours

05 Hours

2.	Summarize working principle and requirements of power converter to achieve sensorless
	control of switched reluctance motor
3.	Compare and differentiate PMDC & BLDC motors to select a drive based on requirements
4.	Describe the principle of operation of permanent magnet synchronous motor
_	

5. Outline the operation of single phase special machines and servo motors

Course Outcomes Mapping with Program Outcomes & PSO

Program Outcomes→	1	2	3	4	5	6	7	8	9	10	11	12	PS	O↓
↓ Course Outcomes													1	2
EE3303-1.1	3	3	-	-	-	-	-	-	-	-	-	-	-	-
EE3303-1.2	3	3	-	-	-	-	-	-	-	-	-	-	-	-
EE3303-1.3	3	3	-	-	-	-	-	-	-	-	-	-	-	-
EE3303-1.4	3	3	-	-	-	-	-	-	-	-	-	-	-	-
EE3303-1.5	3	3	-	-	-	-	-	-	-	-	-	-	-	-

1: Low 2: Medium 3: High

TEXTBOOKS:

1.	E. G Janardanan	, 'Special Electrical Machines' PHI Delhi, 2014
----	-----------------	---

REFER	ENCE BOOKS:
1.	T.J.E. Miller, 'Brushless magnet and Reluctance motor drives', Claredon press, London, 1989
2.	R.Krishnan, ' Switched Reluctance motor drives' , CRC press, 2001
3.	T.Kenjo, ' Stepping motors and their microprocessor controls', Oxford University press, New
	Delhi, 2000

ELECT	RICAL MACHIN	E DESIGN	
Course Code:	EE3304-1	Course Type	PCC
Teaching Hours/Week (L: T: P: S)	3:0:0:0	Credits	03
Total Teaching Hours	40+0+0	CIE + SEE Marks	50+50
Prerequisite	EE2001-1, E	E2102-1	

	Teaching Depa	rtm	ent:	Elect	trica	1&	Elec	tron	ics I	Engi	neeri	ing			
Cour	se Objectives:														
1.	To describe the process of e	elect	rical	mac	hine	desi	ign								
2.	To illustrate the design of si	ngle	e pha	se ar	nd th	nree	pha	se tr	ansf	orm	er				
3.	To analyze the design of DC	: ma	chine	es ar	id Sy	nch	ronc	ous N	Mach	nines	5				
4.	To the analyze the design o	f Thi	ree p	hase	Ind	uctio	on M	lach	ine						
	· · · · · ·			U	NIT	-I									
Princ	iples of electrical machine d	lesig	jn											02 H	ours
Intro	duction, considerations for the	e des	sign o	of ele	ectri	cal n	nach	ines	, lim	itati	ons. [Differ	ent t	ypes	of
mate	rials and insulators used in ele	ctric	cal m	achiı	nes.										
Desig	n of Transformers (Single P	has	e and	d Th	ree l	Phas	se)						()9 Ho	ours
Outp	ut equation for single phas	e a	nd t	hree	pha	ase	tran	sfori	mers	s, ch	noice	of s	pecif	ic lo	adings,
expre	ssion for volts/turn, determin	natio	on of	f ma	in d	imei	nsio	ns o	f th	e co	ore, ty	/pes	of w	indin	gs and
estim	ation of number of turns and o	cross	s sect	iona	l are	a of	Prim	nary	and	seco	ondar	y win	ding	s, esti	mation
of no	load current, Design of tank a	and	cooli	ng ti	ubes	(rou	und a	and	recta	angu	ılar).	,	5		
Desic	n of Induction Motors												0	4 Ho	urs
Outp	ut equation, Choice of specific	: loa	dina	s, ma	ain d	ime	nsio	ns of	f thr	ee p	hase	indu	ction	moto	or.
				,						- 12					
				U	NIT-	II									
Desig	n of Induction Motors (Con	td.)												08 H	ours
Stato	r winding design, choice of le	nath	n of t	he a	ir da	n Fo	stim	atior	n of	num	ber c	of slot	ts for	the the	sauirrel
cade	rotor, design of Rotor bars an	d er	nd rin	na di	-siar	n of	Slin	rina	Rot	or				cire .	Jquirei
Desic	in of DC Machines			. 9, 0.			<u></u>	9					0	7 Ho	urs
Outp	ut equation choice of speci	ific	loadi	nas	and	cho	nice	of	num	her	of n	oles	desi	an 0	of Main
dime	nsions of the DC machines.	Desi	ian c	of ar	mati	ire q	slot	dim	ensi	ons.	com	muta	tor a	nd b	orushes.
magr	netic circuit - estimation of am	nere	turn	is. de	sian	ofv	oke	and	nole	es. fi	eld w	vindin	as –	shun	t series
and i	nter poles.	p 0. 0		,		,	0.10	00.	P 0.1	,	0.0.11		95		.,
				U	NIT-	III									
Desic	n of Synchronous Machines	5												10 H	ours
Outp	ut equation. Choice of specific	loa	dinas	s. sho	ort ci	rcui	t rati	o, d	esia	n of	main	dime	ensio	ns. ar	mature
slots	and windings, slot details for t	the s	stato	r of s	alier	nt ar	nd no	on -	salie	ent p	ole s	vnchr	onoi	us ma	achines.
desia	n of rotor of salient pole mad	chine	es. m	aane	etic d	circu	its. d	dime	ensic	ons c	of the	e pole	bod	lv. de	sian of
the fi	eld winding, and design of rot	or o	of nor	n-sal	ient	pole	e ma	chin	e.			1. 1		<i>,</i> ,	- gri -
Cour	se Outcomes: At the end of the	he c	ourse	stu	dent	will	be a	able	to						
			ourse	5 510											
1	Describe the design process	sof	electi	rical	mac	hine	s for	. aiv	en si	necit	ficatio	n			
2	Design single phase and thr	- 10 - 10	hase	trar	sfor	mer	s for	sne	cifie	d sn	ecific	ation	c		
2.	Design the stator and rotor	of +I	he in	duct	ion r	nach	nine	for t	ho r	uiver		rificat	tions		
<u>J.</u>	Design the armature and fic		veton	a of		maci	chin			jivei on c	n spec pocifi	icatio			
4.			ysten			. 111d	CIIII	0	yıv	6113	pecili	catio	115		
5.	Design the stator and rotor	of tl	he sy	nchr	ono	us m	nachi	ine f	or th	ne gi	ven s	pecif	icatio	ons	
Cour	se Outcomes Mapping with	Pro	gram	n Ou	tcon	nes	& P:	SO							
		1						1	-	-					
	Program Outcomes \rightarrow	1	2	3	4	5	6	7	8	9	10	11	12	PS	O↓
\downarrow	Course Outcomes													1	2
	EE3304-1.1	3	3	2	-	-	-	-	-	-	-	-	-	-	-
	EE3304-1.2	3	3	3	-	-	-	-	-	-	-	-	-	-	_
	EE3304-1.3	3	3	3	-	-	-	-	-	-	-	-	-	-	-

N)

	EE3304-1.4	3	3	3	-	-	-	-	-	-	-	-	-	-	-	
	EE3304-1.5	3	3	3	-	-	-	-	-	-	-	-	-	-	-	
											1: Lo	w 2:	Medi	ium 3	3: Hig	gh
TEX	BOOKS:															
1	. A.K.Sawhney , "A Course in	Elec	trical	Mad	chine	e De	sign	", Dł	nanp	oatt l	Rai&	Sons	,7 ^{⊤н} Е	DITIC	DN,	
	2003.															
2	. V. N. Mittle, "Design of Ele	ctric	al Ma	achin	ies",	Star	ndar	d Pu	blisł	ners	distri	buto	rs ,4 th	1		
	edition,2009.															
REFE	RENCE BOOKS:															
1	A. Shanmugasundarm, G. G	iang	adha	ran,	R.Pa	lani,	"De	sign	Dat	a Ha	andbo	ook",	Wiley	y Eas	tern l	Lt.

Professional Elective Courses (Control Systems Stream)

	ROBOTI	CS AND AUTO	MATION	
Cour	rco Codo:	EE2211 1		PCC
Cou	se code:	2.0.0.0	Course Type	
Teac	I Tooching Hours	<u>3:0:0:0</u>		
Dror	aquisito	40+0+0 EE2002 1 M		50+50
Frei	Tooching Doportmont	Electrical & E	A2003-1, EES001-1	
Cours			lectronics Engineering	
	To understand the basic compositi	on of a robot		
2	To illustrate various robot sensors	and construction	n of robot	
2.	To familiarize the concept of kinem	and constructio	not	
<u> </u>	To onumerate the functions and ad	vantages of the	a robot	
<u>4.</u>	To know the robot programming of	oncont		
J.				
Testing	du stie e	UNIT-I		
Intro	Juction	and Churchurch	of Doboto volot do	
Introc	uction to robotics, Components	And Structure	e of Robots, robot clas	Composition of
	jurations, specifications, Common	kinematic ar	rangements, kotations,	composition of
Rotati	ons, Properties, rigid motion, and H	omogeneous I	ransformation, represent	ing position and
rotati	on, rotational transformations, co	mposition of i	rotations, parameterizat	ion of rotation
Robo	tsensors			04 Hours
Introc	luction, desirable features of sensors	s, magnetic ser	nsors, fibre optic, tactile s	ensors, proximity
and n	on-proximity sensors			
Mani	pulators, Actuators and grippers			04 Hours
Const	ruction of manipulators, types of a	ctuators, grippe	ers, classification, force ar	nalysis of gripper
mecha	anism, designing of grippers			
		UNIT-II		
Contr				04 Hours
Introc	luction, Actuator dynamics, Set-Poin	t Tracking, Driv	e Train Dynamics, Traject	ory Interpolation,
Feed	forward Control and Computed Torq	ue		
Kinen	natics			04 Hours
Forwa	rd, inverse and velocity kinematics D	enavit- Harden	berg Representation, Exar	mples
Dyna	mics			06 Hours
Euler	Lagrange Equations, Expressions f	or kinetic and	potential energy, Equa	tion of Motions,
Comn	non configuration, Newton Euler F	ormulation, Ro	bot machine vision: Intr	roduction, image
proce	ssing and analysis			
		UNIT-III		
Robo	t programming			05 Hours
Lead t	hrough programming methods, Rob	ot programmir	ng languages-examples	
Case	studies			05 Hours
Robot	applications in manufacturing, robo	ot cell design, n	nachine interface, multiple	e robots, robot in
assem	bly and inspection			
Cours	e Outcomes: At the end of the cour	se student will	be able to	
1.	Recognize the components and cla	ssify robots bas	sed on its composition	
2.	Identify and describe various senso	rs to construct	the robot	
3.	Derive the kinematics of the robot	to derive the \overline{cc}	ontrol aspects	
4.	Apply the mathematical models to	validate the dy	namics of the system	

5. Identify different programming methods and languages to the effective functioning of robot.

Course Outcomes Mapping with Program Outcomes & PSO

Program Outcomes→	1	2	3	4	5	6	7	8	9	10	11	12	PSO↓	
↓ Course Outcomes													1	2
EE2211-1.1	3	3	-	-	-	-	-	-	-	-	-	1	-	-
EE2211-1.2	3	3	-	-	-	-	-	-	-	-	-	1	-	-
EE2211-1.3	3	3	-	-	-	-	-	-	-	-	-	1	-	-
EE2211-1.4	3	3	-	-	-	-	-	-	-	-	-	1	-	-
EE2211-1.5	3	3	-	-	-	-	-	-	-	-	-	1	-	-

1: Low 2: Medium 3: High

TEXTBOOKS:

1.	Mark W.Spong & M.Vidyasagar. Robot Dynamics and Control, Willey India Publisher, 2009.
2.	Mikell P.G, Weiss M.Nagel R.N Odrey N.G, Industrial robotics, McGraw Hill Education India
	Private Limited; 2 edition (23 May 2012)
REFER	ENCE BOOKS:
1.	Lee, K.S. Fu, R.C. Gonzalez & C.S.G, Robotics, McGraw Hill,2008
2.	Bruno Sicilian, Modelling and controlling of Robot manipulations, Springer, 2000
3.	Saeed B. Niku, Introduction to robotics, PHI,2005
4.	Robert J. Schilling, Fundamentals of Robotics Analysis and control, PHI,1996
E Bool	ss / MOOCs/ NPTEL
1.	https://nptel.ac.in/courses/112107289
2.	https://nptel.ac.in/courses/112101099

	PHYSIOLOGY CONTRO	L SYSTEM MOD	ELLING AND SIMULATIC)N	
Cour	ra Cada:	EE2211 1		DEC	
Teac	se code: hing Hours/Week (I · T· P· S)	3.0.0.0	Course Type Credits	03	
Tota	Teaching Hours	40+0+0	CIE + SEE Marks	50+50	
Prere		BT1001-1 M4	1003-1		
	Teaching Departme	nt: Flectrical &	Flectronics Engineering		
Cours	e Objectives:		<u>Lietti onico Linginicering</u>		
1.	To introduce the basic system	concepts and	differences between an	engineering a	nd
	physiological control systems			5 5	
2.	To acquaint students with different	mathematical t	echniques applied in analy	/sing a system a	nd
	the various types of nonlinear mod	elling approache	es.	5 ,	
3.	To teach neuronal membrane dynai	mics and to und	erstand the procedures for	testing, validatio	on,
	and interpretation of physiological	models.	·	5	
4.	To study the cardiovascular model	and apply the	modelling methods to mu	Iti-input and mu	ulti
	output systems				
		UNIT-I			
Introd	luction to Physiological control sys	stems		07 Hou	irs
Introd	uction, Similarities and difference	with Technolog	ical control, Transfer of s	substances betw	veen
physic	ological compartments: By diffusior	n, by fluid flow	and separated by a th	in membrane u	using
differe	ential equations				
Regul	ation in physiological control syste	em		08 Hou	ırs
Regula	ation of electrolyte concentration, a	cid base balanc	e, red blood cell production	on, arterial press	sure,
blood	volume, respiration, body temperatu	ire, blood glucos	se		
		UNIT-II			
Biolog	gical control structure and modelling	ng		08 Hou	irs
Basic	control structure and detailed parar	meters, Biofeed	back, modelling of humar	ו thermal regula	atory
system	n including control aspects, Biochemi	istry of digestior	n, types of heat loss from b	ody	
Contro	ol and regulation of respiratory sys	stem		07 Hou	Irs
Mode	lling of oxygen uptake, mass balance	of lungs, gas tra	nsport mechanism of lungs	s, oxygen and car	rbon
dioxid	e transport in blood and tissue				
		UNIT-III			
Applie	cation of biological control			05 Hou	irs
Eye tra	acking control, Pupil control				
MATL	AB Application and simulation			05 Hou	irs
Deriva	tion of Cardiovascular control system	n theoretical and			
Cours	e Outcomes: At the end of the cours	se student will b	e able to		
			1:00	· ·	
1.	Comprehend the basic system	concepts and	differences between an	engineering ar	nd
	physiological control systems				
2.	Understand the application of variou	us mathematical	techniques in designing a l	bio-control syste	em
3.	Comprehend the techniques of plot	ting the respon	ses in both the domain and	alysis	
4.	Apply time domain and frequency of	aomain analysis	to study the biological sys	tem	
5 .	Develop simple models of the physic	lological control	systems and analyze its st	ability	
Cours	e Outcomes Mapping with Program	m Outcomes &	420		
Г					
	Program Outcomes $\rightarrow 1 $	∠ 3 4 5		12 PSO ↓	

Page | 202

	↓ Course Outcomes													1	2	
	EE3211-1.1	3	3	-	2	1	1	-	-	-	-	-	-	-	-	
	EE3211-1.2	2	2	2	2	-	-	-	-	-	-	-	-	-	-	
	EE3211-1.3	3	2	2	1	2	1	-	-	-	-	-	-	-	-	
	EE3211-1.4	2	3	-	-	1	-	-	I	-	I	1	-	-	-	
	EE3211-1.5	3	3	-	2	2	-	-	-	-	-	2	-	-	-	
											1:	Low	2: M	ediu	m 3:	High
TEXT	BOOKS:															
1.	David. Cooney, "Bio- Medical	Eng	inee	ring	Prine	ciple	s″, N	1iche	el De	ckke	er, IN	IC.				
2.	John H Milsum "Biological co	ntrol	syst	tems	", M	cGra	w Hi	ill 19	66.							
3.	Howard T Milhorn, "The App	licat	ion	of C	ontr	ol Tł	neory	y of	a Pl	hysio	ologio	cal Sy	/stem	n″, M	cGrav	v Hill
	1966															
4.	Benjamin C Kuo. Automatic co	ontro	ol sy	stem	ns", N	ЛсGr	aw F	III II	ndia							
5.	I. J .Nagarath.& M. Gopal, "Co	ntro	ol sys	tem	Eng	inee	ring"	', Ne	w A	ge. I	ntern	ation	nal Pu	ıblish	ers, 2	007.
REFE	RENCE BOOKS:															
1.	Joseph DiStefano, "Dynamic	Sys	stem	is Bi	olog	jy N	lode	ling	and	d Si	mulat	tion",	201	5, 1	st Ed	ition,
	Academic Press, Massachuset	ts.														
2.	Robert Rushmer, "Medical Er	igine	eerin	g –F	Proje	ctior	ns" fe	or H	ealtl	h Ca	ire D	eliver	y, 20	12, 1	.st Ed	ition,
	Academic Press, Massachuset	ts														
3.	David Cooney, "Bio-Medical	Engi	neer	ing	Prine	ciple	s", 2	015,	1st	Edit	tion,	Marc	el De	eckke	r Pub	o Co.,
	New York															
E Boo	ks / MOOCs/ NPTEL															
1.	https://www.wiley.com/enus/	Phys	iolo	gical	+Co	ntro	l+Sy	stem	ns%3	BA+	Analy	sis%2	2C+S	imula	ation?	62C
	+and+Estimation%2C+2nd+E	ditio	on-p	-978	3111	9058	809									

ADVAI	NCED CONTROL	SYSTEMS	
Course Code:	EE4211-1	Course Type	PCC
Teaching Hours/Week (L: T: P: S)	3:0:0:0	Credits	03
Total Teaching Hours	40+0+0	CIE + SEE Marks	50+50

Prer	equisite EE3001-1, MA2004-1	
	Teaching Department: Electrical & Electronics Engineering	
Cours	e Objectives:	
1.	To outline the state model and deduce the state equations for LTI systems.	
2.	To compute state transition matrix, the Eigen values and Eigen vectors.	
3.	To analyze the system for controllability and observability.	
4.	To design the controller using pole placement techniques to ensure stability.	
5.	To understand the behavior of non-linear system and analyse the phase trajectory	/
6.	To study the Lyapunov stability criteria for nonlinear systems.	
	UNIT-I	
Introc	duction	07 Hours
State	variable analysis & design, canonical representation and transfer function, linearizat	ion of state
equati	ions, State space representation using physical variables. State space representa	ation using
phase	variables & canonical variables, Derivation of transfer function from state model,	Solution of
state e	equation.	
Comp	outation of State transition Matrix	07 Hours
State	transition matrix & its properties, computation using Laplace transformation, Cayle	ey Hamilton
metho	od (only computation), Eigenvalues, Eigen vectors, generalized Eigen vectors, diagon	alization of
state r	matrix	
Cantu		
Conco	onability & Observability	tochniquos:
ctabili	ty improvements by state feedback, necessary & sufficient conditions for arb	itrany pole
nlacer	nent	ntialy pole
Non-I	linear system	08 Hours
Introd	luction behaviour of non-linear system common physical non-linearity-saturation	on friction
backla	ash, dead zone, relay, multi variable non-linearity. Phase plane method, singular poir	nts. stability
of nor	nlinear system, limit cycles, construction of phase trajectories by Isocline method	,
	UNIT-III	
		10 Hours
Lyapu	nov 's stability criteria for linear as well as nonlinear systems, stability definitions, the	orems, sign
definit	teness, direct method, second method, Krasovskii's method, variable gradient metho	od.
Cours	e Outcomes: At the end of the course student will be able to	
-		
1.	Develop various state space model to obtain the transfer function for LTI system	
2.	Compute state transition matrix to solve the state equation	
3.	Analyze the pole placement techniques to enhance the stability of the system.	
4.	Identify the behavior of nonlinear system & evaluate various methods of stability t	to
	understand the system behavior.	
5.	Apply Lyapunov criteria to evaluate the Stability of linear and nonlinear system	
Cours	e Outcomes Mapping with Program Outcomes & PSO	

Program Outcomes→	1	2	3	4	5	6	7	8	9	10	11	12	PSO↓	
↓ Course Outcomes													1	2
EE4211-1.1	3	3	1	-	-	-	-	-	-	-	-	1	-	-

	EE4211-1.2	3	3	1	-	-	-	-	-	-	-	-	1	-	-	
	EE4211-1.3	3	3	1	-	-	-	-	-	-	-	-	1	-	-	
	EE4211-1.4	3	3	1	-	I	-	-	-	-	-	-	1	-	-	
	EE4211-1.5	3	3	1	-	-	-	-	-	-	-	-	1	-	-	
_											1	.: Lov	v 2: ľ	Mediu	m 3:	High
TEXT	BOOKS:															
1	. Nagarath and M.Gopal, "	Con	trol	Syst	ems	Enc	gine	erino	g″, N	lew /	Age I	nterr	natior	nal (P)	Limite	ed,
	Publishers, 5th edition – 2	2007	7	-				-			0					
2	. M. Gopal "Digital contro	1& 9	state	e var	iable	e me	etho	ds" ·	4th e	editi	on, T	ata. N	∕Ic Gi	raw Hi	II 201	2.
3	. M. N. Bandyopadhyay, "	Con	trol I	Engi	neei	ring	The	eory	and	Pra	ctice'	', PHI	Lear	ning P	vt. Lto	d.
	2002													Ū.		
REFE	RENCE BOOKS:															
1	. Katsuhiko Ogata, "State S	Spac	e Ar	nalys	is o	f Co	ntro	l Sys	stem	ns", F	renti	ce H	all Ind	c,1967		
2	. Benjamin C. Kuo & Farid	Golı	nara	ghi,	"Au	tom	atic	Con	trol	Syst	ems"	9th	editic	n, Joh	n Wil	ey &
	Sons 2009.															5
3	. Katsuhika Ogata, " Mode	rn C	ontr	ol E	ngin	eeri	ng″	PHI	,6th	edit	tion,2	2010.				
E RES	SOURCES:															
1	. http://nptel.ac.in/courses	/108	3103	007	/											
2	. https://www.coursera.org	/lea	rn/c	lesiq	Ining	g-or	gan	izati	on/l	ectu	re/M	d2kn	า/4-2	-2-tra	dition	al-
	control-systems					-	0									
3	. https://www.edx.org/cou	rse/	intro	duc	tion	-cor	ntro	l-sys	tem	-des	ign-1	irst-r	nitx-6	5-302-	-0x	

	DISCRETE CONTROL SYSTEMS												
Cour	Course Code:EE4212-1Course TypePCC												
Teac	Teaching Hours/Week (L: T: P: S)3:0:0:0Credits03												
Total Teaching Hours 40+0+0 CIE + SEE Marks 50+50													
Prer	Prerequisite EE3001-1												
	Teaching Departme	nt: Electrical &	Electronics Engineering										
Cours	e Objectives:												
1. To model the discrete-time systems by pulse transfer function													
2.	2. To study the stability of discrete time systems and the time response of discrete systems												
3.	To examine the response of disc	rete time system	s and the controllability, o	bservability and									

stability of discrete state space model											
4. To introduce the concept of state feedback system and the digital control systems with											
deadbeat response											
5. To analyze the sampled data control systems using root locus and bode plot techniques											
UNIT-I											
Introduction to digital control 08 Hours											
Introduction, Discrete time system representation, Mathematical modeling of sampling process, Data											
reconstruction, Revisiting Z-transform, Mapping of s-plane to z-plane, Pulse transfer function, Pulse											
transfer function of closed loop system, Sampled signal flow graph, Discrete time system											
representation, Mathematical modeling of sampling process, Data reconstruction											
Stability analysis and Time response of discrete time systems08 Hours											
Jury stability test, Stability analysis using bi-linear transformation, Transient and steady state											
responses, Time response parameters of a prototype second order system.											
UNIT-II											
Discrete state space model 04 Hours											
Introduction to state variable model, Various canonical forms, Characteristic equation, state transition											
matrix, Solution to discrete state equation											
Controllability, observability and stability of discrete state space models 04 Hours											
Controllability and observability, Stability, Lyapunov stability theorem											
State feedback design 07 Hours											
Pole placement by state feedback, Set point tracking controller, Full order observer, Reduced order											
observer, Design of digital control systems with deadbeat response, Practical issues with deadbeat											
response design, Sampled data control systems with deadbeat response											
UNIT-III											
Illustration of design procedures of sampled data control systems09 Hours											
Root locus method, Nyquist stability criteria, Bode plot, Controller design using root locus, Lead											
compensator design using Bode plot, Lag compensator design using Bode plot, Lag-lead											
compensator design in frequency domain (qualitative)											
Course Outcomes: At the end of the course student will be able to											
1. Develop the mathematical modelling of the discrete-time systems to derive the pulse transfer											
function											
2. Analyse the stability & times response characteristics of discrete time systems to observe the											
system performance.											
3. Develop various state space model & construct state matrix to solve the state equation											
4. Design the various state feedback system & identify the issues of deadbeat response design											
to digital control system											
5. Analyse discrete time controllers using root locus and bode plot techniques to evaluate the											
system stability											
Course Outcomes Mapping with Program Outcomes & PSO											
$\begin{array}{ c c c c c c c } \hline Program Outcomes \rightarrow 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & PSO \\ \hline $											
EE4212-1.1 2 2 3 3											
EE4212-1.1 2 2 3 - - - - - - 3 EE4212-1.2 2 2 3 - - - - - 1 - 2											
EE4212-1.1 2 2 3 - - - - - - 3 EE4212-1.2 2 2 3 - - - - - 1 - 2 EE4212-1.3 2 2 3 - - - - - 1 - 2 EE4212-1.3 2 2 3 - - - - - 2											
EE4212-1.1 2 2 3 - - - - - - 3 EE4212-1.2 2 2 3 - - - - - 1 - 2 EE4212-1.3 2 2 3 - - - - - 1 - 2 EE4212-1.4 2 2 3 - - - - - 1 - 2 EE4212-1.4 2 2 3 - - - - - 1 - 2											
EE4212-1.1 2 2 3 - - - - - - 3 EE4212-1.2 2 2 3 - - - - - - 1 - 2 EE4212-1.3 2 2 3 - - - - - 1 - 2 EE4212-1.4 2 2 3 - - - - - 1 - 2 EE4212-1.5 2 2 3 - - - - - 1 - 2 EE4212-1.5 2 2 3 - - - - - 1 - 2											

TEXTBOOKS:

1.	K. Ogata, "Discrete Time Control Systems", Pearson Education, 2/e, 2015.
2.	M. Gopal, "Digital Control and State Variable Methods", Tata Mcgraw Hill, 2/e, 2003.
REFER	ENCE BOOKS:
1.	B. C. Kuo, "Digital Control Systems", Oxford University Press-New Delhi, 2/e, Indian Edition,
	2012.
2.	K.Ogata, "Discrete time control system", Prentice Hall India Learning Private Limited
3.	G. F. Franklin, J. D.Powell and M. L. Workman, "Digital Control of Dynamic Systems", Pearson
	Education 3 rd Edition, 2005
4.	K. J. Astroms and B. Wittenmark, "Computer Controlled Systems - Theory and Design",
	Prentice Hall, 3/e, 1997.
E Book	rs / MOOCs/ NPTEL
1.	https://nptel.ac.in/courses/108103008

٦

	PROGRAMI	MABLE LOGIC C	CONTROLLERS	
Cou	rse Code:	EE2311-1	Course Type	
Teac	Ching Hours/Week (L: 1: P: S)	3:0:0:0		03
lota	I leaching Hours	40+0+0	CIE + SEE Marks	50+50
Prer	equisite Tracking Demostry			
C	Teaching Departmen	it: Electrical &	Electronics Engineering	
Cours	se Objectives:			
1	To understand the role of DLC in a	utomation and	SCADA bardwara capabi	ilition of DLC in
	industrial automation.			
2.	To Program a PLC using ladder Di	agram, Functior	hal Block Diagram (FBD),	Sequential
-	Functions Charts (SFC), Instruction	n List (IL) and Str	uctured Text (ST) method	ds
3.	To Program a PLC using timers, co	ounters, shift reg	gisters, data handling inst	ructions
		UNIT-I		
Intro	duction			08 Hours
Introc	luction to Programmable logic conti	roller (PLC), SCA	DA Fundamentals, Buildir	ng blocks of SCADA
syster	ns, role in automation, advantages a	and disadvantag	jes, hardware, internal arc	hitecture, sourcing
and si	inking, characteristics of I/O devices	s, list of input an	id output devices, examp	les of applications.
I/O p	rocessing, input/output units, signa	al conditioning,	remote connections, ne	tworks, processing
inputs	s I/O addresses, Human Machine In	terfaces (HMIs)		
Ladde	er and Functional Block program	ming		06 Hours
Ladde	er diagrams, logic functions, latchir	ng, multiple out	puts, entering ladder pr	ograms, functional
blocks	s, program examples, Location of st	op and emerge	ncy switches	
		UNIT-II		
IL, SF	C, and ST Programming Methods			04 Hours
Instru	ction list, sequential functions chart	s, structured tex	t programming	
Interr	nal Relays			06 Hours
ladde	r programs, battery- backed relays,	one - shot oper	ation, set and reset, mast	er control relay,
exam	ole programs, jump and call subrou	tines		
Time	rs			06 Hours
Types	of timers, programming timers, O	n delay timers,	OFF- delay timers, pulse	e timers, cascading
timers	s, programming examples			
		UNIT-III		
Coun	ters			04 Hours
Forms	s of counter, programming counters	s, up and down	counting, timers with cou	inters, sequencer
Shift	register and data handling			06 Hours
Shift r	registers, ladder programs, register	s and bits, data	handling, arithmetic fun	ctions, closed loop
contro	ol, Structure of control system, Tem	perature contro		
Cours	Se Outcomes: At the end of the cou	irse student will	be able to	
		• • - ·		
1.	List and describe characteristics o	t various I/O dev	vices and interface them	to PLC unit
2.	Apply suitable logic using ladder	and functional	block programming lang	juages to achieve
	specific control mechanism for a g	given application	1	
3.	Use internal relays and other prog	gramming langu	ages of PLC to control pe	eripheral devices
4.	Identify timer resources of a PLC t	o design contro	l logic for interfaced devi	ice
5.	Choose counters and special fun	ctionalities of P	LC to control and moni-	tor functions and

		design the real-world applic	atio	ns													
Co	ourse	e Outcomes Mapping with I	Prog	gran	ו Ou	tcor	nes	& P	SO								
		Program Outcomes→	1	2	3	4	5	6	7	8	9	10	11	12	PS	O↓	
	↓ C	ourse Outcomes													1	2	
		EE2311-1.1	3	-	-	-	-	1	-	-	-	-	-	-	-	-	
		EE2311-1.2	1	3	-	-	1	-	-	-	-	-	-	-	-	3	
		EE2311-1.3	1	2	3	-	1	-	-	-	-	-	-	1	-	1	
		EE2311-1.4	1	2	3	-	1	-	-	-	-	-	-	2	-	2	
		EE2311-1.5	1	2	3	-	1	2	-	-	-	-	-	2	-	3	
												1: Lo	w 2:	Med	ium	3: Hi	gh
TE	ХТВ	OOKS:															
	1.	W Bolton "Programmable L	ogic	con	troll	ers",	6 th (editi	on, l	Elsev	vier-	newr	ness,	2015.			
	2.	John W Webb, Ronald A Re	is, "l	Prog	ramı	mab	le lo	gic d	cont	rolle	rs -	princ	iples	and a	appli	catior	าร"
		-5 th edition, 2 nd impression,	Pea	rson	edu	ucati	on, i	2009)								
RE	FER	ENCE BOOKS:															
	1.	John W Webb, Ronald A Re	eis, "	Prog	Iram	mab	le C	ontr	ollei	r The	eory	and I	[mple	ement	tatio	ns", -2	2 nd
		edition, 2003															
	2.	E. A Paar, "Programmable C	ontr	olle	rs – A	An E	ngin	eers	Gui	de″	3 rd e	ditio	n, nev	wness	s, 200)3.	
ΕI	Bool	oks / MOOCs/ NPTEL															
	1.	1. https://www.coursera.org/learn/intelligent-machining/lecture/fGz3r/programmable-logic-															
		controllers-plc															
	2.	https://nptel.ac.in/courses/1	121	.020	11												
	3.	http://nptel.ac.in/courses/12	121()317	4/												

MICRO AND NANC	SCALE SENSOR	S AND TRANSDUCERS											
Course Code:	EE2312-1	Course Type	PCC										
Teaching Hours/Week (L: T: P: S)	3:0:0:0	Credits	03										
Total Teaching Hours	40+0+0	CIE + SEE Marks	50+50										
Prerequisite	EE2002-1	Prerequisite EE2002-1											

Teaching Department: Electrical & Electronics Engineering

Cours	e Objectives:	
1.	To explain measurement of pressure using sensors based on nanotechnology, thei theory of operation	r structure,
2.	To explain structure, theory of operation of sensors based on nanotechnology f	or Motion,
	acceleration, measurement, gas and smoke detection	
3.	To explain sensors based on nanotechnology for the measurement of atmospheri and moisture inside the electronic components	ic moisture
4.	To explain Optoelectronic and Photonic Sensors used in optical microphones.	fingerprint
	readers, and highly sensitive seismic sensors	
5.	To explain the structure, operation of Biological Sensors, Chemical Sensors	s, used in
	multipurpose biological and chemical analysis devices and Electric, Mag	netic, and
	RF/Microwave, Integrated Sensor/Actuator Units and Special Purpose Sensors	driven by
	nanotechnology	
	UNIT-I	
Press	ure, Motion and Acceleration Sensors	10 Hours
Capac	itive Pressure Sensors, Inductive Pressure Sensors, Ultrahigh Sensitivity Pressu	ire Sensors,
Ultrah	igh Sensitivity, Wide Dynamic Range Sensors, Other Motion and Acceleration Micro	o sensors
Gas a	nd Smoke Sensors	04 Hours
A CO	Gas Sensor Based on Nanotechnology, Smoke Detectors	
	UNIT-II	
Moist	ure, Optoelectronic and Photonic Sensors	08 Hours
Struct	ure, Theory, Main Experimental Results, Auxiliary Experimental Results, Op	toelectronic
Micro	phone, Other Optoelectronic and Photonic Micro Sensors	
Biolo	gical, Chemical, and "Lab on a Chip" Sensors	04 Hours
Lab or	n a Chip Sensors, Other Biochemical Micro- and Nano-Sensors	
Electr	ic, Magnetic, and RF/Microwave Sensors	04 Hours
Magn	etic Field Sensors, Other Important Electromagnetic/RF Micro- and Nano-Sensors	
	UNIT-III	
Integ	rated Sensor/Actuator Units and Special Purpose Sensors	10 Hours
Aircra	ft Icing Detectors: Introduction and Principle of Operation, theory, Microflu	idic, Micro-
Actua	tors, Other Special Purpose Small-Scale Devices	
Cours	e Outcomes: At the end of the course student will be able to	
1.	Classify various pressure sensors, and select a sensor depending upon the application	ation
2.	Categorize various motion & acceleration sensors, gas and smoke sensors and	d choose a
	sensor for a particular application	
3.	Classify various moisture sensors, Optoelectronic & Photonic Sensors and selection	ct a sensor
	depending upon the application	
4.	Categorize various Biological, Chemical, and "Lab on a Chip" Sensors, Electric, Mag	gnetic, and
	RF/Microwave Sensors and choose a sensor for a particular application	
5.	Classify various Integrated Sensor/Actuator Units and Special Purpose Sensors a	nd select a
	sensor depending upon the application	
Cours	e Outcomes Mapping with Program Outcomes & PSO	

		Program Outcomes $ ightarrow$	1	2	3	4	5	6	7	8	9	10	11	12	PS	O↓	
	↓ C	ourse Outcomes													1	2	
		EE2312-1.1	2	3	-	-	-	-	-	-	-	I	-	-	-	-	
		EE2312-1.2	2	3	-	-	-	-	-	-	-	I	-	-	-	-	
		EE2312-1.3	2	3	-	-	-	-	-	-	-	I	-	-	-	-	
		EE2312-1.4	2	3	-	-	-	-	-	-	-	-	-	-	-	-	
		EE2312-1.5	2	3	-	-	-	-	-	-	-	I	-	-	-	1	
_												1: Lo	w 2:	Med	ium	3: Hi	gh
TE	ХТВ	OOKS:															
	1.	Ezzat G. Bakhoum, "Micro- a	and	Nan	o-Sc	ale S	Sens	ors a	and	Tran	sduo	cers",	CRC	Press	s, 201	L5	
RE	FER	ENCE BOOKS:															
	1.	M. J. Usher & D. A. Kea	ating	, "S	ensc	ors a	and	Tra	nsdu	icers	: Cl	narac	terist	ics, A	Appli	catio	ns,
		Instrumentation, Interfacing	".														

	ADVANCED IN	ISTRUMENTAT	ION SYSTEMS					
Cou	rse Code:	EE3311-1	Course Type	PCC				
Teac	hing Hours/Week (L: T: P: S)	3:0:0:0	Credits	03				
Tota	I Teaching Hours	40+0+0	CIE + SEE Marks	50+50				
Prer	equisite	EE1001-2, EE	2002-1					
	Teaching Department	: Electrical & El	ectronics Engineering					
Cours	e Objectives:							
1.	To know the various aspects of inst	rumentation						
2.	To understand the working princharacteristics	nciples of vari	ous measuring instrum	nents and their				
3.	To comprehend with the working o	f various transd	ucers					
4.	To know the need of Data acquisition	on, conversion a	nd transmission					
		UNIT-I						
Instru	Imentation	•••••		07 Hours				
Frequ	ency meter measurement of time and	d frequency (ma	ins) tachometer phase n	neter capacitance				
meter	: Automation in digital Instrumentation	on	ins), taenometer, phase n	neter, capacitance				
Analy	zer			08 Hours				
Wave	analyzers and Harmonic distortion.	Basic wave and	alvzer. Frequency selecti	ve wave analyzer.				
Harm	onic distortion analyzer and Spectrur	n analyzer						
		UNIT-II						
Meas	uring Instruments			04 Hours				
Outpu	it power meters. Field strength meter	Vector impeda	nce meter. O meter appl	ications-Z. Z0 and				
O. Bas	sic LCR bridge. RX meters							
Meas	urement of power			04 Hours				
Measu	urement of large amount of RF po	wer (calorimetri	c method), measuremer	nt of power on a				
transr	nission line, standing wave ratio mea	surements		·				
Trans	ducers			08 Hours				
Synch	ro's, Capacitance Transducers, Load	cells, Piezo el	ectrical Transducers, IC	type temperature				
senso	rs, Pyrometers, Ultrasonic tempe	rature Transdu	icer, Reluctance pulse	pick-ups, Flow				
measu	urement-mechanical Transducers; Ma	ignetic flow me	ers, turbine flow meters.	β-gauge				
		UNIT-III						
Data	acquisition and conversion			05 Hours				
Gener	alized data acquisition system (DAS)	, Signal conditio	oning of inputs, single ch	annel DAS, multi-				
chann	el DAS, data loggers, compact data l	ogger.						
Data	transmission			04 Hours				
Unive	rsal serial bus, IEEE-1394, Long dista	ince data transr	nission (modems), IEEE 4	488 bus, Electrical				
interfa	асе							
Cours	e Outcomes: At the end of the cours	se student will b	e able to					
1.	Describe the principle of different s	ensors for the n	neasurement of frequence	cy and phase				
2.	2. List various types of signal analyzer to understand the operating principle & applications							
3. Describe the operating principle of various measuring instruments to determine the electrical								
parameters								
4.	Describe the working principles of	various transdu	cers to measure the elect	trical parameters				
	of physical system							
5.	Describe the process of data acquis	ition and conve	rsion for the effective da	ta transmission				
Cours	e Outcomes Mapping with Progra	m Outcomes &	PSO					
	Program Outcomes \rightarrow 1 2	3 4 5	5 7 8 9 10 11	12 PSO				

	↓ C	ourse Outcomes													1	2	
		EE3311-1.1	3	-	-	-	-	-	-	-	-	-	-	-	-	-	
		EE3311-1.2	3	I	-	-	-	-	-	-	-	I	-	1	-	-	
		EE3311-1.3	3	I	-	-	-	-	-	-	-	I	-	1	-	-	
		EE3311-1.4	3	-	-	-	-	-	-	-	-	1	-	1	-	-	
		EE3311-1.5	3	-	-	-	-	-	-	-	-	-	-	1	-	1	
-												1: Lo	w 2:	Med	ium	3: Hi	gh
TE	хтв	OOKS:															
	1.	"Electronic Instrumentation"	', MI	HE, 3	Brd E	ditic	on, 2	010									
RE	FER	ENCE BOOKS:															
	1.	Cooper D and A D Helfrick, "Modern Electronic Instrumentation and Measuring Techniques",															
		PHI,2009															
	2.	Stanley Wolf, Richard F H, S	Smit	h, "S	tude	ent R	lefer	ence	e Ma	anua	l for	Elec	tronio	c Inst	rume	entati	on
		Laboratories", PHI, 2nd Editi	ion,	2010)												

Г

	INDUSTRIAL	SERVO CONT	ROL SYSTEMS							
Cour	rco Codo:	EE2212 1		PCC						
Teac	hing Hours/Week (I · T· P· S)	3.0.0.0	Credits	03						
Tota	I Teaching Hours	40+0+0	CIF + SFF Marks	50+50						
Prer	equisite	EE3001-1								
	Teaching Department	Flectrical & F	lectronics Engineering							
Cours	se Objectives:									
1.	1. To explain the evolution and classification of servos, with descriptions of servo drive									
	actuators, amplifiers, feedback transducers, performance, and troubleshooting techniques.									
2.	2. To discuss system analogs and vectors, with a review of differential equations									
3.	3. To represent servo drive components by their transfer function, to combine the servo drive									
	building blocks into system block d	iagrams								
4.	To determine the frequency respon	se techniques	for proper servo compensati	on						
5.	To explain perform indices and perf	formance criter	ria for servo systems							
	· · · · ·	UNIT-I								
Intro	duction			08 Hours						
Benef	its of Servo Systems, Types of Serv	vos - Evolutior	n of Servo Drives, Classifica	tion of Drives,						
Comp	onents of Servos - Hydraulic/Elec	ctric Circuit E	quations, Actuators—Electri	c, Actuators—						
Hydra	ulic, Amplifiers—Electric, Amplifiers—	–Hydraulic, Tra	nsducers (Feedback)							
Drive	S	-		04 Hours						
Mach	ine Servo Drives: Types of Drives,	Feed Drive P	erformance, Troubleshootir	ng Techniques:						
Techn	iques by Drive, Problems: Their C	Causes and Co	ures, Machine Feed Drives	: Advances in						
Techn	ology, Parameters for making Applic	ation Choices								
Appli	cation of Industrial Servo Drives			04 Hours						
Introc	luction, Physical System Analogs, Qu	uantities and \	Vectors, Differential Equatio	ns for Physical						
Syster	ms, Electric Servo Motor Transfer I	Functions and	Time Constants, Transpor	t Lag Transfer						
Funct	ion, Hydraulic Servo Motor Character	istics, General	Transfer Characteristics	2						
		UNIT-II								
Gene	ralized Control Theory			08 Hours						
Servo	Block Diagrams, Frequency-Respons	e Characteristi	cs and Construction of Appr	oximate (Bode)						
Frequ	ency Charts, Nichols Charts, Servo Ar	alysis Techniq	ues, Servo Compensation.							
Index	es of Performance: Definition of 1	Indexes of Pe	erformance for Servo Drive	es, Indexes of						
Perfor	mance Electric and Hydraulic Drives									
Perfo	rmance Criteria			07 Hours						
Perce	nt Regulation, Servo System Respons	es.								
Servo	Plant Compensation Techniques: [Dead-Zone No	on-linearity, Change-in-Gain	Non-linearity,						
Struct	ural Resonances, Frequency Selective	e Feedback, Fee	ed-forward Control.							
Mach	ine Considerations: Machine feed driv	ve Consideration	ons, Ball Screw Mechanical R	esonances and						
Reflec	Reflected Inertias for Machine Drives									
		UNIT-III								
Mach	ine Considerations			09 Hours						
Drive	Stiffness, Drive Resolution, Drive	Acceleration,	Drive Speed Consideration	s, Drive Ratio						
Consi	derations, Drive Thrust/Torque and Fi	riction Conside	erations, Drive Duty Cycles							
Cours	Course Outcomes: At the end of the course student will be able to									

1. Identify the benefits of servo system and various components to use in hydraulic /electric

	circuits
2.	Derive differential equations & transfer functions of servo system to apply in physical systems
3.	Apply the generalized control theory for servo systems to study the frequency response
4.	Describe the various performance criteria & servo plant compensation techniques to the
	servo system
5.	Identify the various machine considerations for servo drive systems

Course Outcomes Mapping with Program Outcomes & PSO

Program Outcomes→	1	2	3	4	5	6	7	8	9	10	11	12	PS	O↓
↓ Course Outcomes													1	2
EE3312-1.1	3	-	-	-	-	-	-	-	-	-	-	-	-	-
EE3312-1.2	1	3	-	-	-	-	-	-	-	-	-	-	-	2
EE3312-1.3	1	2	3	-	-	-	-	-	-	-	-	-	-	2
EE3312-1.4	2	3	-	-	-	-	-	-	-	-	-	-	-	-
EE3312-1.5	1	3	-	-	-	-	-	-	-	-	-	-	-	-
		•			•	•	•	•	•	1: Lo	w 2:	Med	ium	3: Hi

TEXTBOOKS:

1.	George W. Y	ounkin,	"Industrial	Servo	Control	Systems	Fundamentals	and	Applications",
	Marcel Dekke	r, 1st Edi	tion, 2003						

REFERENCE BOOKS:

Riazollah Firoozian, "Servo Motors and Industrial Control Theory", Springer, 2nd Edition, 2014
 Stephen M. Tobin, "DC Servos Application and Design with MATLAB", CRC, 1st Edition, 2011

Professional Elective Courses (Energy System Stream)

3

Г

	DEMAND SIDE MANAGEMENT														
Court	vao Codo			FF2	221	1				.					-
Coul	rse Code: whing Hours (Mook (L. T. D. S	`		2.0.	221·	·T		Coul	rse i	уре				02	-
Teac	I Too shing Hours/ Week (L: 1: P: S)		3:0:	0:0			CTE		E N/	o vilco			03	50
Dron	i leaching Hours			40+	<u>0+0</u> 104	1			+ 25		arks			50-	- 50
Prer					104.	· 1 0.	-			 :					
6	leacning Depa	rtme	ent:	FIEC	trica	Ia	Elec	tron		Engi	neer	ing			
Cours	e Objectives:														
1	To dot a marker of the order of a start of the					1 +		•	(
1.	To determine the demand, p	oroni atu:la		usa	ge a		ecnn Ganal	ique	25 01	ene	rgy n	neast	ireme	ent	
<u>Z.</u>	To understand the power di	strid		n tor	eco	nom	nic a	ever	opm	ient	of th	e nat	ion.		
3.	To understand the paramete	ers o	t ele	ctric	ai sy	sten	1 ор			n					
4.	To introduce and analyze va	rious	s tec	nnic	lues	of a	ema	<u>na s</u>	lae	man	agen	nent.			
5.	To be familiarized with load	man	lage	men	t & (diffe	rent	elec	trica	al tar	iff sy	stem	S		
• •	1 4			U	NIT	-1									
Intro	duction:													05	Hours
Energ	y situation – world and Ind	dia,	ene	rgy	cons	ump	otior	n, co	onse	rvati	on.	codes	s, sta	nda	rds and
legisla	ition														
Energ	y Economic Analysis:													05	Hours
The ti	me value of money concept, d	evel	opir	ig ca	sh fl	ow r	nod	els, F	Payb	ack	analy	sis, d	eprec	ciatio	on, taxes
and ta	ax credit –problems.													1	
Energ	y Auditing:													05	Hours
Introd	luction, elements of energy au	udits	, ene	ergy	use	prof	iles,	mea	sure	emer	nts in	ener	gy au	idits	,
prese	ntation of energy audit results	5													
				U	NIT	II								1	
Electr	ical System Optimization:													05	Hours
The p	ower triangle, motor horsepov	wer,	pow	/er fl	ow c	onc	ept,	elec	trica	l eq	uipm	ent a	nd po	ower	factor
-corre	ection & location of capacitors	5.												1	
Dema	nd Side Management:													10	Hours
Introd	luction to DSM, concept of DS	5M, k	bene	efits (of D	SM, (diffe	rent	tecl	nniq	ues o	of DSN	√l – ti	me	of day
pricin	g, multi-utility power exchang	je mo	odel	and	tim	e of	day	mod	dels	for p	lann	ing.			
				U	NIT-	III									
Energ	y efficient motors, Lighting	bas	ics,	Elec	trica	l rat	e ta	riff:						10	Hours
Load	management, load priority	tech	niqu	e, p	eak	clip	oing	, pe	ak s	shifti	ing, ۱	valley	, fillir	ng, s	strategic
conse	rvation, energy efficient equip	omer	nt.												
Cours	e Outcomes: At the end of th	ne co	ourse	e stu	dent	: will	be a	able	to						
1.	Estimate energy consumption	on &	con	serv	atior	ו by	sug	gesti	ing i	nsta	llatio	n mo	difica	tion	to
	compute payback period.					-			0						
2.	Measure and collect data to	pres	sent	ene	rgy a	udit	res	ults.							
3.	Analyze the power flow base	ed oi	n mo	otor	hors	epo	wer	to si	igde	est p	ower	facto	or cor	rect	ion.
4.	4. Describe various techniques to implement demand side management.														
5.	Evaluate various methods to	mai	naqe	e the	load	d usi	ng e	ener	gy e	fficie	ent ec	quipm	nent.		
Cours	e Outcomes Mapping with	Prod	Iran	י ו Ou	tcor	nes	& P	so		-					
	Program Outcomes→	1	2	3	4	5	6	7	8	9	10	11	12	PS	50
	Course Outcomes						-	-	-	-	_•			1	2
¥		1		1	1										

		EE2221-1.1	2	3	-	-	-	-	1	-	-	-	-	-	-	-	
		EE2221-1.2	2	3	-	-	-	1	1	-	-	-	-	-	-	-	
		EE2221-1.3	2	3	-	-	-	-	1	-	-	-	-	-	-	-	
		EE2221-1.4	2	3	-	-	-	-	1	-	-	I	-	-	-	-	
		EE2206-1.5	2	3	-	-	-	1	1	-	-	-	-	-	-	-	
												1: Lo	w 2:	Med	ium	3: Hi	gh
TEX	TEXTBOOKS:																
	1.	Larry C. White, Philip S. Schmidt, David R. Brown, "Industrial Energy Management Systems",														"	
		Hemisphere Publishing Cor	pora	tion	, Ne	w Yc	ork.										
	2.	Albert Thumann, "Fundame	ntals	s of I	Ener	gy E	ngin	eeri	ng",	Prer	ntice	Hall	Inc, E	Ingle	wood	l Cliff	ſS,
		New Jersey					-		-					-			
	3.	Sonal Desai , "Handbook of	Ene	rgy /	Audi	t″, №	1cGr	aw F	Hill E	duca	atior	า (Ind	ia) Pr	ivate	Limi	ted,	
		2015															
REF	ER	ENCE BOOKS:															
	1.	Jyothi Prakash, "Demand Si	de N	lana	gem	ent"	, TN	IH P	ublis	shers	5.						
	2.	Hand book on energy audit	ing	- TEI	RI (Ta	ata E	Iner	av R	esea	rch I	Insti	tute)					

	1		I									
Course Code:	EE2222-1	Course Type	PCC									
Teaching Hours/Week (L: T: P: S)	3:0:0:0	Credits	03									
Total Teaching Hours	40+0+0	CIE + SEE Marks	50+50									
Prerequisite	EE2104-1											
I eaching Department: Electrical & Electronics Engineering												
Course Objectives:												
		<u> </u>										
1. To understand the principle of extra	ction of energy	from conventional and no	on- conventional									
Sources	ad applications	of color based the mail	plactrical and DV									
2. TO familiarize with the operation ar	iu applications	of solar based thermal, (
3. To justify the usage of energy storage techniques												
3. To justify the usage of energy storage techniques 4 To discuss the design process and implementation of wind based energy conversion systems												
5 To study the process of design and	d implementation	on of biomass based en	ergy conversion									
5. 10 study the process of design and implementation of biomass based energy conversion												
	UNIT-I											
Energy Sources			03 Hours									
Introduction, importance of energy cons	sumption as m	easure of prosperity. P	er capita enerov									
consumption, classification of energy resou	irces; conventio	nal energy resources - av	ailability and their									
limitations; non-conventional energy resou	urces – classific	ation, advantages, limitat	tions; comparison									
of conventional and non-conventional e	nergy resource	s; world energy scenari	o; Indian energy									
scenario												
Solar Energy Systems			13 Hours									
Introduction, solar constant, basic sun-ea	arth angles – c	efinitions and their rep	resentation, solar									
radiation geometry (numerical problems)	, estimation of	solar radiation of hori	zontal and tilted									
surfaces (numerical problems); measure	ement of sola	ar radiation data – F	Pyranometer and									
Pyrheliometer.												
Solar Thermal Systems: Principle of conver	rsion of solar ra	diation into heat, solar v	vater heaters (flat									
plate collectors), solar cookers – box typ	e, concentratin	g dish type, solar driers	s, solar still, solar									
Solar Electric Systems: Solar thermal electric	ic nower concr	tion - color pond and c	prontrating color									
collector (narabolic trough narabolic dish	central tower of	nion – solar ponu anu cu ollector) Advantages ar	ncentrating sold									
solar photovoltaic – solar cell fundament:	als, characterist	cs classification constru	iction of module									
panel and array		construction, constru										
Solar PV Systems – stand-alone and grid	d connected sv	stems; its applications t	o street liahting.									
domestic lighting and solar water pumping	g systems											
	UNIT-II											
Energy Storage			04 Hours									
Introduction, necessity of energy storage,	and methods	of energy storage (classi	fication and brief									
description using block diagram representation	ation only)	-										
Wind Energy 04 Hours												
Introduction, wind and its properties, histor	ry of wind energ	y, wind energy scenario	– world and India.									
Basic principles of wind energy conversion systems (WECS), classification of WECS, parts of a WECS,												
derivation for power in the wind, electric	al power outpu	t and capacity factor of	WECS, wind site									
selection consideration, advantages and di	sadvantages of	WECS										
Biomass Energy	<u> </u>		07 Hours									
Introduction, photosynthesis process, bion	nass tuels, biom	ass conversion technolo	gies, urban waste									

to energy conversion, biomass gasification, biomass to ethanol production, biogas production from waste biomass, factors affecting biogas generation, types of biogas plants – KVIC and Janata model; biomass program in India

UNIT-III

06 Hours

03 Hours

Tidal energy – Principle of tidal power, components of tidal power plant (TPP), classification of tidal power plants, estimation of energy – single basin and double basin type TPP (no derivations. simple numerical problems), advantages and limitation of TPP.

Ocean thermal energy conversion (OTEC): principle of OTEC system, methods of OTEC power generation – open cycle (Claude cycle), closed cycle (Anderson cycle) and hybrid cycle (block diagram description of OTEC); site-selection criteria, bio fouling, advantages & limitation of OTEC

Emerging Technologies

Energy from Ocean

Fuel cell, small hydro resources, hydrogen energy and wave energy. (Principle of energy generation using diagrams, advantages and limitations).

Course Outcomes: At the end of the course student will be able to

1.	Describe nonconventional energy sources and solar radiation geometry to estimate $\&$
	measure solar radiation
2.	Apply the principle of solar radiation into heat to understand the operation of solar thermal
	and solar electric systems
3.	Describe energy storage methods and wind-energy conversion systems to understand the
	factors influencing power generation
4.	Apply the biomass conversion technologies to design biomass based energy systems.

5. Describe tidal, ocean thermal and fuel cell energy conversion systems to understand emerging renewable energy technologies

Course Outcomes Mapping with Program Outcomes & PSO

Program Outcomes→	1	2	3	4	5	6	7	8	9	10	11	12	PS	O↓
↓ Course Outcomes													1	2
EE2222-1.1	З	-	-	-	-	-	-	-	3	-	-	-	-	-
EE2222-1.2	2	3	-	-	-	2	2	2	2	3	-	-	-	1
EE2222-1.3	3	-	-	-	-	2	2	-	3	-	-	-	-	1
EE2222-1.4	2	3	-	-	-	2	1	-	2	3	-	-	-	-
EE2222-1.5	3	-	-	-	-	2	2	-	3	-	-	-	-	-

1: Low 2: Medium 3: High

TEXTBOOKS:

1. Rai G. D., "Non-Conventional Sources of Energy", 5th Edition, Khanna Publishers, New Delhi, 2014

2. Khan, B. H., "Non-Conventional Energy Resources", TMH, New Delhi, 2nd Edition, 2009. **REFERENCE BOOKS:**

- Mukherjee D. and Chakrabarti, S., "Fundamentals of Renewable Energy Systems", New Age International Publishers, 5th edition, 2011.
- 2. S. P. Sukhatme, J. K. Nayak "Solar Energy: Principles of Thermal Collection and Storage", 3e McGraw-Hill Education (India) (2009).

	ELECTRICAL CIRCUITS AND POWER DISTRIBUTION												
Cour	Course Code: EE2223-1 Course Type: ESC												
Теас	Teaching Hours/Week (L: T: P):3:0:0Credits:03												
Tota	Total Teaching Hours:40+0+0CIE + SEE Marks:50+50												
	Teaching Departme	ent: Electrical & Elect	tronics Engineering										
Cours	e Objectives:												
1.	1. To familiarize the student with the DC circuit analyses.												
2.	2. To analyze single and three-phase AC circuits.												

3. To understand the working principle of electrical machines. UNIT-I **Circuit Fundamentals** 05 Hours Basic nodal and mesh analysis excited by independent DC voltage sources, Power, and Energy. Generation of sinusoidal voltage, frequency of generated voltage, definition and numerical values of average value, root mean square value, form factor and peak factor of sinusoidally varying voltage and current, phasor representation of alternating quantities. Star delta transformations. A.C. Circuits **11 Hours Single Phase AC Circuits:** Analysis of R, L, C, R-L, R-C and R-L-C series and parallel circuits for sinusoidal excitation. Phasor Diagrams. Real power, reactive power, apparent power, and power factor. Resonance: Series and parallel resonance, concept of band width and Q factor. Three phase AC circuits: Three-phase balanced circuits, voltage and current relations in star and delta connections. Measurement of three phase power using two wattmeters. three phase four wire circuits. **UNIT-II DC** motors 06 Hours Constructional details, Principle of operation of motor, Expression for back emf, Types of dc motors, Characteristic of dc motors (shunt and series motors only) and Applications. **Single-Phase Transformers 09 Hours** Faradays Laws, self and mutually induced emfs. Necessity of transformer, Principle of operation. Types of Transformers, Emf equation, phasor diagrams at no load and full load, equivalent circuit, losses, efficiency, problems on emf equation and efficiency, Autotransformer, Applications. UNIT-III **Three Phase Synchronous Machines** 04 Hours Basic parts, Principle of operation, Synchronous speed, Frequency of generated voltage, Emf equation. Concept of winding factor .Principle of operation of Synchronous Motor. Applications **Induction Motors** 05 Hours Concept of rotating magnetic field, Construction and working of a three-phase Induction Motor, Slip and its significance, Torque slip characteristics (qualitative). Necessity of a starter, Principle of operation Single Phase Induction Motor. Applications Course Outcomes Mapping with Program Outcomes & PSO **Program Outcomes**→ 2 3 4 5 6 7 8 9 10 11 12 PSO | 1 **Course Outcomes** 1 2 EE2223-1.1 2 3 3 EE2223-.2 2 2 3 EE2223-2.3 3 EE2223-2.4 2 3 EE2223-2.5 2 1: Low 2: Medium 3: High

TEXTBOOK

Hughes, Edward, "Electrical Technology", Pearson Education Publications, 10th Edition, 2010. 1.

2.	W.H. Hayt and J.E Kemmerley, "Engineering circuit Analysis", McGrraw Hill, 8th Edition 2014
3.	Alexandar S Langsdorf, Theory of Alternating Current Machinery, McGrawhill
REFER	ENCE BOOKS:
1.	Vincent Del Toro, "Electrical Engineering Fundamentals", 2nd Edition, Pearson, 2015.
2.	H. Cotton, "Electrical Technology", CBS; 7 th Edition, 2005.
4.	Debashisha Jena, "Basic Electrical Engineering", Wiley India Private Limited, 2012.
E Bool	<s moocs="" nptel<="" th=""></s>
1.	http://nptel.ac.in/courses/108105053/

	ELEC	TRIC	CAL	POW	ER Q	UALI	ΓY					
					_							
Cou	rse Code:		EE4	221-	1	<u></u>	irse	Гуре				PCC
Teac	ching Hours/Week (L: T: P: S)		3:0:	0:0		Cre	dits					03
Tota	al Teaching Hours		40+	0+0		CIE	+ SE	EMa	arks			50+50
Prer	equisite		EE3	101-	1, EE:	3102-	1					
	Teaching Departme	ent:	Elec	trica	& El	ectro	nics	Engi	neer	ing		
Cours	se Objectives:											
1.	To introduce the concept of pov	ver c	qualit	ty an	d thei	r class	ses					
2.	To illustrate the voltage sags and	d int	erru	otion	s, the	ir sou	rces,	estin	natic	n & p	orote	ction
3.	To analyze the transient over v	/olta	iges,	func	amer	ntals o	of ha	irmor	nics,	harm	nonic	sources &
	effects of harmonic distortions											
4.	4. To discuss power quality bench marking process and utility interface											
5.	5. To review the monitoring considerations and standards											
	UNIT-I											
Defin	Definitions 03 Hours											
Gener	General classes of power quality problems, Transients, long duration voltage variation, short duration											
voltag	voltage variations, voltage imbalance, waveform distortion, power quality terms											
Volta	ge sags and interruptions											05 Hours
Sourc	es of sags and interruptions, esti	mat	ing v	oltag	ge sag	g perf	orma	ance,	fund	dame	ntal	principles of
prote	ction, monitoring sags											
Trans	ients over voltages											08 Hours
Sourc	es of transient over voltages, prin	ncip	les o	f ove	ervolta	age p	roted	tion,	utili	ty ca	pacit	or switching
transi	ents, fundamentals of harmonics	s: ha	armo	nic c	listor	ion, v	/olta	ge v	ersus	s trar	nsient	ts, harmonic
indexe	es, harmonic sources from comme	ercia	l loa	ds, ha	rmor	nic sou	urces	from	n Ind	ustria	al loa	ds, effects of
harmo	onic distortion, intra-harmonics											
			U	NIT-	Π							
Appli	ed harmonics											07 Hours
Harm	onic distortion evaluations, princi	ples	for o	contr	olling	harm	nonic	s, ha	rmor	nic st	udies	, devices for
contro	olling harmonic distortion, harmor	nic fi	ilters	, stan	dards	s of ha	armo	nics				
Powe	er quality benchmark											08 Hours
Introc	duction, benchmark process, powe	er qu	uality	/ con	tract,	powe	er qu	ality	state	e esti	matio	on, including
powe	r quality in distribution planr	ning,	Int	erfac	e to	utili	ty s	yster	n, p	owei	r qu	ality issues,
interc	onnection standards							-				-
			U	NIT-I	II							
Powe	er quality monitoring											09 Hours
Monit	toring considerations, power qua	lity	mea	surer	nent	equip	men	t, ass	sessr	nent	of p	ower quality
measu	urement data, application of intell	igen	it sys	tems	and	oowei	[.] qua	lity n	nonit	oring	g star	ndards
Cours	se Outcomes: At the end of the co	ourse	e stu	dent	will b	e able	e to					
1.	Describe various power quality i	ssue	s to	estim	ate v	oltage	e saq	and	perf	orma	nce	
2.	Analyze transient over voltages	& h	armo	nics	to un	dersta	and t	he fa	actor	s affe	ctina	the power
	quality										5	•
3.	3. Describe the principle for controlling the harmonics and filters to meet the standards											
4.	4. Describe the power quality bench marking process and power quality contract to solve power											
	quality issues			5		- 6		-1	- ,			• •
5	Identify the Monitoring consider	atio	ns. st	anda	rds. r	neasu	reme	ent eo	auin	ment	and	application
	of intelligent systems	200			, 1				יאיייוי			
Cours	se Outcomes Manning with Prov	aran	n Ou	tcom	ies &	PSO						
		7.411										
	Program Outcomes_ 1	2	R	Δ	5 6	5 7	8	9	10	11	12	PSO
			5				0		-0			

Page | 224

	🕽 Course Outcomes													1	2	
	EE4221-1.1	2	З	-	I	-	-	-	I	I	-	I	-	-	-	
	EE4221-1.2	2	3	-	I	-	-	-	I	I	-	I	-	I	-	
	EE4221-1.3	3	-	-	-	-	-	-	-	-	-	-	-	-	-	
	EE4221-1.4	2	3	-	-	-	-	-	-	-	-	-	2	-	1	
	EE4221-1.5	3	-	-	-	-	-	-	-	-	-	-	2	-	1	
	1: Low 2: Medium 3: High															
TEX	TBOOKS:															
	1. Dugan, Roger C, Santoso, 1	Sury	a, M	lcGra	anag	han,	Ma	nrk F	/ Be	aty,	H. W	/ayne	e "Ele	ctric	Pow	/er
	Quality" McGraw-Hill profes	ssior	nal p	ublic	atio	n, 3r	d ec	ditio	n, 20)12						
REF	ERENCE BOOKS:															
	1. G.T.Heydt, "Electric power o	ualit	ty", S	Stars	in a	circ	le pu	ublic	atio	ns, 1	991					
	2. M.H.Rashid, "Modern Powe	r Ele	ctroi	nics"	, TA	TA N	/lcGr	aw I	Hill, 2	2002	2					
	3. Math H. J. Bollen. "Understa	andi	ng P	owe	r Qu	ality	Prc	bler	ns V	olta	ge Sa	igs a	nd In	terru	ption	s″,
	IEEE Press, 2000		-			-										

			-						
Cou	rse Code:	EE4222-1	Course Type	PCC					
Teac	hing Hours/Week (L: T: P: S)	3:0:0:0	Credits	03					
Tota	I Teaching Hours	40+0+0	CIE + SEE Marks	50+50					
Prer	equisite	EE1001-2, EE2	2104-1						
	Teaching Department	: Electrical & El	ectronics Engineering						
Cours	se Objectives:								
	I –			<u> </u>					
1.	I o explain power generation by alt	ernate energy so	ource like wind power an	id solar power					
2.	To explain selection of size of units	and location for	r wind & solar systems						
3. To study the effects of integration of distributed generation on the performance the system									
4.	To provide practical and useful info	prmation about o	grid integration of distrik	outed generation					
5.	To understand impact of integratio	n of DG on pow	er system stability and o	peration					
		UNIT-I							
Distri	buted Generation			11 Hours					
Introc	luction, status, properties of wind po	wer, power dist	ribution as a function of	wind speed, solar					
powe	r: status, properties, space require	ments, photovo	oltaics, seasonal variation	on in production					
capac	ity, combined heat-and-power: state	us, options for s	space heating, hydropo	wer: properties of					
large	hydro, properties of small hydro, v	ariation with tin	ne, tidal power, wave p	ower, geothermal					
powe	r, thermal power plant, Interface with	the grid, power	system performance: im	pact of distributed					
gener	ation on the power system, aims of th	ne power system	, hosting capacity approa	ach, power quality,					
voltag	e quality and design of distributed g	eneration, hostir	ng capacity approach for	events, increasing					
the ho	osting capacity								
Overl	oading and Losses			04 Hours					
Impac	t of distributed generation, overload	ding: radial distr	ibution networks, active	power flow only,					
active	and reactive power flow overload	ling: redundanc	y and meshed operation	on redundancy in					
distrik	oution networks meshed operation, lo	osses							
Drata	ation systems and success management								
Prote	ction system and energy managen	nent system	lity building now conn	US Hours					
Increa	ising the nosting capacity. Increasing		ant sustants new conn	ections, inter trip					
schen	ies, advanced protection schemes, e	nergy managen	ient systems, power elec	tronics approach,					
dema	na control, prioritizing renewable en	ergy, dynamic ic	ad admity	06 11					
Impos	ye magnitude variations	nargin and hast	na canacity voltage car	trol in distribution					
inpac	n voltage rise owing to distributed		ny capacity, voltage con						
Syster	his, voltage fise owing to distributed	generation, nos	ling capacity, estimating						
the h	acting conscitut new or stronger fo	ipacity, Statistica	approach to nosting ca	apacity, increasing					
mener	urament of the voltage magnitude	euers, alternativ	ve methous for voltage						
measu	tion over voltage surtailment com	e variations, all	owing higher overvoita	ages overvoltage					
prote	ction, over voltage curtaiment com	ipensating the g	generators voltage varia	ations, distributed					
gener	ation with voltage control, coordinat	ed voltage cont	101						
Pacie	decide rules terminology an individu	ual gonorator al	na a modium valtara f						
DdSIC	uesign rules, terminology, an individi	ual generator all	a mealum-voltage f	eeuer, IOW					
voitag	je reeders, series and snunt compens	auon, a numerio							
exam	bie for two-stage boosting, general e	expressions for the	wo-stage boosting tap (changers with					
line- (arop compensation: transformer with	i one single feed	er, adding a generator.						
metho	bas for design of distribution feeders	: need for proba	idilistic methods, the sys	tem studied,					
gener	ation with constant production, addi	ng wina power							

Power Quality Disturbances

10 Hours

Impact of distributed generation, fast voltage fluctuations: fast fluctuations in wind power, fast fluctuations in solar power, rapid voltage changes, very short variations. voltage unbalance: weaker transmission system, stronger distribution system, large single-phase generators, stronger distribution grid voltage unbalance, Low-frequency harmonics: wind power: induction generators, generators with power electronics interfaces, synchronous generators, measurement example, harmonic resonances, weaker transmission grid, and stronger distribution grid. High- frequency distortion: emission by individual generators, grouping below and above 2 kHz, limits below and above 2 kHz, voltage dips: synchronous machines balanced dips and unbalanced dips, induction generators and unbalanced dips, increasing the hosting capacity: strengthening the grid, emission limits for generator unit s, emission limits for other customers, higher disturbance levels, passive harmonic filters, power electronics converters, reducing the number of dips, broadband and high-frequency distortion

UNIT-III

Course Outcomes: At the end of the course student will be able to

1.	Describe solar, wind, hydro and tidal power generation to understand the concepts of
	distributed generation
2.	Analyze the system performance on integrating the distributed generation system with the
	grid
3.	Analyze the effects of the DG integration to determine the increased risk of overload and
	system losses
4.	Describe the effects of DG integration to study the impact of power quality issues.
5.	Analyze the power quality disturbance to understand the impact of voltage dips on system
	load.

Course Outcomes Mapping with Program Outcomes & PSO

Program Outcomes→	1	2	3	4	5	6	7	8	9	10	11	12	PSO↓	
↓ Course Outcomes													1	2
EE4222-1.1	3	-	-	-	-	-	-	-	-	-	-	-	-	-
EE4222-1.2	2	3	-	-	-	-	-	-	-	-	-	-	-	-
EE4222-1.3	1	2	3	-	-	-	-	-	-	-	-	-	-	-
EE4222-1.4	3	-	-	-	-	-	-	-	-	-	-	-	-	-
EE4222-1.5	1	3	-	-	-	-	-	-	-	-	_	-	-	-

TEXTBOOKS:

1: Low 2: Medium 3: High

1. Math Bollen, "Integration of Distributed Generation in the Power System", Wiley, 2011 **REFERENCE BOOKS:**

1. "Integration of distributed Energy resources in power system", oshihisa Funabashi Institute of Materials and Systems for Sustainability Nagoya University, Japan

		T		ı						
Cou	rse Code:	EE2321-1	Course Type	PCC						
Teac	ching Hours/Week (L: T: P: S)	3:0:0:0	Credits	03						
Tota	I Teaching Hours	40+0+0	CIE + SEE Marks	50+50						
Prer	equisite	PH1001-1	-							
	Teaching Department	: Electrical & I	Electronics Engineering							
Cours	se Objectives:									
	T	·								
1.	To understand the importance of Li	ight								
2.	To comprehend the propagation of	f light & photo	metric units							
3. To demonstrate the process of production of radiation and their characteristics										
4. To enumerate the principle of artificial light sources										
5.	I to design the objectives and metho	bus for interior	lighting							
1:		UNIT-I		07.11						
Light										
& fun functi metar	ctions of rods & cones-Photopic, Sco ons – accommodation, adaptation merism	otopic & Mesor & convergenc	pic visions- Purkinje shift (e- luminance contrast &	color-vision, vision & color contrasts-						
Propa	agation of light & photometric uni	ts		08 Hours						
Light	Propagation-Reflection-specular, diff	fuse, spread, co	ompound, scattered & se	elective reflections.						
Absor	ption, transmission, refraction, pola	rization, Inter	relation between the va	rious photometric						
quant	ities, luminous efficacy, spectral eye s	sensitivity curve	e-light watt-brightness-lu	iminous existence-						
radior	metric quantities & units-point by po	int method of	luminance calculations -	problems						
		UNIT-II								
Produ	uction of radiation			08 Hours						
Sourc Radia tempe Fluore chara	es of radiation, generation, coher tion, Black body radiator, Spectral e erature, c.t-selective, c radiators-e escence-low pressure & high-press cteristics	rent & incoho energy distribu color appeara sure gaseous	erent radiations, Incand ution, (Energy-Wavelengt ince & color renderin discharges, glow & ar	lescence, Thermal th) diagram, color g, Luminescence, c discharges, V-I						
Artifi	cial light sources			07 Hours						
Const	ruction, principle of operation lur	minous efficie	ncy, lamp life & color	characteristics of						
incano vapor	descence, Tungsten halogen, fluores and metal halide lamps, new trends	cent, high pres in lamp techno	ssure mercury vapor, High	h Pressure sodium						
		UNIT-III								
Interi	or Lighting Design			06 Hours						
Lighti flow establ lightir metho	ng design objectives-safely and heal chart, Lighting for commercial au lishments and hospital lighting, Lighting designs, Lighting for display- Sho od of calculations-simple problems	Ith performanc nd public bu ing for industri ps & super ma	e-appearance & compo ildings such as offices, al buildings, low & high irkets, art galleries, museu	ort lighting design hotels teaching bay area's general um lighting, lumen						
Light	and health			04 Hours						
Light radiat consid visual	as radiation, tissue damage by ultrav ion, tissue damage from infrared rad derations, aging effects, risk of excee comfort and human variability, light	iolet radiation, diation beyonc eding limits, us operating thro	tissue damage by visible 1 1400 nm, threshold lim sing task lights, eyestrain, ough the circadian systen	and near infrared it values, practical , migraine, autism, n, sleep, blue light						

hazard

Course Outcomes: At the end of the course student will be able to

1.	Analyze the electromagnetic spectrum of light to justify the concepts of vision systems
2.	Describe the light propagation principle to illustrate the photometric parameters
3.	Describe the process of radiation to analyze and distinguish color rendering properties
4.	Apply the concept of artificial light sources to suggest efficient lighting system
5.	Design lighting systems to suggest interior and exterior in-addition to health safety

Course Outcomes Mapping with Program Outcomes & PSO

Program Outcomes→	1	2	3	4	5	6	7	8	9	10	11	12	PSO↓	
↓ Course Outcomes													1	2
EE2321-1.1	2	3	-	-	-	I	-	I	I	I	-	-	I	-
EE2321-1.2	2	3	-	-	-	1	2	-	-	-	-	-	-	-
EE2321-1.3	2	3	-	-	-	1	2	I	I	I	-	-	I	-
EE2321-1.4	2	3	-	-	-	2	2	I	I	I	-	-	I	-
EE2321-1.5	2	2	3	-	-	1	2	I	I	-	-	-	-	2

1: Low 2: Medium 3: High

TEXTBOOKS:

1. M.A. Cayless and A.M Marsden, "Lamps and Lighting" (Ed.3) Oxford and IBH Publishing, 4th edition,1996

REFERENCE BOOKS:

- 1. Ronald N. Helms, "Illumination Engineering for Energy Efficiency Luminous Environment" PH ,1980
- 2. H. Ziji, "Illumination Engineering Course", -Philips Technical Lab,1955
- 3. Brain Fitt and Joe Thornley, "Lighting by Design A Technical Guide", Focal Press, Boston, 1992

	OPERATION AND MAINTE	NANCE OF SC	DLAR ELECTRICAL SYSTE	ИS						
Cou	rea Cada:	EE2222 1		DCC						
Top	rse Code:	3.0.0.0	Course Type Credits	03						
Tota	I Teaching Hours	40+0+0	CIE + SEE Marks	50+50						
Prer	equisite	FF3101-1		50150						
	Teaching Department	· Electrical & I	Flectronics Engineering							
Cours	se Objectives:									
1.	To understand the solar radiation a	nd PV technol	ogies							
2.	To familiarize with PV inverters and	mounting me	thods of PV systems							
3. To examine the site assessment, design process of the grid connected system and its sizing										
4.	To know the procedures of installat	tion, commissio	oning and maintenance of	PV systems						
5.	To discuss the types of financial inc	entives availab	le, calculation of payback	time						
	· · ·	UNIT-I								
Solar	Solar Resource and Radiation 03 Hours									
Solar	resources, quantifying solar radiation	n, the effect of	the Earth's atmosphere o	n solar radiation,						
Sun g	Sun geometry, Geometry for installing solar arrays									
PV In	PV Industry and Technology 05 Hours									
Semio	Semiconductor devices, Mainstream technologies, Monocrystalline silicon,									
Multicrystalline/polycrystalline silicon, Thin film solar cells, Contacts, Buying solar modules, Standards,										
Certifications, Warranties, Emerging technologies, Dye-sensitized solar cells, Sliver cells,										
Heter	Heterojunction with intrinsic thin layer (HIT) photovoltaic cells, III-V Semiconductors, Solar									
conce	concentrators, Characteristics of PV cells, Graphic representations of PV cell performance, Connecting									
PV ce	ells to create a module, Specification	n sheets, creati	ng a string of modules, C	Creating an array,						
Photo	ovoltaic array performance, Irradiance	e, Temperature,	, Shading	-						
Inver	ters, Other System Components an	nd Mounting S	Systems	07 Hours						
Introd	duction, Inverters, Battery inverter	rs, Grid-intera	active inverters, Transforn	ners, Mainstream						
invert	er technologies, String inverters, N	/lulti-string inv	erter, Central inverter, N	1odular inverters,						
Invert	er protection systems, Self-protection	on, Grid protec	tion, Balance of system ec	juipment: System						
equip	ment excluding the PV array and ir	nverter, Cabling	g, PV combiner box, Mod	ule junction box,						
Circui	t breakers and fuses, PV main disco	onnects/isolato	rs, Lightning and surge p	rotection, System						
monit	coring, Metering, Net metering, Gross	s metering, Ro	of mounting systems, Pitc	hed roof mounts,						
Pitche	ed roof mounts for tiled roofs, Pitchec	l root mounts f	or metal roofs, Rack moun	ts, Direct mounts,						
Buildi	ng-integrated systems, Ground mou	nting systems,	Ground							
C :++ (UNIT-II		02.11						
Site A	Assessment	- Calan Dath fin		U3 Hours						
Locat	Ion of the PV array, Roof specification	s, Solar Pathfin	der, Solmetric Suneye, HO	RI catcher, iPhone						
apps,	Software packages, Available area, Po		on, Landscape installation,	Energy efficiency						
	ment Site plan	(HSE) FISKS, LOO	cal environment, Locating i	balance of system						
	equipment, Site plan									
Desig	ning, sizing and installing Grid-co	prinected PV S	ysiems							
Invort	res Cabling Voltage sizing Curre	nt sizing Ma	nitoring System protecti	on Over-current						
	tion Fault-current protection Lights	nic sizility, 1010	protection Grounding/oar	thing Mechanical						
prote	ction Array protection Sub-array pr	nig and surge	low voltage (FLV) segmen	ntation Matching						
Volta	a specifications Calculating maximu	im voltage Ca	Iculating minimum and m	aximum voltage						
Calcu	lating the minimum and maximum	m number of	modules in a string M	Matching current						
specif	specifications, Matching modules to the inverter's power rating, Losses in utility-interactive PV									

systems, Temperature of the PV module, Dirt and soiling, Manufacturer's tolerance, Shading,																	
Orientation and module tilt angle, Voltage drop, Inverter efficiency, Calculating system yield, PV array																	
inst	installation, DC wiring, Cabling routes and required lengths, Cable sizing, PV combiner box, System																
gro	un	ding/earthing, Inverter install	atio	n, In	stall	atior	n che	eckli	st, Iı	ntero	conr	nectio	n wit	th the	e util	ity gr	id,
req	uir	ed information for installation	n, Sa	fety													
Sys	ster	n Commissioning													02	Hour	S
Inti	rod	uction, Final inspection of sys	tem	inst	allati	ion, [·]	Testi	ng,	Com	nmis	sion	ing, S	Syster	n doo	cume	ntatio	on
Sys	ster	n Operation and Maintenar	ice												03	Hour	S
Sys	System maintenance, PV array maintenance, Inverter maintenance, System integrity, Troubleshooting,																
Ide	Identifying the problem, Troubleshooting PV arrays, Troubleshooting underperforming systems,																
Tro	Troubleshooting inverters, other common problems																
	UNIT-III																
Marketing and Economics of Grid-connected PV Systems 05 Hours																	
Inti	od	uction, PV system costing, Val	uing	g a P'	V sys	stem	, Sin	nple	payl	back	and	l finar	ncial i	incen	tives	Simp	ble
рау	payback, Feed-in tariffs, Rebates, Tax incentives, Loans, Renewable portfolio standards and renewable																
ene	energy certificates, Marketing, Insurance.																
Cas	se S	Studies													04	Hour	S
Cas	Case studies of a variety of grid-connected PV systems- Case A to G																
Co	urs	e Outcomes: At the end of th	ne co	ourse	e stu	dent	t will	be a	able	to							
	1.	Describe basic concepts of s	olar	cell	to ill	ustr	ate F	PV te	echn	olog	gies						
	2.	Describe various PV inverter	topo	ologi	es &	to s	ugg	est t	he n	neth	ods	of mo	ounti	ng th	e PV	panel	S
	3.	Describe the factors related	to si	ite a	ssess	smer	nt to	des	ign t	the g	grid	conn	ected	l syste	ems		
	4.	Outline the process of PV i	nsta	Ilati	on a	nd o	com	miss	ionii	ng t	o op	perate	e & I	maint	ain t	he P	V
		systems															
	5.	Analyze the economics of gr	id c	onne	ected	d PV	syst	ems	to c	alcu	late	the p	bayba	ack tir	ne		
Co	urs	e Outcomes Mapping with I	Prog	gram	n Ou	tcor	nes	& P	SO								
		Program Outcomes $ ightarrow$	1	2	3	4	5	6	7	8	9	10	11	12	PS	O ↓	
	↓ (Course Outcomes													1	2	
		EE2322-1.1	3	-	-	-	-	1	2	-	-	-	-	-	-	-	
		EE2322-1.2	3	-	-	-	-	1	2	-	-	-	-	1	-	2	
		EE2322-1.3	3	-	-	-	-	1	-	-	-	-	-	1	I	-	
		EE2322-1.4	3	-	-	-	-	1	-	-	-	-	-	1	I	-	
		EE2322-1.5	2	3	-	-	-	1	1	-	-	-	-	1	-	-	
												1: Lo	w 2:	Med	ium	3: Hi	gh
TEX	KTE	BOOKS:															
	1.	Geoff Stapleton and Susar	n Ne	eill, '	'Grid	l-cor	nnec	ted	Sola	ar El	ectri	ic Sys	stems	s", Th	ie Ea	rthsc	an
		Expert Handbook for Planni	ng,	Desi	gn a	nd Iı	nstal	latic	on, E	arth	iscar	n, 1st	Editio	on, 20	012		
RE	FER	ENCE BOOKS:															
	1.	Chetan Singh Solanki, "Sola	ar Ph	noto	volta	ics -	Fur	Idan	nent	als, ⁻	Tech	nolo	gies a	and A	pplic	ation	s",
		PHI Learning Pvt. Ltd., 2015															

ELECTRICAL POWER UTILIZATION										
Course Code:	EE3321-1	Course Type	PCC							
Teaching Hours/Week (L: T: P: S)	3:0:0:0	Credits	03							
Total Teaching Hours	40+0+0 CIE + SEE Marks 50									
Prerequisite EE1001-2, EE2002-1 EE2001-1										

Teaching Department: Electrical & Electronics Engineering

Course Objectives:

1.	To understand the types and working of various heating and welding equipment
2.	To be familiarized with the electrolysis process and its control using electrical power
3.	To select different traction equipment based on their characteristics and to control them
4.	To introduce to Illumination, its requirements and study the construction & working of
	different types of lamps
5.	To introduce electric and hybrid vehicles and associated technologies

UNIT-I

Heating and Welding09 HoursAdvantages and methods of electric heating, resistance ovens, induction heating, dielectric heating,
the arc furnace, heating of building, electric welding, resistance and arc welding, control device and
welding equipment

Electrolytic Process

Fundamental principles, extraction, refining of metals, electroplating, Factors affecting electro deposition process, power supply for electrolytic process

UNIT-II

Electric Traction

System of traction, speed time curve, tractive effort at/ co-efficient of adhesions, selection of traction motors, method of speed control, energy saving by series parallel control

AC Traction Equipment

AC series motor, characteristics, regenerative braking, linear induction motor and their use, AC traction, diesel electric equipment, train lighting system, specific energy, factors affecting specific energy consumption

Illumination

Laws of illumination, lighting calculation, factory lighting, flood lighting, street lighting, different types of lamps, incandescent, fluorescent, vapor and CFL and their working, Glare and its remedy

UNIT-III

Introduction to Electric and Hybrid Vehicles

Block diagram explanation for electric and hybrid vehicles, Configuration and performance of electrical vehicles, traction motor characteristics, tractive effort, transmission requirement, vehicle performance and energy consumption

Course Outcomes: At the end of the course student will be able to List the various methods of electrical heating and welding to select an appropriate method 1. for a given application Describe the fundamental principles of electrolytic processes of extraction and refinement of 2. metals 3. Select and control electric motors for traction to achieve energy savings Analyze the characteristics of AC traction motors, train lighting system and compute specific 4. energy consumption Apply fundamentals of illumination to design lighting for a given application and outline the 5. transmission requirements of EVs **Course Outcomes Mapping with Program Outcomes & PSO**

Program Outcomes→ 1 2 3 4 5 6 7 8 9 10 11 12 **PSO**

07 Hours

07 Hours

07 Hours

06 Hours

04 Hours

	↓ Course Outcomes													1	2	
	EE3321-1.1	3	-	-	-	-	-	-	-	-	-	-	-	-	-	
	EE3321-1.2	3	-	-	-	-	-	2	-	-	-	-	-	-	-	
	EE3321-1.3	2	3	-	I	-	-	2	-	-	-	I	-	-	-	
	EE3321-1.4	2	3	-	I	-	-	-	-	-	-	I	-	-	1	
	EE3321-1.5	2	3	-	I	-	1	2	-	-	-	I	-	-	2	
											1: Lo	w 2:	Med	ium	3: Hi	gh
ТЕХ	TBOOKS:															
	1. E.O. Taylor, Rao V V L, "Utili	zatio	on O	f Ele	ctric	: Ene	ergy'	′, O	rient	Bla	ckswa	an Pv	t Ltd.	, Nev	<i>w</i> Del	hi,
	1 st Edition															
	2. Mehrdad, Ehsani, Yimin Ga	o, Sa	abas	tien.	E. C	Gay,	Ali E	Emad	di, "I	Mod	ern E	lectri	ic, Hy	/brid	Elect	ric
	and Fuel Cell Vechiles", CRC	: Pre	ss,2 ^r	nd ed	ition	,200	9						-			
	3. S.L.Uppal, "Electrical Power	", Kł	nann	a Pu	blica	tion	s, 3 ^r	^d edi	ition	, 200)9					
REF	ERENCE BOOKS:															
	1. Soni Gupta and Bhatnager,	"A (Cour	se in	Eleo	ctrica	al Po	wer	", D	hana	apat	Rai &	sons	5.200	8	

	IN	IDUSTRIAL HEA	TING	
		FF3333 1	Course Turne	DCC
	urse Code:	EE3322-1	Course Type	
Те	tal Tooching Hours	3:0:0:0		50±50
Dr		40+0+0 EE1001-2		50+50
Pr	Tooching Doportmo	EEIUUI-2	Electronice Engineering	
<u>Ca</u>			Electronics Engineering	
COL	rse Objectives:			
	To explain construction classifica	ation of industria	l furnaces	
	To know the different processes	of heat transfer i	n industrial furnaces	
	Explicate the heating capacity of	continuous furna		
4	 Discuss the methods of saving er 	nerav in industria	al furnace systems	
	5. Explain the operation and contro	l of industrial fur	naces	
	<u></u>			
		UNIT-I		
Ind	ustrial Heating Processes and Hea	t Transfer in Ind	lustrial Furnaces	07 Hours
Indu	ustrial Process Heating Furnaces, Cla	assifications of F	urnaces, Elements of Fur	nace Construction,
Hea	t Required for Load and Furnace, F	low of Heat Witl	nin the Charged Load, He	eat Transfer to the
Cha	rged Load Surface, Determining Fur	nace Gas Exit Te	mperature, Thermal Inter	action in Furnaces,
Ten	perature Uniformity, Turndown			
Hea	ting Capacity of Batch Furnaces			08 Hours
Def	nition of Heating Capacity, Effect of	Rate of Heat Libe	eration, Effect of Rate of H	leat Absorption by
the	Load, Effect of Load Arrangement, Ef	ffect of Load Thio	kness, Vertical Heating, B	atch Indirect-Fired
Furi	aces, Batch Furnace Heating Capaci	ty Practice, Conti	rolled Cooling in or After	Batch Furnaces
		UNIT-II		
Hea	ting Capacity of Continuous Furna	aces		07 Hours
Cor	tinuous Furnaces Compared to Bat	tch Furnaces, Co	ontinuous Dryers, Ovens,	and Furnaces for
<14	00 F (60 C), Continuous Midrang</td <th>ge Furnaces, 120</th> <td>00 to 1800 F (650 to 980</td> <td>C), Sintering and</td>	ge Furnaces, 120	00 to 1800 F (650 to 980	C), Sintering and
Pell	etizing Furnaces, Axial Continuous Fi	urnaces for Abov	/e 2000 F (1260 C), Contir in a Funne eee	nuous Furnaces for
190	5 to 2500 F (1038 to 1370 C), Contin		ing Furnaces	
Sav	ing Energy in Industrial Furnace S	ystems Joat Hoat Dictril	aution in a Eurnaca Eurna	U8 Hours
	t Lossos Hoat Saving in Direct Fire	d Low Tompora	turo Ovonc Soving Fuel	in Batch Euroacoc
Savi	ng Euclin Continuous Europees Effe	u LOW- Tempera	nule Ovens, Saving Tuer	ving Fuel in Reheat
Fur	aces Eyel Consumption Calculation		ion Data for Various Furr	ning Tuer III Kenear
Cor	servation by Heat Recovery from Elu	i, i dei Consumpt le Gases Energy	Costs of Pollution Contro	lace Types, Energy
0	servation by near necessery nomina	le Gases, Energy		1
		UNIT-III		
Ope	eration and Control of Industrial F	urnaces		10 Hours
Bur	her and Flame Types, Location, Flam	ne Fitting, Unwar	nted NOx Formation, Con	trols and Sensors-
Car	e, Location, Zones, Air/Fuel Ratio C	ontrol, Furnace	Pressure Control Turndo	wn Ratio, Furnace
Cor	trol Data Needs, Soaking Pit Heating	g Control, Unifor	mity Control in Forge Fur	naces, Continuous
Reh	eat Furnace Control.		, ,	
Cοι	rse Outcomes: At the end of the co	urse student will	be able to	
	L. Describe the heating process	and industrial f	urnace to outline the	construction and
	classification			

lΝ

2.	Describe batch furnaces to study the methods of heat transfer in industries
3.	Describe the operation of continuous furnaces to compare with the batch furnaces
4.	Analyze the methods of saving energy to calculate fuel consumption & energy costs in
	industrial furnace systems
5.	Describe the operation of industrial furnaces to control furnaces using sensors

Course Outcomes Mapping with Program Outcomes & PSO

Program Outcomes→	1	2	3	4	5	6	7	8	9	10	11	12	PS	O↓
↓ Course Outcomes													1	2
EE3322-1.1	3	-	-	-	-	-	-	-	-	-	-	-	-	-
EE3322-1.2	3	-	-	-	-	-	-	-	-	-	-	-	-	-
EE3322-1.3	3	-	-	-	-	-	-	-	I	-	-	-	-	1
EE3322-1.4	2	3	-	-	-	-	-	-	I	-	-	-	-	-
EE3322-1.5	3	-	-	-	-	-	-	-	-	-	-	-	-	-

1: Low 2: Medium 3: High

L		
	TEXTB	OOKS:
	1.	<u>W. Trinks</u> , <u>M. H. Mawhinney</u> , <u>R. A. Shannon</u> , <u>R. J. Reed</u> , <u>J. R. Garvey</u> , "Industrial Furnaces",
		Wiley, 6th Edition, 2004
	REFER	ENCE BOOKS:
	1.	Barrie Jenkins, Peter Mullinger, "Industrial and Process Furnaces: Principles, Design and
		Operation", Butterworth-Heinemann

Professional Elective Courses (Power System Stream)

	ELECTRICAL E	STIMATION A	ND COSTING	
Cou	rse Code:	EE2231-1	Course Type	PCC
Teac	hing Hours/Week (L: T: P: S)	3:0:0:0	Credits	03
Tota	l Teaching Hours	40+0+0	CIE + SEE Marks	50+50
Prer	equisite	EE2104-1		
	Teaching Department:	Electrical & E	lectronics Engineering	
Cours	se Objectives:			
1.	To discuss market survey, estimates,	purchase enq	uiries, tenders, comparati	ive statement and
	payment of bills and Indian electrici	ty act and som	e of the rules	
2.	To discuss distribution of energy in	a building, wir	ing and methods of wirir	ng, cables used in
	internal wiring, wiring accessories, f	ittings and fuse	es	
3.	To discuss design of lighting points	and its numbe	r, total load, sub-circuits,	size of conductor
	and different types of service mains	and estimatio	n of power circuits	
4.	To discuss estimation of overhead t	ransmission ar	d distribution system an	d its components
5.	To discuss main components of a su	ubstation, their	graphical representatior	n and preparation
	of single line diagram of a substatic	on		
		UNIT-I		
Princ	iples of Estimation			06 Hours
Introc	luction to Estimation and Costing, El	ectrical Schedu	ule, Catalogues, Market S	Survey and Source
Select	ion, Recording of Estimates, Determir	nation of Requi	red Quantity of Material, I	Labour Conditions,
Deter	mination of Cost Material and Lab	our, Continger	ncies, Overhead Charge	s, Profit, Purchase
Syster	m, Purchase Enquiry and Selection o	of Appropriate	Purchase Mode, Comp	arative Statement,
Purch	ase Orders, Payment Of Bills, Tender	Form, General	Idea about IE Rule, India	n Electricity(IE) Act
and I	Rules			
Wirin	9			10 Hours
Introc	luction, Distribution of energy in a	a Building, PV	'C Casing and Capping	, Conduit Wiring,
Desira	abilities of Wiring, Types of cables use	d in Internal W	/iring, Multi Strand Cable	s, Voltage Grading
and S	pecification of Cables, Main Switch a	and Distributio	n Board, Conduits and i	its accessories and
Fitting	gs, Lighting Accessories and Fittings, T	ypes of Fuses, S	Size of Fuse, Fuse Units, Ea	arthing Conductor,
Genei	ral rules for wiring, Design of Lighting	g Points, Numl	per of Points, Determina	tion of Total Load,
Numb	per of Sub –Circuits, Ratings Main Swi	tch and Distrib	ution Board and Size of (Conductor, Current
Densi	ty, Layout.			
		UNIT-II		
Servi	ce Mains			04 Hours
Introc	luction, Types, Estimation of Undergr	ound and Over	head Service Connection	าร
Desig	n and Estimation of Power Circuits			04 Hours
Introc	luction, Important Considerations re	egarding Moto	or Installation Wiring, Ir	nput Power, Input
Curre	nt to Motors, Rating of Cables, Ratin	g of Fuse, Size	of Condit, Distribution I	Board Main Switch
and S	tarter			
Estim	ation of Overhead Transmission an	d Distribution	n Lines	06 Hours
Cross	Arms, Pole Brackets and Clamps, (Guys and Stay	s, Conductors Configura	ation Spacing and
Cleara	ances, Span Lengths, Lightning Arres	tors, Phase Pla	ites, Danger Plates, Anti	Climbing Devices,
Bird G	Guards, Beads of Jumpers, Muffs, Poir	nts to be Consi	dered at the Time of Ere	ection of Overhead
Lines,	Erection of Supports, Setting of Sta	ys, Fixing of C	ross Arms, Fixing of Inst	ulators, Conductor
Erecti	on. Repairing and Jointing of Condu	ictors, Dead Ei	nd Clamps, Positioning o	of Conductors and
Attacl	nment to Insulators, Jumpers, Tee-Of	fs, Earthing of	Transmission Lines, Gua	rding of Overhead
Lines,	Clearances of Conductor from Groun	nd, Spacing Bet	ween Conductors, Impor	rtant Specifications

UNIT-III

Estimation of Substations

10 Hours Main Electrical connection, Graphical Symbols for Various Types of Apparatus and Circuit Elements on Substation main Connection Diagram, Single Line Diagram of Typical Substations, Equipment for Substation, Substation Auxiliaries Supply, Substation Earthing

Course Outcomes: At the end of the course student will be able to

1.	Discuss market survey, estimates, purchase enquiries, preparation of tenders, comparative statements and payment of bills to know about the process of estimation
2.	Discuss design of lighting points, total load, sub-circuits and size of conductor of conductor
	to estimate its cost
3.	Discuss the distribution of energy in a building, wiring and methods of wiring, cables used in
	internal wiring, wiring accessories and fittings, fuses and types of fuses to be installed in a
	building
4.	Discuss overhead transmission and distribution system and its components to estimate its
	cost
5	Discuss main components of a substation to prepare the single line diagram, earthing and
5.	and the strength of the substantian to propare the single line diagram, curtaining and
1	estimation of a substation

Course Outcomes Mapping with Program Outcomes & PSO

Program Outcomes→	1	2	3	4	5	6	7	8	9	10	11	12	PSO↓	
↓ Course Outcomes													1	2
EE2231-1.1	2	-	-	-	-	-	-	-	-	-	-	-	-	-
EE2231-1.2	2	2	-	-	-	-	-	-	-	-	-	-	-	-
EE2231-1.3	2	2	2	-	-	-	-	-	-	-	-	-	-	1
EE2231-1.4	2	2	-	-	-	-	-	-	-	-	-	-	-	-
EE2231-1.5	2	-	-	-	-	-	-	-	-	-	-	-	-	2
										1: Lo	w 2:	Med	ium	3: Hi

TEXTBOOKS: J. B. Gupta, "A Course in Electrical Installation Estimating and Costing", Katson Books, 9th

Edition, 2012 **REFERENCE BOOKS:**

1.

Raghavendra Rao, "Electrical Estimation and Electrical Wiring Systems", Sapna Book House, 1. 2014

		POWEF	R SYSTEM PLAN	NNING	
					T
C	Cour	se Code:	EE3231-1	Course Type	PCC
Т	eac	hing Hours/Week (L: T: P: S)	3:0:0:0	Credits	03
T	ota	Teaching Hours	40+0+0	CIE + SEE Marks	50+50
P	rere	equisite	EE2104-1		
		Teaching Department:	Electrical & El	ectronics Engineering	
Сс	ours	e Objectives:			
	1.	To discuss primary components	of power system	em planning namely load	forecasting,
	-	evaluation of energy resources			
	2.	To explain planning methodology	for optimum po	ower system expansion, vari	ous types of
	2	generation, transmission and distrib	oution		
	3.	Io discuss evaluation of operat	ing states of	transmission system, their	associated
	4	contingencies and determination of	the stability of	the system for worst case co	nditions
	4.	To discuss reliability criteria for	generation, tr	ansmission, distribution ar	id reliability
	-	evaluation and analysis.			
	5.	To discuss planning and implement	tation of electri	c –utility activities designed	to influence
		consumer uses of electricity			
De		r Suctom	UNIT-I		
PC Dc	wor	System Planning Principles Planni	na Process Pro	iact Planning Power Dovelo	nmont Power
Gr	owt	h National and Regional Planning Fr	ng Flocess, Flo	ces Planning, Fower Develop	Differit, FOWEr
Pc	0wc	Resources Planning Tools Power	Planning Org	anisation Regulation Scena	ario Planning
Fle	octri	city Forecasting: Load Requireme	nt System Lo	and Electricity Forecasting	Forecasting
Te	chn	iques Forecasting Modelling Spatial	- Load Forecast	ting Peak Load - Forecast Re	eactive – Load
Fo	reca	est. Unloading of a System	2000 1010000		
Pc	owe	r System Economics			08 Hours
Fir	nanc	ial Planning, Techno – Economic Vi	ability, Private F	Participation, Financial Analy	sis, Economic
Ar	nalvs	sis, Economic Characteristics – Genera	ation UNIT s, Tra	nsmission, Rural Electrificatio	on Investment,
То	tal S	System Analysis, Credit - Risk Assessr	nent, Optimum	Investment, Tariffs, Generati	on Expansion:
Ge	ener	ation Capacity and Energy, Genera	tion Mix, Conv	ventional Generation Resou	rces, Nuclear
En	ergy	, Clean Coal Technologies, Distribut	ted Power Gene	eration, Renovation and Mod	dernization of
Pc	wer	Plants			
			UNIT-II		
Tr	ans	mission Planning			04 Hours
Tra	ansr	nission Planning Criteria, Right – of	⁻ – Way, Netwo	ork Studies, High – Voltage	Transmission,
Сс	ondu	ictors, Sub – Stations, Power Grid, Re	active Power Pla	anning, Energy Storage	
Di	stril	bution			06 Hours
Di	strib	oution Deregulation, Planning Princip	les, Electricity –	Supply Rules, Criteria and S	tandards, Sub
	Tran	smission, Basic Network, Low Voltag	le Direct Curren	t Electricity, Upgradation of	Existing Lines
an	id Si	ub – Stations, Network Development	, System Studie	s, Urban Distribution, Rural	Electrification,
VI	llage	es Self – Sufficiency in Energy, Comm	unity Power, Se	If – Generation	
Re	liat	bility and Quality			05 Hours
Re	liab	ility Models, System Reliability, Relia	bility and Quali	ty Planning, Functional Zone	s, Generation
Ke	eliab	ility Planning Criteria, Transmission	n Reliability Cr	iteria, Distribution Reliabili	ty, Reliability
Ev	alua	tion, Grid Reliability, Reliability Targe	et, Security Requ	iirement, Disaster Manageme	ent, Quality of
วน	ipply	/, Reliability and Quality Roadmap.			

UNIT-III

04 Hours

Demand Response, Demand – Response Programmes, Demand– Response Technologies, Energy Efficiency, Energy - Economical Products, Efficient – Energy Users, Supply – Side Efficiency, Energy Audit

Electricity Market

Demand-Side Planning

05 Hours

Market Principles, Power Pool, Independent System Operator, Distribution System Operator, Power Balancing, Market Participants, Power Markets, Market Rules, Bidding, Trading, Settlement System, Locational Marginal Pricing, Transmission Charges, Merchant Power, Differential Electricity, Congestion Management, Ancillary Services, Hedging, Smart Power Market

Course Outcomes: At the end of the course student will be able to

- 1. Describe primary components of power system planning, load forecasting for forecasting of future load requirements of both demand and energy by deterministic and statistical techniques using forecasting tools
- 2. Apply planning methodology for optimum power system expansion, various types of generation, transmission and distribution
- 3. Evaluate the operating states of transmission system, their associated contingencies and determination of the stability of the system for worst case conditions
- 4. Describe reliability criteria for generation, transmission, distribution & reliability evaluation and analysis.
- 5. Describe the planning and implementation of electric-utility activities designed to influence consumer uses of electricity

Course Outcomes Mapping with Program Outcomes & PSO

Program Outcomes→	1	2	3	4	5	6	7	8	9	10	11	12	PS	O↓
↓ Course Outcomes													1	2
EE3231-1.1	3	-	-	-	-	-	-	-	-	-	-	-	-	1
EE3231-1.2	2	3	-	-	-	-	-	-	-	-	-	-	-	-
EE3231-1.3	2	2	3	-	-	-	-	-	-	-	-	-	-	-
EE3231-1.4	3	-	-	-	-	-	-	-	-	-	-	-	-	-
EE3231-1.5	3	-	-	-	-	-	-	-	-	-	-	-	-	-
		•	•			•	•			1: La	w 2:	Med	ium	3: Hi

TEXTBOOKS:

1. A. S. Pabla, "Electric Power Planning", McGraw Hill, 2nd edition 2016

REFERENCE BOOKS:

1. Hossein Seifi, Mohammad Sadegh Sepasian, "Electric Power System Planning- Issues, Algorithms and Solutions", Springer

SMART ELECTRIC GRID			
Course Code:	EE3232-1	Course Type	PCC
Teaching Hours/Week (L: T: P: S)	3:0:0:0	Credits	03
Total Teaching Hours	40+0+0	CIE + SEE Marks	50+50
Prerequisite	EE3102-1, EE3101-1		

Teaching Department: Electrical & Electronics Engineering

Cours	e Objectives:
1.	To study the Information and Communication Technologies related to smart grid
2.	To understand the Information security and different sensing and automation techniques
3.	To know the principles of Distribution management systems and transmission system
	operation for smart equipment
4.	To study the power quality issues and their management in smart grid
5.	To know the importance of micro grids and distributed energy resources
	UNIT-I
Smart	t Grid 02 Hours
Introd	uction, Overview of the technologies required for the Smart Grid
Inform	nation and Communication Technologies 10 Hours
Data	communication, Switching techniques, Communication channels, layered architecture and
proto	cols Ethernets, Wireless Lan, Bluetooth and Zigbee communication technology, Introduction,
Encryp	ption and decryption, Authentication, Digital signatures, Cyber security standards
Sensi	ng, Measurement, Control and Automation Technologies 04 Hours
Smart	metering - An overview of the hardware used, Communications infrastructure and protocols
for sm	nart metering.
	UNIT-II
Distri	bution automation equipment and Management systems 04 Hours
Introd	luction, Data sources and associated external systems, Modelling and analysis tools,
Trans	mission system operation 04 Hours
Introd	luction, Data sources, Energy management systems, Wide area applications
Powe	r electronics in Smart Grid 07 Hours
Introd	uction, Renewable energy generation, Photovoltaic systems, Wind, hydro and tidal energy
systen	ns, Fault current limiting
	UNIT-III
Powe	r Quality Issues in Smart Grid 09 Hours
Power	^r Quality issues, Power Quality Monitoring in smart Grid: Mitigation Methods, EMC Related
Phenc	omena in Smart Electrical Power Systems, Energy Storage Systems
Cours	e Outcomes: At the end of the course student will be able to
1.	Identify various Information and Communication Technologies to learn the usage in electric
	grid
2.	Illustrate the Information security and automation techniques for protection and automation
	of smart electric grid
3.	Describe the principles of Distribution management systems and transmission system
	operation for smart equipment
4.	Illustrate the interfacing of power electronics devices to learn integration renewable energy
	sources to smart grid
5.	Describe power quality issues, power conditioners and monitor system to monitor the health
	of smart electric grid
Cours	e Outcomes Mapping with Program Outcomes & PSO
	Program Outcomes → 1 2 3 4 5 6 7 8 9 10 11 12 PSO \downarrow

2

1

↓ Course Outcomes

		EE3232-1.1	2	3	-	-	-	1	-	-	-	-	-	-	-	-	
		EE3232-1.2	2	3	-	-	-	1	-	-	-	-	-	1	-	-	
		EE3232-1.3	3	-	-	-	-	-	-	-	-	-	-	1	-	-	
		EE3232-1.4	2	3	-	-	-	-	-	-	-	1	-	1	-	1	
		EE3232-1.5	2	3	-	-	-	1	-	-	-	-	-	1	-	-	
												1: Lo	w 2:	Med	ium	3: Hi	gh
TE	<u>XTB</u>	OOKS:															
	1.	Janaka Ekanayake, Kithsiri L	iyan	age,	"Sm	nart	Grid	- Te	chn	olog	y Ar	id Ap	plicat	tions'	", Joh	n Wil	ey
		& Sons, Ltd., Publication, 20)12														
RE	FER	ENCE BOOKS:															
	1.	Ryszard Strzelecki, Grzegorz	Ber	iysel	κ, ″Ρα	owei	⁻ Eleo	tror	nics i	n Sn	nart	Electi	rical E	nerg	y Net	work	s",
		Springer Publication, ISBN-	13: 9	781	8480	031	70,	2008	3								
	2.	Clark W. Gellings, "The Sma	art G	irid:	Enał	oling	g Ene	ergy	Effic	cienc	cy ar	nd De	eman	d Res	spon	se", P	Р.Е,
		The Fairmont Press, Inc.200	9														
	3.	James Momoh, "Smart Grie	d - I	Func	lame	enta	ls of	Des	sign	and	An	alysis	", IEE	E Pre	ess, A	A JOF	IN
		WILEY & SONS, INC., PUBLI	CAT	ION	- 20	12.											
	4.	Ali K., M.N. Marwali, Min Da	ai, "I	nteg	ratic	on o	f Gre	en a	and	Rene	ewał	ole Er	nergy	in El	ectrio	: Pow	/er
		Systems", Wiley.															
	5.	Clark W. Gellings, "The Sma	art G	rid:	Enab	oling	Ene	rgy	Effic	ienc	y an	d De	mano	d Res	pons	e", Cl	RC
		Press.															
	6.	Jean Claude Sabonnadiere,	Nou	iredi	ne H	ladjs	aid,	"Sm	art (Grids	s", W	'iley E	Black	vell.			
	7.	Tony Flick and Justin Moreh	nous	e, "S	ecur	ing	the S	Smai	rt Gr	id", I	Elsev	vier Ir	۱C.				

Г

	F/	ACTS and HVD	C	
Cour	rco Codo:	EE2222_1		
Teac	bing Hours/Week (I · T· P· S)	3.0.0.0	Course Type	03
Tota	I Teaching Hours	40+0+0	CIE + SEE Marks	50+50
Prer	equisite	EE3101-1. EE	2001-1. EE2102-1	
	Teaching Department:	Electrical & E	lectronics Engineering	
Cours	e Objectives:			
	-			
1.	To introduce FACTS controllers and	its associated	power electronics concept	S.
2.	To study various FACTS devices and	l their control		
3.	To know the various aspects of High	h Voltage DC c	onverters	
4.	To study control schemes of HVDC	converters and	the requirements of smoo	othing reactor.
		UNIT-I		
FACT	S-Introduction			05 Hours
Basic	s of power transmission networks - co	ontrol of power	flow in AC - transmission li	ne, Transmission,
interc	onnection, power flow and dynamic	stability consid	deration of a transmission	interconnection,
relativ	e importance of controllable param	neters. Classifi	cation of flexible AC tran	smission system
contro	ollers, Benefits of FACTS Controller – a	application of F	ACTS controllers in distrib	ution systems.
Shunt	t and Series Compensation			04 Hours
Objec	tives of Shunt Compensation, Midpo	pint voltage reg	gulation for line segmenta	tion, End of line
voltag	e support to prevent voltage instab	ility, Objectives	s of series Compensation,	Improvement of
Transi	ent stability, Power oscillation dampi	ng.		
Varia	ble Impedance FACTS controllers			06 Hours
Static	Var compensator: Methods of contro	llable Var gene	ration, Analysis of SVC – Po	ower angle curve
with S	SVC, Configuration of SVC- FC-TCR, T	SC-TCR, SVC C	Controller – Block diagram	i of SVC Voltage
Contr	oller, Susceptence Regulator, modelir	ng of SVC – app	olications of SVC.	
		UNIT-II		
Thyris	stor and GTO Controlled Series Cap	acitor		05 Hours
Introd	luction - basic concepts of controlle	ed series comp	ensation -operation of TC	SC - analysis of
TCSC-	control of TCSC - GTO thyristor	controlled seri	ies capacitor (GCSC) - m	itigation of sub
synch	ronous resonance with TCSC and GCS	SC - applicatior	ns of TCSC	5
VSC E	Based FACTS Controllers			05 Hours
Static	Synchronous Compensator (STATCO	M): Introductio	on - principle of operation	of STATCOM - a
simpli	fied analysis of a three phase six puls	se STATCOM -	analysis of a six pulse VSC	using switching
functi	ons - multi-pulse converters. Contro	ol of type 2 co	onverters - control of typ	e I Converters -
multil	evel voltage source converters - appl	ications of STA	TCOM.	
SSSC	and UPFC			05 Hours
:SSSC	-operation of SSSC , control of powe	er flow – Descr	iption, modeling of SSSC,	control of SSSC
using	Type-2 and Type-1 VSC,			
Introd	luction to Unified Power Flow Contro	oller (UPFC) an	nd Interline Power Flow Co	ontroller (IPFC) –
Basic	operating principles.			
		UNIT-III		
	<u>Converters:</u>			05 Hours
	ower Transmission Technology: Introd	auction, compa	arison with AC transmissio	n, application of
DC tra	ansmission. Introduction to Line com	imutated conve	erter, choice of converter of	configuration for
any p	uise number, analysis of 6 pulse Gi	d three and the	priverter without overlap,	tion modes
	tance. Analysis of converter in two an	iu three, and th	ree and rour valve conduct	
Contr	of of Converters and HVDC link:			05 Hours

DC link control principles, converter control characteristics, firing angle control, current and extinction angle control, Starting and stopping of DC link, Power control, Frequency control, Reactive power control, Tap changer control, Emergency control and Telecommunication requirements.

Course Outcomes: At the end of the course student will be able to

1.	Describe various FACTS controllers required for control of active and reactive power flow in
	a transmission network.
2.	Design Shunt compensation schemes for the improvement of transient stability and
	damping of power oscillations
3.	Analyze the working of static shunt compensation schemes using SVC and STATCOM for
	voltage and reactive power control
4.	Analyze various series compensation schemes using variable impedance and VSC based
	series FACTS controllers for controlling / routing the power through the desired
	transmission paths.
5.	Analyze different converter circuits configuration to select best converter configuration for
	HVDC power transmission

Course Outcomes Mapping with Program Outcomes & PSO

Program Outcomes→	1	2	3	4	5	6	7	8	9	10	11	12	PS	O↓
↓ Course Outcomes													1	2
EE3233-1.1	3	3	-	-	-	-	-	-	-	-	-	-1	-	-
EE3233-1.2	3	3	-	-	3	-	-	-	-	-	-	1	-	-
EE3233-1.3	3	3	-	-	3	-	-	-	-	-	-	1	-	-
EE3233-1.4	3	3	-	-	3	-	-	-	-	-	-	1	-	-
EE3233-1.5	3	3	-	-	-	-	-	-	-	-	-	1	-	-
										1	L: Lo	w 2: I	Mediu	im 3
BOOKS:														

1.	K. R. Padiyar, "HVDC Power Transmission Systems", New Age International, 2012.
2.	K.R Padiyar, "FACTS Controllers in Power Transmission and Distribution", New Age
	International, 2007.
3.	E.W.Kimbark "Direct Current Transmission", Vol.1, Wiley Inter-Science, London, 2006.
REFER	ENCE BOOKS:
1	Arrilaga, "High Voltage Direct Current Transmission", The Institute of Engineering and
1.	Technology, 2ndEdition, 2007.
2.	S Kamakshaiah and V Kamaraju, "HVDC Transmission", TMH, 2011.
3.	Narain G. Hingorani, Laszlo Gyugyi, "Understanding FACTS", IEEE Publications, US, 2000.
E RESC	DURCES:
1.	https://nptel.ac.in/courses/108107114

2. https://nptel.ac.in/courses/108106160

COMPUTER TECHN	IQUES IN POWER	SYSTEM ANALYSIS	
Course Code:	EE3234-1	Course Type:	PCC
Teaching Hours/Week (L: T: P: S):	3:0:2:0	Credits:	04
Total Teaching Hours:	40+0+0	CIE + SEE Marks:	50+50
Prerequisite	EE2005-1, EE21	04-1, EE2102-1, EE3102-1	

	Teaching Department: Electrical & Electronics Engineering	
	Course Objectives:	
1.	To introduce the concepts of network topology and graph theory	
2.	To Formulate the Y Bus and Z Bus	
3.	To Formulate and solve load flow problem of a power system network.	
4.	To justify the need of Economic operation of power system	
	UNIT-I	
Netw	ork Topology and Matrices	15 Hours
Introd	luction, Elementary graph theory –oriented graph, tree, co-tree, basic cut-sets,	basic loops;
Incide	nce matrices –Element-node, Bus incidence, Branch – path, Basic cut-set, Augmer	nted cut-set,
Basic	loop and Augmented loop; Primitive network – impedance form and admittance fo	orm.
Forma	ation of Y_{BUS} – by method of inspection, by method of singular transformation (Y_{BUS}	= A' [y] A)
Formu	ilation of \mathcal{L}_{Bus} building algorithm without mutual coupling between the elements	by addition
of link	and addition of branch. Illustrative examples.	
	UNIT-II	4 - 11
Load		15 Hours
Introd	luction, Power flow equations, Classification of buses, Data for load flow, Gauss-Sel	idel Method
– Alg	orithm and flow chart for PQ and PV buses (numerical problem for one iter	ation only),
Accele	eration of convergence; Newton Raphson Method – Algorithm and flow chart for N	R method in
polar	coordinates (numerical problem for one iteration only); Algorithm for Fast Decouple	ed load flow
metho	bd, Comparison of Load Flow Methods.	
	UNIT-III	
Econo	omic Operation of Power system	07 Hours
Introd	luction, Performance curves, Economic generation scheduling neglecting losses an	d generator
limits,	Economic generation scheduling including generator limits and neglecting loss	es; Iterative
techni	iques; Economic Dispatch including transmission losses – approximate penalty fac	tor, iterative
techni	ique for solution of economic dispatch with losses; Derivation of transmission loss t	formula;
Unit C	Commitment	03 Hours
Introd	luction, Constraints and unit commitment solution by prior list method and dyna	mic forward
DP ap	proach (Flow chart and Algorithm only)	
Cours	e Outcomes: At the end of the course student will be able to	
1.	Apply graph theory concepts to form bus, cut set and loop incidence matrices.	
2.	Build Y _{bus} and Z _{bus} to model the connected power system network.	
3.	Apply, compare and analyze various load flow techniques to compute the p	parameters
	affecting the power flow at all buses & line flows.	
4.	Apply various numerical integration techniques to predict system stability.	
5.	Prepare generation scheduling to operate power system economically.	
Cours	e Outcomes Mapping with Program Outcomes & PSO	

Program Outcomes→	1	2	3	4	5	6	7	8	9	10	11	12	PS	O↓
↓ Course Outcomes													1	2
EE3234-1-1.1	З	3	I	I	З	-	I	-	2	2	1	1	-	2
EE3234-1-1.2	3	3	-	-	3	-	-	-	2	2	-	1	-	2
EE3234-1-1.3	3	3	3	1	3	-	-	-	2	2	-	1	-	2

		EE3234-1-1.4	3	3	3		3	1	-	-	2	2	-	1	-	2	
		EE3234-1-1.5	3	3	3	1	3	-	-	-	2	2	-	1	-	2	
												1	l: Lov	w 2: I	Mediun	n 3: Hig	jh
T	EXTBOO	KS:															
	1.	Stag, G. W., and EI-A	biad	l, A.	Η, "	Com	put	er N	1eth	ods	in Po	ower	Syste	em A	nalysis"	McGra	W
		Hill International Stu	dent	t Edi	tion.	196	68										
	2.	Nagrath, I. J., and Ko	thar	i, "M	lode	rn P	owe	r Sys	stem	n Ana	alysi	s", D.	P., -	ГMH,	4th edit	ion,	
		2011.															
R	EFEREN	CE BOOKS:															
	1.	Haadi Sadat, "Power	Syst	em	Anal	ysis'	', -T	MH	, 3rc	l edi	tion	, 201	0.				
	2.	Singh, L. P., "Advance	ed P	owe	r Sys	tem	Ana	alysi	s an	d Dy	nan	nics",	New	Acac	demic 20	012	
Ε	Books	/ MOOCs/ NPTEL															
	1.	NPTEL Course on C	Com	put	er A	idec	l Po	wer	Sys	stem	ו An	alysi	s, Pro	of. Bi	iswarup	Das, I	ίΤ
		Roorkee										2					

	HIGH	VOLTAGE ENGI	NEERING				
Cour	rse Code:	EE3331-1	Course Type	PCC			
Теас	hing Hours/Week (L: T: P: S)	3:0:0:0	Credits	03			
Tota	I Teaching Hours	40+0+0	CIE + SEE Marks	50+50			
Prer	Prerequisite EE2104-1, EE2102-1, EE2001-1						
	Teaching Departme	nt: Electrical &	Electronics Engineering				
Cours	e Objectives:						
_							
1.	To introduce the concept of high	voltage technol	ogy				
2.	To familiarize with concept of HV	/ breakdown phe	nomena of dielectrics				
3.	To study methods of generation	of HVAC and HV	DC voltages and concept of	of generation of			

	impulse voltage and current
4.	To introduce the concept of measurement of high voltages.
5.	To study the non-destructive insulation techniques and high voltage tests on electrical
	apparatus.
	UNIT-I
Intro	duction 05 Hour
Introc	duction to HV technology, advantages of transmitting electrical power at high voltages, need
gener	rating high voltages in laboratory. Important applications of high voltage.
Types	s of HV insulators, Cables and bushings,
Break	down Phenomena 10 Hour
catego gaseo Strear negat	ory. Gaseous dielectrics: Ionizations: primary and secondary ionization processes. Criteria bus insulation breakdown based on Townsend's theory. Limitations of Townsend's theory breakdown in non-uniform fields, Corona discharges. Breakdown in elective gasses. Paschen's law and its significance, Time lags in breakdown
	UNIT-II
Gene	ration Of HV AC And DC Voltage 08 Hour
HV A	C-HV transformer; Need for cascade connection and working of transformers units connect
in cas	cade. Series resonant circuit principle of operation and advantages. Tesla coil. HV DC- volta
doubl	ler circuit. Calculation of high voltage regulation, ripple and optimum number of stages
minim	num voltage drop Cock Croft- Walton type high voltage DC set
Gene	ration of Impulse Voltage and Current 07 Hour
Introc	duction to standard lightning and switching impulse voltages. Analysis of single stage impu
gener	ator-expression for output impulse voltage. Multistage impulse generator - working of M
impul	se, rating of impulse generator, components of multistage impulse generator. Triggering
circuit	ts Generation of switching impulse voltage
encar	S. Ceneration of Switching Impaise Voltage.
	UNIT-III
Meas	urement of High Voltages 08 Hou
Electr	ostatic voltmeter principle, construction and limitation. Chubb and Fortescue method for HV
measu	urement. Generating voltmeter Principle, construction. Series resistance micro ammeter for
DC m	easurements. Standard sphere gap measurements of HV AC, HV DC & impulse voltage, Fact
affect	ing the measurements, Potential dividers, capacitance dividers, mixed Rc potential dividers,
Surge	e measurement: 02 Hour
Klyda	nograph and magnetic links, Introduction to partial discharges (PD), PD measurement.
Course	- Outcomen At the and of the course student will be able to
Cours	se Outcomes: At the end of the course student will be able to
1	Describe the basics of HV technology and analyze the breakdown phenomenon to
1.	understand the properties of gaseous dielectrics
2.	Analyze breakdown mechanisms in solid & liquid dielectrics, high AC and DC voltage
	generation to compute parameters of voltage doubler circuit.
3.	Describe the generation of impulse voltages and currents needed to test the insulting
	medium.
4.	Analyze high voltage and current measurement techniques to study the factors affecting
	the measurement.
5.	Describe non-destructive insulation testing methods to study testing of high voltage
	apparatus.

Course Outcomes Mapping with Program Outcomes & PSO																
	Program Outcomes→	1	2	3	4	5	6	7	8	9	10	11	12	PSO↓		
	↓ Course Outcomes													1	2	
	EE3331-1.1	З	3	-	-	I	-	-	-	-	-	-				
	EE3331-1.2	З	3	-	-	I	-	-	-	-	-	-	-			
	EE3331-1.3	3	3	-	-	I	-	-	-	-	-	-	-			
	EE3331-1.4	3	3	-	-	I	-	-	-	-	-	-	-			
	EE3331-1.5	3	3	-	-	-	-	-	-	-	-	-	-			
TEXT	BOOKS:															
1	. M S Naidu & V Kamaraju	, "H	igh '	Volta	age	Engi	inee	ring	", 4t	h Ec	lition	, THN	/, 200	08		
2	. C L Wadhwa, "High Volta	age	Eng	inee	ring	", Ne	ew A	Age	Inte	rnat	ional	Priva	te lin	nited,	3rd	
	edition, 2010.															
REFE	RENCE BOOKS:															
1	E Kuffel & W S Zeengl , "High Voltage Engineering Fundamentals", 2nd edition, Elsevier,															
	press, 2005.															

	POWER SYST	EM DYNAMICS	AND STABILITY						
Cou	rse Code:	EE4331-1	Course Type	PCC					
Teac	hing Hours/Week (L: T: P: S)	3:0:0:0	Credits	03					
Tota	l Teaching Hours	40+0+0	CIE + SEE Marks	50+50					
Prerequisite EE3102-1, EE2001-1									
	Teaching Department: Electrical & Electronics Engineering								
Cours	se Objectives:								
	-								
1.	To understand the system model	ling and dynami	cs of synchronous generate	or					
2.	To model the load connected to	power system ar	nd analyze its small signal s	stability					
3.	To introduce various excitation a	nd prime mover	controllers						
4.	To model various prime movers	•							
5.	5. To carry out transient analysis of power system and understand the importance of stability								
	controllers								
	•	UNIT-I							
Syste	m Modeling and Dynamics of Sy	nchronous Gen	erator	08 Hours					

Basic concepts, Review of classical methods, modeling of synchronous machine, Swing equation,

Ø

Park's transformation – Park's voltage equation, Park's mechanical equation (torque). Applications– (a) Voltage build up in synchronous machine, and (b) Symmetrical short circuit of generator. Solution for transient analysis. Operational impedance. Relationship between Tdo' and Tdo"
Load Modeling 07 Hours
Introduction, Approaches – Polynomial model and Exponential model. Small Signal Angle Stability:
Small signal angle stability with SMIB system, detailes model of SMIB
UNIT-II
Excitation and Prime Mover Controllers08 Hours
Introduction, Types of excitation, AVR with and without ESS, TGR, Amplifier PSS, Static exciters
Modeling of Prime Movers 08 Hours
Introduction, Major components, Block diagram, Hydraulic turbine, Steam turbine
UNIT-III
Transient Stability Analysis 09 Hours
Simulation for Transient stability Evaluation, Transient stability controllers
Course Outcomes: At the end of the course student will be able to
1. Model the synchronous generator for understanding its dynamics
2. Apply techniques to model the load to understand the dynamics of load and SMIB system
3. Describe the concept of excitation and prime mover controllers used in the voltage
regulation
4. Describe the various components to model the prime mover
5. Perform the transient stability analysis to understand the importance of stability controller

Course Outcomes Mapping with Program Outcomes & PSO

_			1	1	1	1	1		1	1					
	Program Outcomes→	1	2	3	4	5	6	7	8	9	10	11	12	PS	O↓
\downarrow (Course Outcomes													1	2
	EE4331-1.1	3	-	-	-	2	-	-	-	-	-	-	-	-	3
	EE4331-1.2	2	3	-	-	2	-	-	-	-	-	-	-	-	1
	EE4331-1.3	3	-	-	-	-	-	-	-	-	-	-	-	-	-
	EE4331-1.4	3	-	-	-	-	-	-	-	-	-	-	-	-	-
	EE4331-1.5	2	2	3	-	-	-	-	-	-	-	-	-	-	2
											1: Lo	w 2:	Med	ium	3: Hic
EXT	BOOKS:														
1.	Padiyar K.R., "Power System	n Dy	nam	ics, S	Stabi	lity a	nd (Cont	trol",	BPE	3 Pub	licatio	ons, 2	2002.	
2.	Prabha Kunder, "Power Sys	tem	Stak	oility	and	Cor	ntrol	″,Mc	Grav	w- H	lill Pu	ıblish	ing C	Comp	any, 1
	Edition, 2006														
EFE	RENCE BOOKS:														
1.	Marija Ilic; John Zaborszky,	Dyna	amic	s an	d Co	ntro	lofl	Larg	e Ele	ctric	Pow	er Sy	stem	s", IE	EE Pre
	and John Wiley & Sons, Inc	.200	0												
2.	Paul M. Anderson and A. A.	Fou	ad, "I	Powe	er Sy	sten	n Co	ntro	lanc	l Sta	bility	Revis	sed P	rintin	ig" Joł
	Wiley & Sons, Inc. 2002														
3.	Arthur Bergen, "Power Syste	em /	Analy	vsis '	'. See	conc	l Edi	tion	Pea	rsor	ו Indi	a 200)2		

	REACTIVE	POWER MAN	AGEMENT							
Cour	rse Code	FF4332-1		PCC						
Teac	hing Hours/Week (I · T· P· S)	3.0.0.0	Credits	03						
Tota	I Teaching Hours	40+0+0	CIE + SEE Marks	50+50						
Prer	equisite	EE2005-1, EE	2104-1, EE3102-1							
	Teaching Department:	Electrical & E	lectronics Engineering							
Cours	e Objectives:									
1	To introduce the concept of reactive	e nower its der	peration and absorption	in nower system						
2	To illustrate various methods of vol	tage or reactive	power control	in power system						
3. To demonstrate the principle of transmission system compensation, Effect of harmonics on										
reactive power control										
4.	To comprehend the concept of resc	onance, shunt c	apacitors and filters							
5.	To explain the reactive power coord	dination technic	lues							
		UNIT-I								
Introd	duction			08 Hours						
Impor	tance of reactive power control in	Electrical Powe	er System, Generation a	and absorption of						
React	ive power, Relation between Voltage,	Power and Rea	active power at a node							
Meth	ods of voltage or Reactive power c	ontrol		08 Hours						
Shuht	reactor, Shuht capacitor, Series capa	citor, Synchron	ous condenser, Static VA	AR system						
		UNIT-II								
Trans	mission system compensation			08 Hours						
Princi	ples of Transmission system compe	nsation, Effect	of Harmonics on react	ive power control:						
Harm	onic sources									
Harm	onics			07 Hours						
Reson	ance, Shunt capacitors and Filters, Te	elephonic Interf	erence							
Deset	••••••••••••••••••••••••••••••••••••••	UNIT-III		00.11						
React	ive power coordination	hanafita Baaa	tive newer dispatch and	09 Hours						
React	ive power management, mansmission	i Denenits, Reac	live power dispatch and	equipment impact						
Cours	e Outcomes: At the end of the cours	se student will k	be able to							
1.	Describe the importance of reactive	e power, its gen	eration and absorption i	in power system						
2.	Analyze methods utilized to control	l the voltage or	reactive power							
3.	Describe the compensation techni	iques and effe	ct of harmonics on rea	ictive power in a						
	transmission system									
4.	Analyse effect of shunt capacitors, fi	ilters and telepl	nonic interference on tra	nsmission system						
5.	Describe the reactive power coord	lination technic	ques to manage the rea	active power in a						
	system									

Course Outcomes Mapping with Program Outcomes & PSO

	Program Outcomes→	1	2	3	4	5	6	7	8	9	10	11	12	PS	O↓
↓ C	ourse Outcomes													1	2
	EE4332-1.1	3	-	-	-	-	-	-	-	-	-	-	-	-	-
	EE4332-1.2	2	3	-	-	-	-	-	-	-	-	-	-	-	1
	EE4332-1.3	3	-	-	-	-	-	-	-	-	-	-	-	-	1
	EE4332-1.4	2	3	-	-	-	-	-	-	-	_	-	-	-	-
	EE3332-1.5	3	-	-	-	-	-	-	-	-	-	-	-	-	-
1: Lov	1: Low 2: Medium 3: High														
ЕХТВ	OOKS:														
1.	T.J.E. Miller,"Reactive Power	^r Cor	ntrol	in E	lectr	ic Sy	'ster	ns",	Johr	n Wil	ey sc	ons N	Y, 19	82	
2.	B.M.Weedy, "Electric Power	Syst	tems	s, Joł	n W	/iley	Son	s″, 2	nd e	ditic	on, 20)12			
REFERENCE BOOKS:															
1.	Prabha Kundur, "Power Sys	tem	Stab	oility	and	Con	troľ	", Ta	ita N	/Ic G	raw-l	Hill,1 ^s	ec	litior	,2006
2.	IEEE Guide on Harmonic	cont	rol	& R	eact	ive (com	pens	satic	n o	f Pov	wer o	conve	rters	– IE
	student 519 – 1981														

-	POWER SYS	TEM OPERATIO	N & CONTROL						
		FF 4222 1							
Cou	rse Code:	EE4333-1	Course Type	PCC					
Teac	ching Hours/Week (L: 1: P: S)	3:0:0:0		03					
lota	I leaching Hours			50+50					
Prer	equisite Trackium Demontroom		2104-1, EE2001-1, EE31	02-1					
Course	leaching Departmer	it: Electrical & E	ectronics Engineering						
	Se Objectives:	Conton and CCA	DA quetare in Devier quet						
	Explain the importance of Control	Concration Con	trol cystem in Power syste	em operation.					
<u> </u>	Study the operation of Automatic	Generation Con	tion system in Power syste	em.					
control									
Control A Understand the importance and study of various methods of Unit									
<u>т.</u> 5	4. Onderstand the importance and study of various methods of Offic								
<u> </u>			en security and continger						
		WFR CVCTEMC							
Introc	Austion to SCADA control contor di	aital computer of	onfiguration automatic g	operation control					
area	control error operation without cer	ntral computers	expression for tia-line fl	and frequency					
deviat	tion parallel operation of generator	rs area lumped o	tynamic model						
	MATIC GENERATION CONTROL	s, area lampea e		08 Hours					
Autor	matic voltage regulator automatic	load frequency	control AVR control loo	ons of generators					
perfo	rmance of AVR. ALFC of single area	systems, concer	of control area, multi-ar	rea systems. POOL					
opera	tion-two area systems.	ojotoo, comeep							
000.0									
		UNIT-II							
CONT	ROL OF VOLTAGE AND REACTIV	E POWER		08 Hours					
Introc	luction, generation and absorptior	n of reactive po	wer, relation between vo	Itage, power and					
reactiv	ve power at a node, single machi	ne infinite bus	systems, methods of vol	tage control, sub					
synch	ronous resonance, voltage stability,	voltage collapse	2.	•					
UNIT	COMMITMENT			07 Hours					
Stater	ment of the problem, need and	d importance c	of Unit commitment, m	ethods- dynamic					
progr	amming method, constraints, spinn	ing reserve, and	examples.						
		UNIT-III							
POW	ER SYSTEM SECURITY	UNIT-III		09 Hours					
POW Factor	ER SYSTEM SECURITY rs affecting power system security,	UNIT-III power system o	contingency analysis, dete	09 Hours ection of network					
POW Factor proble	ER SYSTEM SECURITY rs affecting power system security, ems, network sensitivity methods, c	UNIT-III power system of alculation of net	contingency analysis, dete work sensitivity factor, co	09 Hours ection of network ntingency ranking					
POW Factor proble	ER SYSTEM SECURITY rs affecting power system security, ems, network sensitivity methods, c	UNIT-III power system of alculation of net	contingency analysis, deto work sensitivity factor, co	09 Hours ection of network ntingency ranking					
POW Factor proble	ER SYSTEM SECURITY rs affecting power system security, ems, network sensitivity methods, c e Outcomes: At the end of the cou	UNIT-III power system of alculation of net urse student will	contingency analysis, dete work sensitivity factor, co be able to	09 Hours ection of network ntingency ranking					
POW Factor proble Cours 1.	ER SYSTEM SECURITY rs affecting power system security, ems, network sensitivity methods, c se Outcomes: At the end of the cou Describe the control Centre opera	UNIT-III power system of alculation of net urse student will ation of power sy	contingency analysis, deto work sensitivity factor, co be able to vstem to understand the t	09 Hours ection of network ntingency ranking ie line power					
POW Factor proble Cours 1.	ER SYSTEM SECURITY rs affecting power system security, ems, network sensitivity methods, c se Outcomes: At the end of the cou Describe the control Centre opera flow and frequency deviation	UNIT-III power system of alculation of net urse student will ation of power sy	contingency analysis, dete work sensitivity factor, co be able to rstem to understand the t	09 Hours ection of network ntingency ranking ie line power					
POW Factor proble Cours 1. 2.	ER SYSTEM SECURITY rs affecting power system security, ems, network sensitivity methods, c Se Outcomes: At the end of the cou Describe the control Centre opera flow and frequency deviation Analyze the effect of Automatic V	UNIT-III power system of alculation of net urse student will ation of power sy oltage Regulator	contingency analysis, deto work sensitivity factor, co be able to vstem to understand the t r and Automatic Generatio	09 Hours ection of network ntingency ranking ie line power on Control on					
POW Factor proble Cours 1. 2.	ER SYSTEM SECURITY rs affecting power system security, ems, network sensitivity methods, c E Outcomes: At the end of the cou Describe the control Centre opera flow and frequency deviation Analyze the effect of Automatic V Load Frequency Control of single	UNIT-III power system of alculation of net urse student will ation of power sy foltage Regulator and two area sys	contingency analysis, dete work sensitivity factor, co be able to vstem to understand the t r and Automatic Generations	09 Hours ection of network ntingency ranking ie line power on Control on					
POW Factor proble Cours 1. 2. 3.	ER SYSTEM SECURITY rs affecting power system security, ems, network sensitivity methods, c Se Outcomes: At the end of the cou Describe the control Centre opera flow and frequency deviation Analyze the effect of Automatic V Load Frequency Control of single Analyze the effect of reactive pow	UNIT-III power system of alculation of net urse student will ation of power sy foltage Regulator and two area system ver control on Vo	contingency analysis, dete work sensitivity factor, co be able to vstem to understand the t r and Automatic Generations stems	09 Hours ection of network ntingency ranking ie line power on Control on e collapse at a					
POW Factor proble Cours 1. 2. 3.	ER SYSTEM SECURITY rs affecting power system security, ems, network sensitivity methods, c Se Outcomes: At the end of the cou Describe the control Centre opera flow and frequency deviation Analyze the effect of Automatic V Load Frequency Control of single Analyze the effect of reactive pow load bus	UNIT-III power system of alculation of net urse student will ation of power sy foltage Regulator and two area system ver control on Vo	contingency analysis, dete work sensitivity factor, co be able to ystem to understand the t r and Automatic Generations stems oltage stability and voltage	09 Hours ection of network ntingency ranking ie line power on Control on e collapse at a					
POW Factor proble Cours 1. 2. 3. 4.	ER SYSTEM SECURITY rs affecting power system security, ems, network sensitivity methods, c Se Outcomes: At the end of the cou Describe the control Centre opera flow and frequency deviation Analyze the effect of Automatic V Load Frequency Control of single Analyze the effect of reactive pow load bus Apply various methods unit comm	UNIT-III power system of alculation of net urse student will ation of power sy foltage Regulator and two area system ver control on Voc mitment for optim	contingency analysis, dete work sensitivity factor, co be able to vstem to understand the t r and Automatic Generation stems oltage stability and voltage	09 Hours ection of network ntingency ranking ie line power on Control on e collapse at a tion systems					
POW Factor proble Course 1. 2. 3. 4. 5.	ER SYSTEM SECURITY rs affecting power system security, ems, network sensitivity methods, c Se Outcomes: At the end of the cou Describe the control Centre opera flow and frequency deviation Analyze the effect of Automatic V Load Frequency Control of single Analyze the effect of reactive pow load bus Apply various methods unit comn Analyze the various factors affecti	UNIT-III power system of alculation of net urse student will ation of power sy foltage Regulator and two area system ver control on Voc nitment for optiming the security p	contingency analysis, dete work sensitivity factor, con be able to ystem to understand the t r and Automatic Generation stems oltage stability and voltage mum operation of generation power system for continge	09 Hours ection of network ntingency ranking ie line power on Control on e collapse at a tion systems ency ranking.					
POW Factor proble Course 1. 2. 3. 4. 5. Course	ER SYSTEM SECURITY rs affecting power system security, ems, network sensitivity methods, c Se Outcomes: At the end of the cou Describe the control Centre opera flow and frequency deviation Analyze the effect of Automatic V Load Frequency Control of single Analyze the effect of reactive pow load bus Apply various methods unit comm Analyze the various factors affecti Se Outcomes Mapping with Progr	UNIT-III power system of alculation of net urse student will ation of power sy oltage Regulator and two area system ver control on Voc nitment for optiming the security pro- tram Outcomes 8	contingency analysis, dete work sensitivity factor, con be able to vstem to understand the t r and Automatic Generations oftage stability and voltage num operation of generation oower system for continge & PSO	09 Hours ection of network ntingency ranking ie line power on Control on e collapse at a tion systems ency ranking.					
POW Factor proble 1. 2. 3. 4. 5. Cours	ER SYSTEM SECURITY rs affecting power system security, ems, network sensitivity methods, c Se Outcomes: At the end of the cou Describe the control Centre opera flow and frequency deviation Analyze the effect of Automatic V Load Frequency Control of single Analyze the effect of reactive pow load bus Apply various methods unit comm Analyze the various factors affecti Se Outcomes Mapping with Progr	UNIT-III power system of alculation of net urse student will ation of power sy foltage Regulator and two area system ver control on Voc nitment for optiming the security pro- tam Outcomes &	contingency analysis, dete work sensitivity factor, con be able to rstem to understand the t r and Automatic Generation stems oltage stability and voltage num operation of generation oower system for continge & PSO	09 Hours ection of network ntingency ranking ie line power on Control on e collapse at a tion systems ency ranking.					

N)

\downarrow	Course Outcomes													1	2	
	EE4333-1.1	З	3	-	-	-	-	-	-	I	-	-	1	-	-	
	EE4333-1.2	3	3	-	-	-	-	-	-	I	-	-	1	-	-	
	EE4333-1.3	3	3	-	-	-	-	-	-	I	-	-	1	-	-	
	EE4333-1.4	3	3	-	-	-	-	-	-	-	-	-	1	-	-	
	EE4333-1.5	3	3	-	-	-	-	-	-	I	-	-	1	-	-	
											1: Lo	w 2:	Med	ium	3: Hi	gh
TEXT	BOOKS:															
1.	Wood & B A J F Woollenbe	rg, "	Pow	er ge	ener	atior	n, op	erat	ion	and	contr	ol"- J	lohn	Wiley	/ and	
	Sons, 2nd edition,1996															
2.	B. M. Weedy, "Electric Powe	r Sy	stem	ns" W	/iley	-Bla	ckwe	ell pi	ublic	atio	n, 5th	n edit	ion, 2	2012.		
3.	P.S.R.Murthy , "Power Syste	ms (Dper	atior	n an	d Co	ntro	ol", T	ΜH							
REFE	RENCE BOOKS:															
1.	K Uma Rao, "Power System:	Ор	erati	on 8	ι Co	ntro	l", W	/iley	Indi	a, 20)12					
2.	Nagrath and Kothari, "Mod	ern I	Powe	er Sy	sten	ו An	alysi	is", 4	TH e	editi	on, N	1HE, 2	2011			
3.	W.D Stevenson, "Elements of	W.D Stevenson, "Elements of Power System Analysis", 4TH edition, TMH, 2001.														
E Boo	oks / MOOCs/ NPTEL															
1.	https://nptel.ac.in/courses/2	L081	.0104	40												

Professional Elective Courses (Microelectronics Stream)

	ARM SY		CIURE				
			a =	Daa			
Cou	Irse Code:	EE3241-1	Course Type	PCC			
Tea	ching Hours/ week (L: 1: P: S)	3:0:0:0		03			
101	al leaching Hours	40+0+0	CIE + SEE Marks	50+50			
Pre	requisite Too ching Donoutmout	EE2003-1					
<u> </u>	reaching Department:	Electrical & Ele	ectronics Engineering				
Cou	se Objectives:						
1	To introduce the architecture interr	al functioning a	nd accombly instructio	ons of APM coro			
2	To introduce the architecture, inter	torfacing and p	rogramming of APM c				
3 To understand the floating-point representation and VEP coprocessor implementation							
5. To understand the hoating-point representation and VFP coprocessor implementation							
To outline details of cache architectures, AMBA bus, Virtual memory management concepts							
4. With the detailed explanation on the Memory Management Unit (MMU) and Memory							
To illustrate the overview of various peripherals used with APM core and review of big							
5	I IIII E technology for various APM	periprierais use	u with ARM Core and r	eview of big.			
	LITTLE technology for various Akivi						
	Introduction and Binalina structure						
Type	s of computer Architectures ISA's and	APM history E	mbaddad systam safty	vare and bardware			
type	s of computer Architectures, ISA's and	ARIVI HIStory. E	n codoc Processor	core ve CPU core			
	7TDMI interface signals memory inte	orfaco. Bus cyclo	types Perister set (Departional modes			
Inctr	uction format ARM Core dataf model	ARM 3 stage n	ineline ARM family att	tribute comparison			
ΔRN/	5 stage nineline Pineline hazards. Dat	ta forwarding - a	hardware solution				
	J stage pipeline, i ipeline hazarus, Da	ta ioiwaruniy a					
	I7TDMI assembly instructions and m	nodes		08 Hours			
ARM	ITTDMI assembly instructions and m ISA and Processor variants. Different t	nodes	ons ARM instruction s	08 Hours			
ARM ARM	ITTDMI assembly instructions and m ISA and Processor variants, Different t uctions, Shift operations, shift operation	ypes of instructions using RS low	ons, ARM instruction s	08 Hours set, data processing lue encoding Data			
ARM ARM instr	ITTDMI assembly instructions and m ISA and Processor variants, Different t uctions. Shift operations, shift operatic essing instructions. AddressingMode-	odes ypes of instructions using RS low 1. Addressing N	ons, ARM instruction s er byte, Immediate va Jode -2, Addressing I	08 Hours set, data processing lue encoding. Data Mode -2. LDR/STR.			
ARM ARM instr proc	ITTDMI assembly instructions and m ISA and Processor variants, Different t uctions. Shift operations, shift operations essing instructions. AddressingMode- ressing mode -3 with examples. Instru	odes ypes of instructions using RS low 1, Addressing N ction timing, Ac	ons, ARM instruction s ver byte, Immediate va Aode -2. Addressing I ddressing Mode - 4 w	08 Hours et, data processing lue encoding. Data Mode -2, LDR/STR, ith examples. Swap			
ARM ARM instr proc Addu instr	ITTDMI assembly instructions and m ISA and Processor variants, Different t actions. Shift operations, shift operations essing instructions. AddressingMode- ressing mode -3 with examples. Instru- actions, Swap register related instructions	ypes of instructions using RS low 1, Addressing N ction timing, Ac	ons, ARM instruction s ver byte, Immediate va Jode -2. Addressing I Idressing Mode - 4 wi stants. Program contro	08 Hours Set, data processing lue encoding. Data Mode -2, LDR/STR, ith examples. Swap of flow, Control flow			
ARM ARM instr proc Addu instr instr	ITTDMI assembly instructions and m ISA and Processor variants, Different t actions. Shift operations, shift operations essing instructions. AddressingMode- ressing mode -3 with examples. Instru- actions, Swap register related instructions actions, B & BL instructions, BX instructions	ypes of instructions using RS low 1, Addressing N ction timing, Ac ons, Loading con	ons, ARM instruction s ver byte, Immediate va Node -2. Addressing I ddressing Mode - 4 wi stants. Program contro and Exceptions, Except	08 Hours et, data processing lue encoding. Data Mode -2, LDR/STR, ith examples. Swap of flow, Control flow ion Handlers, Reset			
ARM ARM instr proc Addu instr instr Hand	ITTDMI assembly instructions and m ISA and Processor variants, Different t actions. Shift operations, shift operations essing instructions. AddressingMode- ressing mode -3 with examples. Instru- actions, Swap register related instruction actions, B & BL instructions, BX instruc- dling. Aborts, software Interrupt Instru-	ypes of instructions using RS low 1, Addressing N ction timing, Ac ons, Loading con tion. Interrupts a ction, undefined	ons, ARM instruction s ver byte, Immediate va Jode -2. Addressing I Idressing Mode - 4 wi stants. Program contro and Exceptions, Except d instruction exceptior	08 Hours set, data processing lue encoding. Data Mode -2, LDR/STR, ith examples. Swap of flow, Control flow ion Handlers, Reset n. Interrupt latency,			
ARM ARM instr proc Addu instr instr Hand Mult	ITTDMI assembly instructions and m ISA and Processor variants, Different t actions. Shift operations, shift operations ressing instructions. AddressingMode- ressing mode -3 with examples. Instru- actions, Swap register related instruction actions, B & BL instructions, BX instruc- dling. Aborts, software Interrupt Instru- iply instructions, and Instruction set exa-	aodes types of instructions using RS low 1, Addressing N ction timing, Ac ons, Loading con tion. Interrupts a ction, undefined amples. Thumb s	ons, ARM instruction s ver byte, Immediate va Node -2. Addressing I ddressing Mode - 4 wi stants. Program contro and Exceptions, Except d instruction exception state, Thumb programm	08 Hours set, data processing lue encoding. Data Mode -2, LDR/STR, ith examples. Swap of flow, Control flow ion Handlers, Reset n. Interrupt latency, mers model, Thumb			
ARM ARM instr proc Addu instr Hand Mult	ITTDMI assembly instructions and m ISA and Processor variants, Different t actions. Shift operations, shift operations ressing instructions. AddressingMode- ressing mode -3 with examples. Instru- actions, Swap register related instruction actions, B & BL instructions, BX instruc- dling. Aborts, software Interrupt Instru- iply instructions, and Instruction set exa- ementation, Thumb applications. Thus	ypes of instructions using RS low 1, Addressing N ction timing, Ac ons, Loading con tion. Interrupts a ction, undefined amples. Thumb s mb instructions,	ons, ARM instruction s ver byte, Immediate va Aode -2. Addressing I ddressing Mode - 4 wi stants. Program contro and Exceptions, Except d instruction exception state, Thumb programm Interrupt processing.	08 Hours set, data processing lue encoding. Data Mode -2, LDR/STR, ith examples. Swap of flow, Control flow ion Handlers, Reset n. Interrupt latency, mers model, Thumb Interrupt handling			
ARM ARM instr proc Addu instr Hand Mult impl sche	ITTDMI assembly instructions and m ISA and Processor variants, Different t actions. Shift operations, shift operations ressing instructions. AddressingMode- ressing mode -3 with examples. Instru- actions, Swap register related instruction actions, B & BL instructions, BX instruct alling. Aborts, software Interrupt Instru- iply instructions, and Instruction set exa- ementation, Thumb applications. Thus mes, Examples of interrupt handlers.	ypes of instructions using RS low 1, Addressing N ction timing, Ac ons, Loading con tion. Interrupts a ction, undefined amples. Thumb s mb instructions,	ons, ARM instruction s ver byte, Immediate va Mode -2. Addressing M ddressing Mode - 4 wi stants. Program contro and Exceptions, Except d instruction exception state, Thumb programm Interrupt processing.	08 Hours set, data processing lue encoding. Data Mode -2, LDR/STR, ith examples. Swap of flow, Control flow ion Handlers, Reset n. Interrupt latency, mers model, Thumb Interrupt handling			
ARM instr proc Addu instr instr Hand Mult impl sche	ITTDMI assembly instructions and m ISA and Processor variants, Different t actions. Shift operations, shift operations ressing instructions. AddressingMode- ressing mode -3 with examples. Instru- actions, Swap register related instruction actions, B & BL instructions, BX instruc- dling. Aborts, software Interrupt Instru- iply instructions, and Instruction set exa- ementation, Thumb applications. Thus mes, Examples of interrupt handlers.	ypes of instructions using RS low 1, Addressing N ction timing, Ac ons, Loading con tion. Interrupts a ction, undefined amples. Thumb s mb instructions, UNIT-II	ons, ARM instruction s ver byte, Immediate va Mode -2. Addressing I ddressing Mode - 4 wi stants. Program contro and Exceptions, Except d instruction exceptior state, Thumb programm Interrupt processing.	08 Hours Set, data processing alue encoding. Data Mode -2, LDR/STR, ith examples. Swap of flow, Control flow ion Handlers, Reset h. Interrupt latency, mers model, Thumb Interrupt handling			
ARM ARM instr proc Addu instr Hand Mult impl sche	ITTDMI assembly instructions and m ISA and Processor variants, Different t actions. Shift operations, shift operations essing instructions. AddressingMode- ressing mode -3 with examples. Instru- actions, Swap register related instruction actions, B & BL instructions, BX instruc- dling. Aborts, software Interrupt Instru- iply instructions, and Instruction set exa- ementation, Thumb applications. Thum- mes, Examples of interrupt handlers.	ypes of instructions using RS low 1, Addressing N ction timing, Ac ons, Loading con tion. Interrupts a ction, undefined amples. Thumb s mb instructions, UNIT-II	ons, ARM instruction s ver byte, Immediate va Aode -2. Addressing I ddressing Mode - 4 wi stants. Program contro and Exceptions, Except d instruction exception state, Thumb program Interrupt processing.	08 Hours set, data processing lue encoding. Data Mode -2, LDR/STR, ith examples. Swap of flow, Control flow ion Handlers, Reset n. Interrupt latency, mers model, Thumb Interrupt handling 07 Hours			
ARM ARM instr proc Addu instr Hand Mult impl sche ARM	ITDMI assembly instructions and m ISA and Processor variants, Different t actions. Shift operations, shift operations essing instructions. AddressingMode- ressing mode -3 with examples. Instru- actions, Swap register related instruction actions, B & BL instructions, BX instruc- dling. Aborts, software Interrupt Instru- iply instructions, and Instruction set exa- ementation, Thumb applications. Thus mes, Examples of interrupt handlers.	ypes of instructions using RS low 1, Addressing N ction timing, Ac ons, Loading con tion. Interrupts a ction, undefined amples. Thumb s mb instructions, UNIT-II ting Point Proce	ons, ARM instruction s ver byte, Immediate va Aode -2. Addressing I ddressing Mode - 4 wi stants. Program contro and Exceptions, Except d instruction exception state, Thumb programm Interrupt processing.	08 Hoursset, data processingalue encoding. DataMode -2, LDR/STR,ith examples. Swapol flow, Control flowion Handlers, Resetn. Interrupt latency,mers model, ThumbInterrupt handling07 Hourscessor interface and			
ARM ARM instr proc Addu instr Hand Mult impl sche Inter ARM instr	ITDMI assembly instructions and m ISA and Processor variants, Different t actions. Shift operations, shift operations essing instructions. AddressingMode- ressing mode -3 with examples. Instru- actions, Swap register related instruction actions, B & BL instructions, BX instruc- dling. Aborts, software Interrupt Instru- iply instructions, and Instruction set exa- ementation, Thumb applications. Thus mes, Examples of interrupt handlers.	ting Point Proce a processing instructions provide the second struct provide the second struct provide the second struct provide the second structure processing instructions instructions processing instructions instructions instructions instructions instructions in the second structure in the	ons, ARM instruction s ver byte, Immediate va Aode -2. Addressing I ddressing Mode - 4 wi stants. Program contro and Exceptions, Except d instruction exception state, Thumb program Interrupt processing.	08 Hoursset, data processinglue encoding. DataMode -2, LDR/STR,ith examples. Swapof flow, Control flowion Handlers, Resetn. Interrupt latency,mers model, ThumbInterrupt handling07 Hourscessor interface ands, register transfers.			
ARM ARM instr proc Addu instr Hand Mult impl sche ARM instr Num	ITDMI assembly instructions and m ISA and Processor variants, Different t actions. Shift operations, shift operations essing instructions. AddressingMode- ressing mode -3 with examples. Instru- actions, Swap register related instruction actions, B & BL instructions, BX instruc- dling. Aborts, software Interrupt Instru- iply instructions, and Instruction set exa- ementation, Thumb applications. Thum- mes, Examples of interrupt handlers.	ypes of instructions using RS low 1, Addressing N ction timing, Ac ons, Loading con tion. Interrupts a ction, undefined amples. Thumb s mb instructions, UNIT-II ting Point Proce a processing inst resentation (IEE	ons, ARM instruction s ver byte, Immediate va Aode -2. Addressing I ddressing Mode - 4 wi stants. Program contro and Exceptions, Except d instruction exception state, Thumb program Interrupt processing. ssor (VFP) ARM coproc truction, data transfers 2754). Flynn's taxonom	08 Hours set, data processing alue encoding. Data Mode -2, LDR/STR, ith examples. Swap of flow, Control flow ion Handlers, Reset n. Interrupt latency, mers model, Thumb Interrupt handling 07 Hours cessor interface and s, register transfers. y, SIMD and Vector			
ARM ARM instr proc Addu instr Hand Mult impl sche ARM instr Num proc	ITDMI assembly instructions and m ISA and Processor variants, Different t actions. Shift operations, shift operations essing instructions. AddressingMode- ressing mode -3 with examples. Instru- actions, Swap register related instruction actions, B & BL instructions, BX instruc- dling. Aborts, software Interrupt Instru- iply instructions, and Instruction set exa- ementation, Thumb applications. Thum mes, Examples of interrupt handlers. face Coprocessor interface and Vector Float actions, Coprocessor instructions, data ber representations, floating point representations, An e	ypes of instructions using RS low 1, Addressing N ction timing, Ac ons, Loading con tion. Interrupts a ction, undefined amples. Thumb s mb instructions, UNIT-II ting Point Proce a processing inst resentation (IEE example vector of	ons, ARM instruction s ver byte, Immediate va Aode -2. Addressing I ddressing Mode - 4 wi stants. Program contro and Exceptions, Except d instruction exception state, Thumb program Interrupt processing. ssor (VFP) ARM coproc truction, data transfers 5754). Flynn's taxonom operation	08 Hours set, data processing lue encoding. Data Mode -2, LDR/STR, ith examples. Swap of flow, Control flow ion Handlers, Reset n. Interrupt latency, mers model, Thumb Interrupt handling 07 Hours cessor interface and s, register transfers. by, SIMD and Vector			
ARM instr proc Addu instr Hand Mult impl sche ARM instr Num proc Cach	ITDMI assembly instructions and m ISA and Processor variants, Different t actions. Shift operations, shift operations essing instructions. AddressingMode- ressing mode -3 with examples. Instru- actions, Swap register related instruction actions, B & BL instructions, BX instruc- dling. Aborts, software Interrupt Instru- iply instructions, and Instruction set exa- ementation, Thumb applications. Thum- mes, Examples of interrupt handlers. face Coprocessor interface and Vector Float actions, Coprocessor instructions, data ber representations, floating point rep- essors, VFP and ARM interactions, An e- metand Memory Management and Pr	ypes of instructions using RS low 1, Addressing N ction timing, Ac ons, Loading con tion. Interrupts a ction, undefined amples. Thumb s mb instructions, UNIT-II ting Point Proce a processing inst resentation (IEEI example vector o otection	ons, ARM instruction s ver byte, Immediate va Aode -2. Addressing I ddressing Mode - 4 wi stants. Program contro and Exceptions, Except d instruction exception state, Thumb program Interrupt processing. ssor (VFP) ARM coproc truction, data transfers 5754). Flynn's taxonom operation	08 Hoursset, data processingalue encoding. DataMode -2, LDR/STR,ith examples. Swapof flow, Control flowion Handlers, Resetn. Interrupt latency,mers model, ThumbInterrupt handling07 Hourscessor interface ands, register transfers.y, SIMD and Vector08 Hours			
ARM ARM instr proc Addu instr Hand Mult impl sche ARM instr Num proc Cach	ITDMI assembly instructions and m ISA and Processor variants, Different t actions. Shift operations, shift operations essing instructions. AddressingMode- ressing mode -3 with examples. Instru- actions, Swap register related instruction actions, B & BL instructions, BX instruc- dling. Aborts, software Interrupt Instru- iply instructions, and Instruction set exa- ementation, Thumb applications. Thus mes, Examples of interrupt handlers. face Coprocessor interface and Vector Float actions, Coprocessor instructions, data ber representations, floating point representations, An en- essors, VFP and ARM interactions, An en- mory technologies, Need for memorial actions in the soft of the	ypes of instructions using RS low 1, Addressing N ction timing, Ac ons, Loading con tion. Interrupts a ction, undefined amples. Thumb s mb instructions, UNIT-II ting Point Proce a processing inst resentation (IEEI example vector of otection y hierarchy, Hie	ons, ARM instruction s ver byte, Immediate va Aode -2. Addressing I ddressing Mode - 4 wi stants. Program contro and Exceptions, Except d instruction exception state, Thumb program Interrupt processing. ssor (VFP) ARM coproc truction, data transfers 5754). Flynn's taxonom operation	08 Hours set, data processing lue encoding. Data Mode -2, LDR/STR, ith examples. Swap of flow, Control flow ion Handlers, Reset n. Interrupt latency, mers model, Thumb Interrupt handling 07 Hours cessor interface and s, register transfers. by, SIMD and Vector 08 Hours rganization, Virtual			
ARM ARM instr proc Addu instr Hand Mult impl sche ARM instr Num proc Cach Mem mem	ITDMI assembly instructions and m ISA and Processor variants, Different to actions. Shift operations, shift operations essing instructions. AddressingMode- ressing mode -3 with examples. Instru- actions, Swap register related instruction actions, B & BL instructions, BX instruc- dling. Aborts, software Interrupt Instru- iply instructions, and Instruction set exa- ementation, Thumb applications. Thum- mes, Examples of interrupt handlers. face Coprocessor interface and Vector Float actions, Coprocessor instructions, data ber representations, floating point rep- essors, VFP and ARM interactions, An e- mory technologies, Need for memor- nory. Cache memory, Mapping function	ypes of instructions using RS low 1, Addressing N ction timing, Ac ons, Loading con tion. Interrupts a action, undefined amples. Thumb s mb instructions, UNIT-II ting Point Proce a processing inst resentation (IEEI example vector of otection y hierarchy, Hie ns, Cache design	ons, ARM instruction s ver byte, Immediate va Aode -2. Addressing I ddressing Mode - 4 wi stants. Program contro and Exceptions, Except d instruction exception state, Thumb program Interrupt processing. ssor (VFP) ARM coproc truction, data transfers 5754). Flynn's taxonom operation	08 Hours set, data processing alue encoding. Data Mode -2, LDR/STR, ith examples. Swap of flow, Control flow ion Handlers, Reset n. Interrupt latency, mers model, Thumb Interrupt handling 07 Hours cessor interface and s, register transfers. ny, SIMD and Vector 08 Hours rganization, Virtual ne, multiple level of			
ARM ARM instr proc Addu instr Hand Mult impl sche ARM instr Num proc Cach Mem mem cach	ITDMI assembly instructions and m ISA and Processor variants, Different to actions. Shift operations, shift operations essing instructions. AddressingMode- ressing mode -3 with examples. Instru- actions, Swap register related instruction actions, B & BL instructions, BX instruc- dling. Aborts, software Interrupt Instru- iply instructions, and Instruction set exa- ementation, Thumb applications. Thus mes, Examples of interrupt handlers. Fface Coprocessor interface and Vector Float actions, Coprocessor instructions, data ber representations, floating point rep- essors, VFP and ARM interactions, An e- mory technologies, Need for memor- nory. Cache memory, Mapping function es, ARM cache features, coprocessor 1	ypes of instructions using RS low 1, Addressing N ction timing, Ac ons, Loading con tion. Interrupts a ction, undefined amples. Thumb s mb instructions, UNIT-II ting Point Proce a processing inst resentation (IEEI example vector of otection y hierarchy, Hig ns, Cache design .5 for system co	ons, ARM instruction s ver byte, Immediate va Aode -2. Addressing I ddressing Mode - 4 wi stants. Program contro and Exceptions, Except d instruction exception state, Thumb program Interrupt processing. ssor (VFP) ARM coproc truction, data transfers 5754). Flynn's taxonom operation erarchical memory or n, Unified or split cach ntrol. Processes, memory	08 Hours set, data processing alue encoding. Data Mode -2, LDR/STR, ith examples. Swap ol flow, Control flow ion Handlers, Reset n. Interrupt latency, mers model, Thumb Interrupt handling 07 Hours cessor interface and s, register transfers. rganization, Virtual ne, multiple level of ory map, protected			
ARM ARM instr proc Addu instr Hand Mult impl sche ARM instr Num proc Cach Mem mem cach syste	ITDMI assembly instructions and m ISA and Processor variants, Different to actions. Shift operations, shift operations essing instructions. AddressingMode- ressing mode -3 with examples. Instru- actions, Swap register related instruction actions, B & BL instructions, BX instruc- dling. Aborts, software Interrupt Instru- iply instructions, and Instruction set exa- ementation, Thumb applications. Thum mes, Examples of interrupt handlers. face Coprocessor interface and Vector Float actions, Coprocessor instructions, data ber representations, floating point representations, floating point representations, An er- mory technologies, Need for memor nory. Cache memory, Mapping function es, ARM cache features, coprocessor 1 ems, ARM systems with MPU, Memory I	ypes of instructions using RS low 1, Addressing N ction timing, Ac ons, Loading con tion. Interrupts a action, undefined amples. Thumb s mb instructions, UNIT-II ting Point Proce a processing inst resentation (IEEI example vector of otection y hierarchy, Hie ns, Cache design .5 for system co Protection Unit (ons, ARM instruction s ver byte, Immediate va Aode -2. Addressing I ddressing Mode - 4 wi stants. Program contro and Exceptions, Except d instruction exception state, Thumb program Interrupt processing. ssor (VFP) ARM coproc truction, data transfers 5754). Flynn's taxonom operation erarchical memory or n, Unified or split cach ntrol. Processes, memory MPU). Physical Vs virtu	08 Hours set, data processing alue encoding. Data Mode -2, LDR/STR, ith examples. Swap of flow, Control flow ion Handlers, Reset n. Interrupt latency, mers model, Thumb Interrupt handling 07 Hours cessor interface and s, register transfers. ny, SIMD and Vector 08 Hours rganization, Virtual ne, multiple level of ory map, protected al memory, Paging,			
ARM ARM instr proc Addu instr Hand Mult impl sche ARM instr Num proc Cach Mem mem cach syste Segr	ITDMI assembly instructions and m ISA and Processor variants, Different to actions. Shift operations, shift operations essing instructions. AddressingMode- ressing mode -3 with examples. Instru- actions, Swap register related instruction actions, B & BL instructions, BX instruc- dling. Aborts, software Interrupt Instru- iply instructions, and Instruction set exa- ementation, Thumb applications. Thus mes, Examples of interrupt handlers. face Coprocessor interface and Vector Float actions, Coprocessor instructions, data ber representations, floating point rep- essors, VFP and ARM interactions, An e- mory technologies, Need for memory nory. Cache memory, Mapping functiones, ARM cache features, coprocessor 1 ems, ARM systems with MPU, Memory I mentation. MMU Advantage, virtual	ypes of instructions using RS low 1, Addressing N ction timing, Ac ons, Loading con tion. Interrupts a ction, undefined amples. Thumb s mb instructions, UNIT-II ting Point Proce a processing inst resentation (IEEI example vector of otection y hierarchy, Hie ns, Cache design .5 for system co Protection Unit (memory trans	ons, ARM instruction s ver byte, Immediate va Aode -2. Addressing I ddressing Mode - 4 wi stants. Program contro and Exceptions, Except d instruction exception state, Thumb program Interrupt processing. ssor (VFP) ARM coproc truction, data transfers 5754). Flynn's taxonom operation erarchical memory or n, Unified or split cach ntrol. Processes, memory MPU). Physical Vs virtu dation, Multitasking	08 Hours set, data processing alue encoding. Data Mode -2, LDR/STR, ith examples. Swap ol flow, Control flow ion Handlers, Reset n. Interrupt latency, mers model, Thumb Interrupt handling 07 Hours cessor interface and s, register transfers. rganization, Virtual ne, multiple level of ory map, protected al memory, Paging, with MMU, MMU			

ARM tools and peripherals ARM development environment **09 Hours**

Arm Procedure Call Standard (APCS), example C program. Embedded software development, image structure, linker inputs and outputs, memory map, application startup. AMBA overview, typical AMAB based microcontroller, AHB bus features, AHB bus transfers, APB bus transfers, APB bridge. DMA, Peripherals, Programming peripherals in ARM. big. LITTLE technology ARM ISAs, ARMv5, ARMv6, ARM v7, ARMv8..

Course Outcomes: At the end of the course student will be able to

1.	Describe architecture, internal functioning and assembly instructions of ARM7TDMI to comprehend basics of ARM
2.	Apply ARM7 based assembly level programming skills to perceive the various coprocessors interfaced in an SoC.
3.	Describe the cache design, virtual memory, memory protection concepts to visualize the implementation in a typical SoC designs
4.	Describe AMBA bus architecture, various HW peripherals in SoCs to build their design aspects
5.	Apply processor software tool chains for embedded software solution development

Course Outcomes Mapping with Program Outcomes & PSO

Program Outcomes→	1	2	3	4	5	6	7	8	9	10	11	12	PS	0 ↓
↓ Course Outcomes													1	2
EE3241-1.1	2	3	-	-	-	-	-	-	-	-	-	-	-	-
EE3241-1.2	2	3	-	-	-	-	-	-	-	-	-	1	-	-
EE3241-1.3	2	3	-	-	-	-	-	-	-	-	-	2	-	-
EE3241-1.4	2	3	-	-	-	-	-	-	-	-	-	2	-	-
EE3241-1.5	2	3	-	-	-	-	-	-	-	-	-	2	-	-

1: Low 2: Medium 3: High

TEXTB	OOKS:
1.	Andrew Sloss, Dominic Symes, Chris Wright, Morgan, "ARM System Developer's Guide
	: Designing and Optimizing System Software", (English) 1st Edition, Kaufmann Publishers 2011
REFER	ENCE BOOKS:

1.	Steve Furber, "Arm System-on-chip Architecture", 2nd Edition, Pearson publication, 2013
2.	William Hohl, Christppher Hinds,"Arm Assembly Language, Fundamentals and Techniques",
	2nd edition, CRC Press, 2014
3.	Muhammad Ali Mazidi, "ARM Assembly Language Programming & Architecture", Kindle
	edition
4.	William Stallings "Operating Systems", 5th Edition
5.	Manuals and Technical Documents from the ARM Inc, web site.
E Bool	<s moocs="" nptel<="" th=""></s>

1. https://nptel.ac.in/courses/117106111

VLSI	CIRCUITS AND	DESIGN	
Course Code:	EE3242-1	Course Type	PCC
Teaching Hours/Week (L: T: P: S)	3:0:0:0	Credits	03
Total Teaching Hours	40+0+0	CIE + SEE Marks	50+50
Prereguisite	EC1002-1, E	E2101-1	
Teaching Departme	nt: Electrical &	Electronics Engineering	
Course Objectives:			
1. To introduce the VLSI Technolog	y, its component	s and characteristics.	
2. To examine the electrical charact	eristics of MOS t	ransistors.	
3. To demonstrate the design proce	edure, rule to be	followed and the concep	t of MOSFET
Scaling in VLSI.			
4. To illustrate the Geometry Effects	and characteris	tics of MOS Inverters and	universal gates.
5. To discuss advanced techniques	and applications	to CMOS logic circuits.	
	UNIT-I		1
Basic CMOS Processing			07 Hours
(Introduction to IC Technology, Moore's	s law, VLSI desigr	n flow, VLSI Technology,	Realisation of logic
circuits using CMOS technology.	Wafer fabrication	on process using Czo	ochralski method,
Photolithography, Well and Channel F	ormation, Gate	oxide, Gate and Source	e/Drain formation,
Contact & Metallization, fabrication of n	MOS Transistor, I	Depletion type and Enhar	cement type MOS,
CMOS n-well and P-well process,			
MOS TRANSISTORS (Electrical Charac	teristics)		08 Hours
Two terminal MOS structure, flat banc	l voltage, MOS	system under external k	pias, structure and
operation of MOS transistors, threshold	voltage, drain to	source current Ids verses	s Vds relationships,
body effect, channel length modulation	, mobility variati	on, Tunneling, punch thr	ough, hot electron
effect Drain Induced Barrier Lowering (D	OBL), Small sign	al AC characteristic mode	els
	UNIT-II		
Design			04 Hours
Mask Layer, Stick Diagram for Booleau	n expressions, S	ymbolic diagram, Layou	t Sheet resistance,
capacitance layer, inverter delays, rise tir	ne, fall time, case	cading and super buffer.,	
Scaling			04 Hours
MOSFET scaling and geometry effects: In	ntroduction, con	stant field scaling, consta	nt voltage scaling,
short channel Effects, narrow channel ef	fects, Compariso	n of MOSFET parameters	due to scaling
Application-MOS Inverters Static Cha	racteristics		08Hours
Introduction, voltage transistor characted	eristics, noise im	munity and noise margi	n, power and area
considerations, resistive load inverter ca	lculation of Voh	, Vol, Vil, Vih, inverters w	ith n type MOSFET
load characteristics, CMOS inverter sta	atic characteristi	cs (excluding derivation)	design of CMOS
inverter, latch up bulk CMOS			
	UNIT-III		
Application- 2 input NOR and NAND	gates		09 Hours
Concept MOS based 2 input NOR and 1	NAND gate (with	derivation), CMOS based	d 2 input NOR and
NAND gate (excluding derivation) App	lication- Other F	orms of CMOS Logic: Ps	eudo nMOS logic,
dynamic CMOS logic, clocked CMOS	logic, CMOS do	omino logic, parity gene	erator, multiplexer,
dynamic shift registers.			
Course Outcomes: At the end of the co	urse student will	be able to	
1. Illustrate the CMOS VLSI design f	flow to outline th	ne CMOS IC fabrication pr	ocess

2.	Analyze the structure, ope	erati	on c	of M	OS t	rans	sisto	r to	stuc	dy th	ne ele	ectrica	al cha	racte	eristics.	
3.	Use layout design rules to sketch CMOS logic circuits & compare effect of scaling on															
	MOSFET parameters.															
4.	Analyze MOS static characteristics to design the NMOS and CMOS inverter circuits.															
5.	Design logic circuits using MOS transistors to study the IC fabrication aspects.															
Cour	se Outcomes Mapping wit	h P	rogi	ram	Out	com	nes a	& P:	SO							
_																_
	Program Outcomes \rightarrow	1	2	3	4	5	6	7	8	9	10	11	12		PSO	
	↓ Course Outcomes													1	2	
	EE3242-1.1	3	3	-	-	1	-	-	-	-	-	-	1	-	1	
	EE3242-1.2	3	3	-	-	2	-	-	-	-	-	-	1	-	1	
	EE3242-1.3	3	3	-	-	2	-	-	-	-	-	-	1	-	1	
	EE3242-1.4 3 3 2 1 - 1															
	EE3242-1.5 3 3 1 - 1															
	1: Low 2: Medium 3:High															
TEXT	XTBOOKS:															
1	1. Sang Mo Kang, Usuf Leblebici,"CMOS Integrated Circuit Analysis And Design", 3rd Edition,															
	TATA Mc Graw hill edition,2002															
2	. Douglass A Pucknell, Amran Esharaghian, "Basic VLSI Design", 3rd edition, PHI															
	Publication, 2009.															
3	. Neil Weste and David Harris, "CMOS VLSI Design" 4th edition, Addison-Wesley,2010.															
REFE	RENCE BOOKS:															
1	Wayne, Wolf, "Modern VLSI design: System on Silicon" Pearson Education, 2nd Edition,2005.															
2	. Carver Mead and Lynn Co	onw	ay" :	Intro	oduc	tion	to	VLSI	Sys	tem	s" BS	Publ	icatic	on,1s	t	
	edition,1979.															
E Boo	oks / MOOCs/ NPTEL															
1	. NPIEL Course on Digital	VLS	I Tes	sting	j by	Prof	. Sa	ntan	u Cl	natte	opad	hyay,	IIT K	hara	gpur	
2	. NPTEL Course on CMOS	Digi	tal \	/LSI	Desi	ign ł	by P	rof.	Sud	eb D	Dasgu	ipta,	IIT Ro	oorke	ee	
3	. NPTEL Course on VLSI Ph	iysic	al D	esig	n by	' Prc	of. In	Idrai	nil S	engi	upta,	IIT K	harac	gpur		

VLS	LAYOUT TECH	NIQUES					
Course Code:	EE4241-1	Course Type	PCC				
Teaching Hours/Week (L: T: P: S)	3:0:0:0 Credits 03						
Total Teaching Hours	40 CIE + SEE Marks 50+50						
Prerequisite	EE3242-1, EE3344-1						

Teaching Department: Electrical & Electronics Engineering		
Course Objectives:		
1. To Describe basic physics and operation of MOS devices		
2. To comprehend the process of Semiconductor Fabrication		
3. To know the various failure mechanism		
4. To understand the resistor layout and matching of resistors and capacitanc	ce.	
5. To know the assembling of die.		
UNIT-I		
Device Physics	05 Hours	
Semiconductors, PN Junctions, Bi-Polar junction transistor, MOS Transistors,		
JFET transistors.		
Semiconductor Fabrication	10 Hours	_
Silicon Manufacture, photolithography, oxide growth and removal, diffusion and i	ion	
Implantation, Silicon deposition, Metallization, assembly. Polysilicon-Gate CMOS:	Essential	
features, fabrication sequence, NMOS, PMOS transistors, substrate PNP transistors,	Lightly	
doped drain transistors(LDD).		
		-
UNIT-II		-
Analog Bi-CMOS	08 Hours	-
Essential features, Fabrication sequences, Available devices.		
Failure mechanisms: Electrical overstress, Contamination, Surface effects, Parasitic		-
Resistors: Resistivity and sheet resistance, resistor layout, resisitor parasitic, capacitors.	07 Hours	
Matching of resistors and capacitors.		-
		-
UNIT-III Diadaa and MOS transistary	10 110.000	-
Diodes and MOS transistors	10 Hours	-
Diodes in standard Bipolar, Diodes in CMOS and BICMOS processes, Matching diodes.	d Doly Cata	
CMOS Transistors, Application of MOS Transistors, Assembling the die: Die Planning, Eloc	or Planning	
Top-level Interconnection	Ji Flaming,	
Course Outcomes: At the end of the course student will be able to		
1. Describe basic operation and physical structures of semiconductor devices.		Use efficie
Understand the Semiconductor fabrication process		Design hic
2.		precision a
3. Describe essential features of analogue BiCMOS		Design an
Identify the device matching and isolation with respect to CMOS devices		Identify th
4.		performar
Apply floor planning and power routing to design analog CMOS devices		Perform ca
		converters
Course Outcomes Mapping with Program Outcomes & PSO		-

Program Outcomes→	1	2	3	4	5	6	7	8	9	10	11	12	PS	O↓
↓ Course Outcomes													1	2
EE4241-1.1	3	-	-	-	-	-	-	-	-	-	-	-	-	-
EE4241-1.2	2	3	-	-	-	-	-	-	-	-	-	-	-	-
EE4241-1.3	2	3	-	-	-	-	-	-	-	1	-	1	I	-
EE4241-1.4	2	3	-	-	-	-	-	-	-	-	-	1	-	-
EE4241-1.5	3	-	-	-	-	-	-	-	-	-	-	1	-	-

	1: Low 2: Medium 3: High
TEXTB	OOKS:
1.	Alan Hastings, "The Art of Analog layout", Pearson; 2nd edition, 2004
REFER	ENCE BOOKS:
1.	Ismail Franca, "Introduction to Analog VLSI Design Automation", Springer, 2011.
2.	Randall Geiger, Noel Strader, Phillip Allen "VLSI Design Techniques for Analog", , 1 st Edition,
	Mcgraw Hill Education, 2010
3.	Gejji V.P, "Analog and Mixed Mode VLSI Design", Prentice Hall India Learning Private
	Limited 2011
4.	R. Jacob Baker, "CMOS : Circuit Design, Layout And Simulation", Wiley, 2009

	HIGH	SPEED DIGITAL	DESIGN							
Cour	rse Code:	EE4242-1	Course Type	PCC						
Teac	hing Hours/Week (L: T: P: S)	3:0:0:0	Credits	03						
Tota	I Teaching Hours	40+0+0	CIE + SEE Marks	50+50						
Prer	Prerequisite EC1002-1, EE3242-1									
	Teaching Department: Electrical & Electronics Engineering									
Cours	Course Objectives:									
_										
1.	1. To understand fundamental characteristics of the logic gates									
2.	2. To know the limitation of measurement									
3.	To understand the impact of pow	ver, speed and pa	ackaging in digital machine	e design						

4. To understand the functiona	lity	of g	roun	id ar	nd po	owe	r pla	nes						
			U	INIT	-I									
Fundamentals:													04	Hours
Frequency and Time, Time and Dist	ance	e, lur	npeo	d Vs	dist	ribut	ted s	syste	em, f	our k	inds	of rea	actan	ice's
High speed properties of logic ga	tes												05	Hours
Power, Speed and Packaging													-	
Measurement Techniques													06	Hours
Rise time and bandwidth of Oscillo pickup from ground loops, avoid transmission system, measuring op	osco ding erati	pe, s pic ng r	self i kup narg	ndu fro jins.	ctan m p	ce c prob	ota esł	prob nield	e gi cu	round	d loo 5, vie	p, spi wing	ser	is signa ial data
			U	NIT	-11									
Transmission Lines													08	Hours
Shortcomings of ordinary point to	poir	nt wi	ring	, infi	nite	unif	orm	trar	nsmi	ssion	line,	effe	cts o	f source
and load impedance, line impedance	e ar	nd pi	ropa	gati	on d	elay								
Ground Planes and Layer Stacking	g												07	Hours
High speed current, cross talks, gua circuit board layers.	ard t	race	s, ne	ear e	nd a	and	far e	nd o	cross	s talks	s, hov	w to s	stack	printeo
-			U	NIT-	III									
Termination													10	Hours
Course Outcomes: At the end of the	ne co	ourse	e stu	den	t will	be	able	to						
1 Describe the various relation	hchir	ns he		on fr	2011	anci	/ tin	וב סר	nd d	istan				
Identify the high speed pror	orti		Flog		equ toc	and	mos			nt too	hnia	loc fo	or di	aital
2. system design		23 01	ilog	ic ge	ites	anu	mee	isure	inci	n iec	innqu		Ji ui	gitai
3 Analyze the effects of source	a an		nd in	npor	lanc	a for	· hia	h cn	ممط	circu	itry			
4 Identify the ground planes a	nd l		star	-kinc		cont	rol c	ross	talk	hotw	iciy oon t	ho ci	anal	-
5 Analyze the importance of t	ormi	nato	stat		<i>j</i> 10 (com		.1033	tark	Detw	Cent		griai.	5
S. Analyze the importance of the			л S	4.0.0		0, D	50							
Course Outcomes Mapping with	Prog	gran	1 Ou	ιτοι	nes	αr	30							
Brogram Outcomos	1	2	2	Δ	E	6	7	0	0	10	11	12	DC	
	1	2	5	4	5	0	<i>'</i>	0	9	10		12	1	
	2											-	1	2
	び つ	- 2	-		-	-	-	-	-	-	-	-	- -	-
	2	2	-	-	-	-	-	-	-	-	-	-	2	-
	2	2	-	-	-	-	-	-	-	-	-	1	2	-
	2	3	-	-	-	-	-	-	-	-	-		2	-
EE4242-1.5	3	-	-	-	-	-	-	-	-	- 1.1.	-		2	
										1: LC	ow 2:	wed	num	5: HIG
TEXTBOOKS:														
1. Howard W Johnson, Martin Prentice Hall PTR New Jers	Gral	nam, דהק	, "Hig 2	gh sp	beec	l Dig	jital	desi	gn",	A hai	ndbo	ok of	blac	k magio
	cy,0	1002	<u>-</u> .											

DIGITAL SYSTEM			
Course Code:	FF3341-1		PCC
Teaching Hours/Week (L: T: P: S)	3:0:0:0	Credits	03
Total Teaching Hours	40+0+0	CIE + SEE Marks	50+50
Prerequisite	EC1002-1		
Teaching Department	: Electrical & I	Electronics Engineering	
Course Objectives:			
1. To understand various construct of	Verilog HDL		
2. To familiarized with Gate level abst	traction in Veri	log.	
3. To familiarized with dataflow level a	abstraction in \	/erilog.	
4. To familiarized with behavioral leve	el abstraction in	n Verilog.	
5. To comprehend the Verilog Tasks,	Functions and	Directives.	
Overview of Distitut Designs with Maria			1 - 11
Overview of Digital Design with Verilog			15 Hours
Evolution of CAD, emergence of HDLs, typ	rilag operators	wny verliog HDL DL?, Tren	ias in HDLs.
introduction to veriog. Lexical Tokens, ver	niog operators	and modules. Verling por	is, datatypes and
assignments. Basics of Gate level Modeling: Modeling (ising basic Ve	riloa aste primitives desc	ription of and/or
and buf/not type gates rise fall and turn	off delays m	in max and typical delay	s Different stens
involved in the design of combinational	circuits Verilo	a modelling of Combinati	onal circuits and
sequential circuits, logic blocks, routing a	rchitecture, de	sian flow technology - ma	apping for FPGAs
and their speed performance.			·pp
	UNIT-II		
Dataflow Modeling:			08Hours
Basics of dataflow modelling, Continu	ious assignm	ents, concatenation, del	ay specification,
expressions, operators, operands, operator	r types. Verilog	modelling of Combination	n circuits
Behavioural Modeling:			07 Hours
Structured procedures, initial and always, b	plocking and no	on- blocking statements, d	lelay control,
generate statement, event control, condition	onal statement	s, multiway branching, loo	ps, sequential
and parallel blocks. Structural description.	verilog Modell	ling of sequential circuits.	
Tacks and Eunstions:			10 Hours
Tasks and Functions:	doclaration i	nyocation automatic task	10 Hours
Tasks and Functions: Differences between tasks and functions	, declaration, i	nvocation, automatic task	10 Hours s and functions.
Tasks and Functions:Differences between tasks and functionsUseful Modelling Techniques: Procedu	, declaration, i ural continuo	nvocation, automatic task us assignments, overridi	10 Hours s and functions. ng parameters,
Tasks and Functions:Differences between tasks and functionsUseful Modelling Techniques: Proceduconditional compilation and execution, us	, declaration, i ural continuo eful system tas	nvocation, automatic task us assignments, overridi ks. Timing and Delays, Log	10 Hours s and functions. ng parameters, ic Synthesis with
Tasks and Functions:Differences between tasks and functionsUseful Modelling Techniques: Proceduconditional compilation and execution, usVerilog: Logic Synthesis, Impact of logic	, declaration, i ural continuou eful system tas synthesis, Veri	nvocation, automatic task us assignments, overridi ks. Timing and Delays, Log ilog HDL Synthesis, Synthe	10 Hours s and functions. ng parameters, ic Synthesis with esis design flow,
Tasks and Functions:Differences between tasks and functionsUseful Modelling Techniques: Proceduconditional compilation and execution, usVerilog: Logic Synthesis, Impact of logicVerification of Gate-Level Netlist.	, declaration, i ural continuou eful system tas synthesis, Veri	nvocation, automatic task us assignments, overridi ks. Timing and Delays, Log llog HDL Synthesis, Synthe	10 Hours s and functions. ng parameters, ic Synthesis with esis design flow,
Tasks and Functions:Differences between tasks and functionsUseful Modelling Techniques: Proceduconditional compilation and execution, usVerilog: Logic Synthesis, Impact of logicVerification of Gate-Level Netlist.	, declaration, i ural continuou eful system tas synthesis, Veri	nvocation, automatic task us assignments, overridi ks. Timing and Delays, Log ilog HDL Synthesis, Synthe	10 Hours s and functions. ng parameters, ic Synthesis with esis design flow,
Tasks and Functions:Differences between tasks and functionsUseful Modelling Techniques: Proceduconditional compilation and execution, usVerilog: Logic Synthesis, Impact of logicVerification of Gate-Level Netlist.Course Outcomes: At the end of the course	, declaration, i ural continuou eful system tas synthesis, Veri se student will	nvocation, automatic task us assignments, overridi ks. Timing and Delays, Log log HDL Synthesis, Synthe be able to	10 Hours s and functions. ng parameters, ic Synthesis with esis design flow,
Tasks and Functions: Differences between tasks and functions Useful Modelling Techniques: Procedu conditional compilation and execution, us Verilog: Logic Synthesis, Impact of logic Verification of Gate-Level Netlist.	, declaration, i ural continuou eful system tas synthesis, Veri se student will	nvocation, automatic task us assignments, overridi ks. Timing and Delays, Log ilog HDL Synthesis, Synthe be able to	10 Hours s and functions. ng parameters, ic Synthesis with esis design flow,
Tasks and Functions: Differences between tasks and functions Useful Modelling Techniques: Procedu conditional compilation and execution, us Verilog: Logic Synthesis, Impact of logic Verification of Gate-Level Netlist. Course Outcomes: At the end of the course 1. Learn the different Verilog HDL context	, declaration, i ural continuou eful system tas synthesis, Veri se student will istructs.	nvocation, automatic task us assignments, overridi ks. Timing and Delays, Log log HDL Synthesis, Synthe be able to	10 Hours s and functions. ng parameters, ic Synthesis with esis design flow,
Tasks and Functions: Differences between tasks and functions Useful Modelling Techniques: Procedu conditional compilation and execution, us Verilog: Logic Synthesis, Impact of logic Verification of Gate-Level Netlist. Course Outcomes: At the end of the course 1. Learn the different Verilog HDL consection 2. Familiarize the Gate level abstraction	, declaration, i ural continuou eful system tas synthesis, Veri se student will astructs. on in Verilog.	nvocation, automatic task us assignments, overridi ks. Timing and Delays, Log ilog HDL Synthesis, Synthe be able to	10 Hours s and functions. ng parameters, ic Synthesis with esis design flow,

- Verilog. and structural description of abstractions in
- 5. Understand the concept of logic synthesis and its impact in verification.

Course Outcomes Mapping with Program Outcomes & PSO

↓ Course Outcomes I <thi< th=""> I I</thi<>		Program Outcomes→	1	2	3	4	5	6	7	8	9	10	11	12	PS	0
EE3341-1.1 3 - 1 - - - - - - - 1 - - - 1 - EE3341-1.3 2 3 - - 2 - - - - 1 1 - - EE3341-1.5 2 3 - - 2 - - - - 1 - 1 - EE3341-1.5 2 3 - - 2 - - - - 1 1 - EE3341-1.5 2 3 - - 2 - - -<	↓ C /	ourse Outcomes			-		-			-					1	2
EE3341-1.2 2 3 - - 2 - - - 1 - EE3341-1.3 2 3 - - 2 - 1 - - 1 - - 1 - - 1 - EE3341-1.4 2 3 - - 2 - - - - 1 - EE3341-1.5 2 3 - - 2 - - - - 1 - 1 - - 1 - EE3341-1.5 2 3 - - 2 - - - 1 - 1 - I - - 1 - I - I - I - I - I - I I I I I I I I	•	EE3341-1.1	3	-	-	-	-	-	-	-	-	_	-	_	-	1
EE3341-1.3 2 3 - - 2 - - - - 1 - EE3341-1.4 2 3 - - 2 - - - - - 1 - EE3341-1.4 2 3 - - 2 - - - - - 1 - EE3341-1.5 2 3 - - 2 - - - - 1 - 1 - EE3341-1.5 2 3 - - 2 - - - - 1 1 - EE3341-1.5 2 3 - - 2 - - - 1 1 - EE3341-1.5 2 3 - - 2 - - - 1 1 - Iters Neth McGraw Hill International Ed. 1998. 1998. 2011 <	-	EE3341-1.2	2	3	-	-	2	-	-	-	-	-	-	1	-	2
EE3341-1.4 2 3 - - 2 - - - - 1 - EE3341-1.5 2 3 - - 2 - - - - 1 - 1 - EE3341-1.5 2 3 - - 2 - - - - 1 - 1 - EE3341-1.5 2 3 - - 2 - - - - 1 1 - EE3341-1.5 2 3 - - 2 - - - - 1 1 - Iters EE3341-1.5 2 3 - - 2 - - - 1 - 1 - 1 - Iters Iters<		EE3341-1.3	2	3	-	-	2	-	-	-	-	-	-	1	-	1
EE3341-1.5 2 3 - 2 - - - - 1 - 1: Low 2: Medium : TEXTBOOKS: 1. Z. Navabi, "VHDL", McGraw Hill International Ed. 1998. 2. Nazeih M. Botros, "HDL Programming (VHDL and Verilog)", Cengage Learning, 1st 2011 3. Charles H. Roth. Jr.; "Digital Systems Desgin using VHDL", Thomson Learning, Inc., 2004 4. S. Palnitkar, "Verilog HDL: A Guide to Digital Design and Synthesis", Prentice Hall, N 1996. REFERENCE BOOKS: I 1. Stephen Brwon & Zvonko Vranesic, "Fundamentals of Digital Logic with VHDL Design McGrw-Hill, New Delhi, 2003 2. Floyd, "Digital Fundamentals using VHDL", Pearson Education, 2003J. Bhaskar, "VHDL		EE3341-1.4	2	3	-	-	2	-	-	-	-	-	-	1	-	1
1: Low 2: Medium 2 TEXTBOKS: 1. Z. Navabi, "VHDL", McGraw Hill International Ed. 1998. 2. Nazeih M. Botros, "HDL Programming (VHDL and Verilog)", Cengage Learning, 1st 2011 3. Charles H. Roth. Jr., "Digital Systems Desgin using VHDL", Thomson Learning, Inc., 200 4. S. Palnitkar, "Verilog HDL: A Guide to Digital Design and Synthesis", Prentice Hall, N 1996. REFERENCE BOOKS: 1. Stephen Brwon & Zvonko Vranesic, "Fundamentals of Digital Logic with VHDL Design McGrw-Hill, New Delhi, 2003 2. Floyd, "Digital Fundamentals using VHDL", Pearson Education, 2003J. Bhaskar, "VHDL		EE3341-1.5	2	3	-	-	2	-	-	-	-	-	-	1	-	2
TEXTBOOKS: 1. Z. Navabi, "VHDL", McGraw Hill International Ed. 1998. 2. Nazeih M. Botros, "HDL Programming (VHDL and Verilog)", Cengage Learning, 1st 2011 3. Charles H. Roth. Jr:, "Digital Systems Desgin using VHDL", Thomson Learning, Inc., 200 4. S. Palnitkar, "Verilog HDL: A Guide to Digital Design and Synthesis", Prentice Hall, N 1996. REFERENCE BOOKS: 1. Stephen Brwon & Zvonko Vranesic, "Fundamentals of Digital Logic with VHDL Design McGrw-Hill, New Delhi, 2003 2. Floyd, "Digital Fundamentals using VHDL", Pearson Education, 2003J. Bhaskar, "VHDL"												1: Lo	w 2:	Med	ium	3: High
 TEXTBOOKS: Z. Navabi, "VHDL", McGraw Hill International Ed. 1998. Nazeih M. Botros, "HDL Programming (VHDL and Verilog)", Cengage Learning, 1st 2011 Charles H. Roth. Jr:, "Digital Systems Desgin using VHDL", Thomson Learning, Inc., 2004 S. Palnitkar, "Verilog HDL: A Guide to Digital Design and Synthesis", Prentice Hall, N 1996. REFERENCE BOOKS: Stephen Brwon & Zvonko Vranesic, "Fundamentals of Digital Logic with VHDL Design McGrw-Hill, New Delhi, 2003 Floyd, "Digital Fundamentals using VHDL", Pearson Education, 2003J. Bhaskar, "VHDL 																
 Z. Navabi, "VHDL", McGraw Hill International Ed. 1998. Nazeih M. Botros, "HDL Programming (VHDL and Verilog)", Cengage Learning, 1st 2011 Charles H. Roth. Jr:, "Digital Systems Desgin using VHDL", Thomson Learning, Inc., 2004 S. Palnitkar, "Verilog HDL: A Guide to Digital Design and Synthesis", Prentice Hall, N 1996. REFERENCE BOOKS: Stephen Brwon & Zvonko Vranesic, "Fundamentals of Digital Logic with VHDL Design McGrw-Hill, New Delhi, 2003 Floyd, "Digital Fundamentals using VHDL", Pearson Education, 2003J. Bhaskar, "VHDL 	EXTB	OOKS:														
 Nazeih M. Botros, "HDL Programming (VHDL and Verilog)", Cengage Learning, 1st 2011 Charles H. Roth. Jr:, "Digital Systems Desgin using VHDL", Thomson Learning, Inc., 200 S. Palnitkar, "Verilog HDL: A Guide to Digital Design and Synthesis", Prentice Hall, N 1996. REFERENCE BOOKS: Stephen Brwon & Zvonko Vranesic, "Fundamentals of Digital Logic with VHDL Design McGrw-Hill, New Delhi, 2003 Floyd, "Digital Fundamentals using VHDL", Pearson Education, 2003J. Bhaskar, "VHDL 	1.	Z. Navabi, "VHDL", McGraw	Hill	Inte	rnati	iona	l Ed.	199	8.							
 2011 Charles H. Roth. Jr:, "Digital Systems Desgin using VHDL", Thomson Learning, Inc., 200 S. Palnitkar, "Verilog HDL: A Guide to Digital Design and Synthesis", Prentice Hall, N 1996. REFERENCE BOOKS: Stephen Brwon & Zvonko Vranesic, "Fundamentals of Digital Logic with VHDL Design McGrw-Hill, New Delhi, 2003 Floyd, "Digital Fundamentals using VHDL", Pearson Education, 2003J. Bhaskar, "VHDL 	2.	Nazeih M. Botros, "HDL Pro	ogra	mmi	ing (VHD	DL ar	nd V	'erilc	og)",	Cer	igage	e Leai	ning,	, 1st	edition,
 Charles H. Roth. Jr:, "Digital Systems Desgin using VHDL", Thomson Learning, Inc., 200 S. Palnitkar, "Verilog HDL: A Guide to Digital Design and Synthesis", Prentice Hall, N 1996. REFERENCE BOOKS: Stephen Brwon & Zvonko Vranesic, "Fundamentals of Digital Logic with VHDL Design McGrw-Hill, New Delhi, 2003 Floyd, "Digital Fundamentals using VHDL", Pearson Education, 2003J. Bhaskar, "VHDL 		2011														
 4. S. Palnitkar, "Verilog HDL: A Guide to Digital Design and Synthesis", Prentice Hall, N 1996. REFERENCE BOOKS: 1. Stephen Brwon & Zvonko Vranesic, "Fundamentals of Digital Logic with VHDL Design McGrw-Hill, New Delhi, 2003 2. Floyd, "Digital Fundamentals using VHDL", Pearson Education, 2003J. Bhaskar, "VHDL 	3.	Charles H. Roth. Jr:, "Digital	Syst	ems	Des	gin	usin	g V⊦	IDL"	, The	oms	on Le	arnin	g, Ind	., 20	02.
1996. REFERENCE BOOKS: 1. Stephen Brwon & Zvonko Vranesic, "Fundamentals of Digital Logic with VHDL Design McGrw-Hill, New Delhi, 2003 2. Floyd, "Digital Fundamentals using VHDL", Pearson Education, 2003J. Bhaskar, "VHDL	4.	. S. Palnitkar, "Verilog HDL: A Guide to Digital Design and Synthesis", Prentice Hall, NJ, USA,														
REFERENCE BOOKS: 1. Stephen Brwon & Zvonko Vranesic, "Fundamentals of Digital Logic with VHDL Design McGrw-Hill, New Delhi, 2003 2. Floyd, "Digital Fundamentals using VHDL", Pearson Education, 2003J. Bhaskar, "VHDL		1996.														
 Stephen Brwon & Zvonko Vranesic, "Fundamentals of Digital Logic with VHDL Design McGrw-Hill, New Delhi, 2003 Floyd, "Digital Fundamentals using VHDL", Pearson Education, 2003J. Bhaskar, "VHDL 	REFER	ERENCE BOOKS:														
McGrw-Hill, New Delhi, 2003 2. Floyd, "Digital Fundamentals using VHDL", Pearson Education, 2003J. Bhaskar, "VHDL	1.	. Stephen Brwon & Zvonko Vranesic, "Fundamentals of Digital Logic with VHDL Design", Tata														
2. Floyd, "Digital Fundamentals using VHDL", Pearson Education, 2003J. Bhaskar, "VHDL		McGrw-Hill, New Delhi, 2003														
	2.	Floyd, "Digital Fundamental	s us	ing ۱	/HD	L", P	ears	on E	duc	atior	ח, 20	03J. I	3hask	ar, "\	/HDL	
Primer", Pearson Education Asia 2001.		Primer", Pearson Education Asia 2001.														
3. A.A.Phadke, S.M.Deokar,"Digital Logic Design and VHDL", Wiley India, 1 st edition 2009	3.	A.A.Phadke, S.M.Deokar,"Di	gital	Log	ic D	esig	n an	d VF	HDL"	′, Wi	ley I	ndia,	1 st ec	dition	200	9
4. J. Bhaskar, "Verilog HDL Synthesis - A Practical Primer", Star Galaxy Publishing,(Allented	4.	J. Bhaskar, "Verilog HDL Syr	the	sis -	A Pr	actio	al P	rime	er", S	tar (Gala	xy Pu	blishi	ng,(A	llent	own,
PA) 1998																
E Books / MOOCs/ NPTEL	Book	cs / MOOCs/ NPTEL														
1. https://nptel.ac.in/courses/117105080	1.	https://nptel.ac.in/courses/1	171	.050	80								-			

	EMI	BEDDED SYSTE	MS	
Cou	rse Code:	EE3342-1	Course Type	PCC
Tea	ching Hours/Week (L: T: P: S)	3:0:0:0	Credits	03
Tota	al Teaching Hours	40+0+0	CIE + SEE Marks	50+50
Prei	requisite	EC1002-1, EE	2003-1	
	Teaching Department:	Electrical & El	lectronics Engineering	ļ
Cour	se Objectives:			
1.	To familiarize the concept of embed	dded system		
2.	To identify various processing elem	ents of embedd	led system and their sti	ucture
3.	To introduce various memory eleme	ents used in em	bedded systems	
4.	To understand various interfacing d	levices used wit	h embedded systems	
5.	To introduce the concept of Real Til	me Operating S	ystems	
• .	1	UNIT-I		
Intro	duction		•••	08 Hours
Embe	edded systems overview-design (challenge-optin	nizing metrics-proces	sor technology-IC
techr	lology- design technology- autom	ation- synthesi	is- verification: hardw	are /software co-
simui	ation, trade-offs.			
Proc			store single surrages	
Custo	single purpose processor desig	jn-Ri level cu	stom single purpose	processor design-
optin	nzing custom single purpose process	sors -General p	ourpose processor's sol	tware: architecture,
opera	ral nurness processor design	oment environn	ient – ASIPS - selecting	a microprocessor -
gene				
Mom	07/			07 Hours
Intro	duction-memory write-ability and st	orage permane	nce common memor	v types-composing
mem	ory-memory hierarchy and caches Ca	che manning te	chniques advanced RA	M
Inter	facing	ene mapping te		09 Hours
Intro	duction-communication basics-micro	processor inter	facing: I/O addressing	interrupts DMA-
Arbit	ration-multilevel bus architectures-ad	vanced commu	nication principles-seria	al protocols-parallel
proto	cols-wireless protocols-Standard sir	nale purpose r	processor's peripherals	timers, counters,
watch	ndog timers, UART, PWM, LCD contro	ollers, keypad co	ontrollers, stepper mot	or controllers, ADC
and F	RTC.	, ,,	, ,,	,
		UNIT-III		
Intro	duction to Real-Time Operating Sys	stems		09 Hours
Softw	vare architectures, Hard and soft real	time systems,	Basic functions of RTO	S kernel, tasks and
states	s, tasks and data, semaphores and sha	ared data, Messa	age Ques, Mailboxes ar	nd Pipes
Cour	se Outcomes: At the end of the cours	se student will b	be able to	
1.	Describe the overview of embedded	d system to com	nprehend associated te	
2.	Analyse various processing element	t in an embedde	ed system to develop o	chnologies
3.			· · · · · · · · · · · · · · · · · · ·	chnologies ptimum design
4	Identify the necessity of memory de	evices to compre	ehend use in embedde	chnologies ptimum design d system
4.	Identify the necessity of memory de Describe peripherals associated with	evices to compre h embedded sys	ehend use in embedde stem to interface variou	chnologies ptimum design d system ıs modules
4.	Identify the necessity of memory de Describe peripherals associated with Describe architecture of RTOS to co	evices to compro h embedded sys omprehend func	ehend use in embedde stem to interface variou tional capabilities of RT	chnologies ptimum design d system 1s modules ⁻ OS
4. 5. Cour	Identify the necessity of memory de Describe peripherals associated with Describe architecture of RTOS to co se Outcomes Mapping with Program	evices to compro h embedded symprehend func m Outcomes &	ehend use in embedde stem to interface variou tional capabilities of RT PSO	chnologies ptimum design d system 1s modules TOS
4. 5. Cour	Identify the necessity of memory de Describe peripherals associated with Describe architecture of RTOS to co se Outcomes Mapping with Program	evices to compre- h embedded sys omprehend func m Outcomes &	ehend use in embedde stem to interface variou tional capabilities of R PSO	chnologies ptimum design d system us modules TOS

	↓ C	ourse Outcomes													1	2	
		EE3342-1.1	3	-	-	-	-	-	-	-	-	-	-	-	-	-	
		EE3342-1.2	2	3	-	-	-	-	-	-	-	-	-	1	-	1	
		EE3342-1.3	2	3	-	-	-	-	-	-	-	-	-	1	-	1	
		EE3342-1.4	2	3	-	-	-	-	-	-	-	-	-	1	-	2	
		EE3342-1.5	2	3	-	-	1	-	-	-	-	-	-	1	-	2	
												1: Lo	ow 2:	Med	ium	3: Hi	gh
TE	ХТВ	OOKS:															
	1.	Frank Vahid and Tony Givargis, "Embedded system design: A unified hardware/Software															
		introduction", Third edition, John Wiley & sons, 2010															
	2. David E Simon, "Embedded System Premier", Addison Wesley																
RE	REFERENCE BOOKS:																
	1.	Raj Kamal , "Embedded Syst	:em'	', 2r	nd Ec	litio	nTat	a M	cGra	w-H	ill Eo	ducat	ion				
	2.	Wayne Wolf, "Computers as	co	mpo	nent	ts: P	rinci	oles	of E	mbe	edde	d Co	mput	ing S	yster	n	
		Design", Morgan Kaufman F	Publ	ishe	rs, 20	008.											
	3.	Santanu Chattopadhyay, "E	nbe	dde	d sys	stem	Des	sign'	', PH	I Lea	arnir	ng Pv	t. Ltd.	., 201	.0		
	4.	Steave Heath, "Embedded s	yste	m D	esig	n", S	eco	nd e	ditic	n, 2	003						
	5.	Daniel D. Gajski, Samar. Abo	di, A	ndre	as. C	Gers	tlaue	er "E	mbe	dde	d sy	stem	desig	gn: M	odeli	ng,	
		synthesis and verification", S	Sprir	nger	, 200	9											
	6.	5. Jonathan.W.Valvano, "Embedded Microcomputer systems: Real Time Interfacing", Third															
		edition, Cengage learning,2012															
EE	E Books / MOOCs/ NPTEL																
	1.	https://nptel.ac.in/courses/1	.081	.020	45												

Г

INTRODUCTION TO ASIC AND FPGA DESIGN											
		1	1								
Cou	rse Code:	EE3343-1	Course Type	PCC							
Teac	hing Hours/Week (L: T: P: S)	3:0:0:0	Credits	03							
Tota	l Teaching Hours	40+0+0	CIE + SEE Marks	50+50							
Prer	equisite	EC1002-1									
	Teaching Department	Electrical & Ele	ectronics Engineering								
Cours	e Objectives:										
1.	To study the design flow of differen	it types of ASIC									
2.	To familiarize the different types of	programming te	echnologies and logic devic	es							
3.	To learn the architecture of differen	t types of FPGA									
4.	To understand partitioning, floor pl	anning, placeme	ent and routing including ci	rcuit							
	extraction of ASIC										
5.	5. To analyse the synthesis, Simulation and testing of digital systems.										
6.	6. To understand the importance and applications of SOC.										
OVERVIEW OF ASIC AND PLD											
Types	of ASICs - Design flow – CAD tools u	ised in ASIC Des	ign – Programming Techno	logies:							
Antifuse – static RAM – EPROM and EEPROM technology, Programmable Logic Devices : ROMs and											
EPROMs – PLA–PAL. Gate Arrays – CPLDs and FPGAs											
ASIC	PHYSICAL DESIGN			07 Hours							
Syster	System partition - partitioning - partitioning methods – interconnect delay models and measurement										
of del	ay - floor planning -placement – Rou	iting : global rou	uting - detailed routing - sp	ecial routing -							
circuit	extraction – DRC										
LOGI	SYNTHESIS, SIMULATION AND T	ESTING	<u></u>	08 Hours							
Desig	n systems - Logic Synthesis - Hair gat	e ASIC -schema	tic entry - low level design la	anguage - PLA							
of cirr	-EDIF- Cridesign representation. Ven	mulation	millesis -VHDL and logic sy	nthesis - types							
	idiation -boundary scan test – fault si		matic test pattern generatic								
	blacks routing architecture design	flow tachnolog	manning for EDCAs								
		2 2 and their sec	jy - mapping for FPGAS, A	AIIIIXAC4000 -							
5000	A S FLEX 8000/10000, ACTEL S ACT-1, and $7000 - Altera MAX 9000 - Sparta$,2,3 and their spe	EPGAs - Apox and Cyclopa	EDCAc							
5000			TPOAS - Apex and Cyclone	TFUAS.							
SOCI	DESIGN	UNIT-III		09 Hours							
Desig	n methodologies – Processes and	flows - Ember	ded software developme	$rac{100}{100}$							
Techr	iques for SOC testing –configurable	SOC – hardware	A software codesign Case	studies: Digital							
came	a. Bluetooth radio / modem. SDRAM	and USB	, solution could sight case .	Judies. Digital							
carrie											
Cours	e Outcomes: At the end of the cours	se student will b	e able to								
1. Describe the design flow to identify different types of ASIC											
2.	Apply different types of programmi	na techniques to	o desian logic devices								
3.	Apply logic synthesis, simulation an	d testing to des	ian digital systems								
4.	Analyse various manufacturer FPGA	to write progra	m for given application								
5.	Describe embedded software devel	opment to desig	an applications of SOC.								
Cours	e Outcomes Mapping with Program	m Outcomes &	PSO								
	Program Outcomes \rightarrow 1 2	3 4 5 6	5 7 8 9 10 11 12	2 PSO ↓							

\downarrow	Course Outcomes													1	2	
	EE3343-1.1	3	-	-	-	-	-	-	-	-	-	-	-	-	-	
	EE3343-1.2	1	3	-	-	1	-	-	-	I	-	-	1	-	-	
	EE3343-1.3	1	3	-	-	2	-	-	-	I	-	-	1	-	-	
	EE3343-1.4	2	2	1	3	2	-	-	-	-	-	-	2	-	-	
	EE3343-1.5	2	3	-	-	1	-	-	-	-	-	-	1	-	-	
	1: Low 2: Medium 3: High															
TEXT	TEXTBOOKS:															
1	M.J.S .Smith, "Application Specific Integrated Circuits, Addison -Wesley Longman Inc.,1997															
2	S. Trimberger, "Field Pro	grar	nma	ble	Gat	e A	rray	Tee	chnc	logy	/", E	dr, K	luwe	r Ac	aden	nic
	Publications, 1994.															
REFE	RENCE BOOKS:															
1	John V.Oldfield, Richard C	Dore	, "Fie	eld P	rogr	amn	nabl	e Ga	te A	rray	s", W	iley P	ublic	ation	s199	5.
2	P.K.Chan & S. Mourad, "Digital Design Using Field Programmable Gate Array", PrenticeHall,															
	1994.															
3	Parag.K.Lala, "Digital System	n De	sign	usin	ng Pr	ogra	amm	nable	e Log	gic D)evice	es", B	SP, 2	003		
E Boo	oks / MOOCs/ NPTEL															
1	https://www.nptelvideos.co	m/c	ours	e.phj	p?id	=54	5									

LINEAR INTEGRATED CIRCUITS AND ITS APPLICATIONS										
Course Code:EE3344-1Course TypePCC										
Teaching Hours/Week (L: T: P: S)	3:0:0:0	Credits	03							
Total Teaching Hours40+0+0CIE + SEE Marks50+50										
Prerequisite EC1001-1, EE2101-1										

Teaching Department: Electrical & Electronics Engineering

Cours	e Objectives:								
1.	To understand the basics of op-amp and demonstrate the use of Op-Amp in sigr processing applications	nal							
2.	To analyze the non-linear behavior of the Op-Amp and design Op-Amp circuits in loop and with positive feedback	n open							
3	To understand the applications of on-amp and 555 timers for waveform generation	on							
<u>э</u> . Д	To design active filters A/D D/A converters and voltage regulator using on-amp	011							
т.	INIT_I								
Op-A	mp Fundamentals	05 Hours							
(Brief	review of differential amplifier, current mirror, active load, level shifter, output stag	e: ac and dc							
characteristics).Basic building blocks using Op-Amps. Inverting/Non-inverting VCVS, Integrators, Differentiators, CCVS and VCCS, Instrumentation Amplifiers									
On-A	mn Signal Processing Circuits								
	ion Half wave and full wave rectifiers, limiting circuits, clamping circuits, peak detec	tors comple							
and hold circuits.									
Op-A	mp Nonlinear Circuits	05 Hours							
Op-Amps in switching circuits, crossing detectors, inverting Schmitt trigger circuits, non-inverting circuits, Astable multivibrators, Monostable multivibrators, Op-Amp based SCR triggering circuit.									
UNIT-II									
Wave	form generators	06 Hours							
Phase Shift Oscillators, Colpitts Oscillators, Hartley Oscillator,									
555 TIMER - Monostable and Astable multivibrators and applications,									
Ramp Generator: Triangle generator, Sawtooth generator Sine wave generator: Requirement for									
sinusoidal oscillations, Wien-bridge and twin-T oscillators.									
Digita	ally controlled frequency synthesizer	04 Hours							
PLL Fu	Indamentals, PLL synthesizer, Totally digital synthesizer								
Active	e Filters	05Hours							
First a	nd Second order high pass and low pass filters. Band pass filter, Band stop filters. H	ligher order							
filters.	State variable filter, Universal active filter								
	UNIT-III								
D to A	A and A to D Converters	05 Hours							
Introd	luction, basic DAC techniques -weighted resistor DAC, R-2R ladder DAC, inverted I	R-2R DAC, A							
to D co dual s	onverters -parallel comparator type ADC, counter type ADC, successive approximati lope ADC, DAC and ADC Specifications.	on ADC and							
Volta	ge Regulators	05 Hours							
Op-Ar SMPS.	mp Regulators, precision voltage regulator IC Regulators, Fixed Voltage Regulators	(78/79, XX),							
Cours	e Outcomes: At the end of the course student will be able to								
1. Analyze the basic building blocks of Op-Amp and signal processing circuits									
2.	Analyze the non-linear behavior of Op-Amp to design signal processing circuits								
3.	Design various waveform generator using op-amp and 555 times								
4.	Analyze the principles of PLL and design active filters								
5.	Analyze the D/A and A/D converters and design voltage regulators using op-amp)							
Cours	e Outcomes Mapping with Program Outcomes & PSO								
	Program Outcomes \rightarrow $\begin{vmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \end{vmatrix}$	PSO↓							

	↓ C	ourse Outcomes													1	2	
		EE3344-1.1	2	2	3	-	2	-	-	-	-	-	-	-	1	2	
		EE3344-1.2	2	2	3	-	2	-	-	-	-	-	-	-	2	2	
		EE3344-1.3	2	2	З	-	2	-	-	I	-	-	I	-	2	2	
		EE3344-1.4	2	2	2	3	2	-	-	-	-	-	-	-		2	
		EE3344-1.5	2	2	3	-	2	-	-	I	-	-	I	-	3	3	
												1: Lo	w 2:	Med	ium	3: Hi	gh
TE	ХТВ	OOKS:															
	1.	David A Bell, "Operational A Edition, 2011.	mpl	ifier	and	Line	ear IO	C's",	Oxfo	ord l	Jniv	ersity	Pres	s-Ne	w De	lhi, 3ı	rd
	2.	Sedra and Smith, "Microeled	tror	nic C	ircui	ts", (Oxfo	ord L	Jnive	ersity	/ pre	ss, 5t	h Edi	ition,	2005		
	3.	 Ramakanth Gayakwad, "Operational Amplifiers and Linear IC's", 4th edition — Prentice Hall, 2000. 															
RE	FER	ENCE BOOKS:															
	1.	Roy Choudhry, "Operationa	l am	plifie	ers a	nd L	.inea	r Int	tegra	ated	circu	uits",	New	/ Age			
		International,4th edition, Ap	oril 2	011.													
	2.	Stanley William D., "Operati	onal	am	olifie	ers a	nd Li	inea	r Int	egra	ted	circui	ts ", 4	4 th Ed	ition	,	
		Pearson Education.2001.															
	3.	Sergio Franco (1997), "Desig	gn w	ith c	pera	atior	nal a	mpli	fiers	and	lana	ilog i	ntegr	rated	circu	its",	
		McGraw Hill, New Delhi.															
EE	Book	cs / MOOCs/ NPTEL															
	1.	TI Precision Labs - Op Amps	5														
	2.	. NPTEL course on Op-Amp Practical Applications: Design, Simulation and Implementation by															
		Prof. Hardik Jeetendra Pand	ya, I	ISc I	Bang	alor	е										
	3.	Linear Integrated Circuits U	C Be	rkele	ey, S	prin	g 20	14,	Prof	. Cla	rk Tı	u-Cu	ong N	۱guy	en,		
		http://freevideolectures.con	า														

N)

Professional Elective Courses (Electric Vehicle Stream)

Course Code:EE2251-1Course TypePCCTeaching Hours/Week (L: T: P: S)3:0:0:0Credits03Total Teaching Hours40+0+0CIE + SEE Marks50+50PrereuisiteME1003-1, EE2002-1, EE3002-1ETeaching Department: Electrical & Electronics EngineeringCourse Objectives:1.Understand the basics of automotive components, subsystems, and basics of Electronic Engine Control in today's automotive industry.2.Understand the automotive sensors and actuators3.Acquire the knowledge of the Digital Engine Control Systems and control unit4.Understand the networking, communication protocols and diagnostics of the sub systems.5.Understand the requirements of reliability, safety, and smartness and future Automotive Electronic SystemsUNIT-IActour Euronic Systems.04 Hours									
Course Code:EE2251-1Course TypePCCTeaching Hours/Week (L: T: P: S)3:0:0:0Credits03Total Teaching Hours40+0+0CIE + SEE Marks50+50PrereuisiteME1003-1, EE2002-1, EE3002-1Teaching Department: Electrical & Electronics EngineeringTeaching CourseCourse Objectives:1.Understand the basics of automotive components, subsystems, and basics of Electronic Engine Control in today's automotive industry.2.Understand the automotive sensors and actuators3.Acquire the knowledge of the Digital Engine Control systems and control unit4.Understand the networking, communication protocols and diagnostics of the sub systems5.Understand the requirements of reliability, safety, and smartness and future Automotive Electronic Systems04 HoursO4 Hours									
Teaching Hours/Week (L: 1: P: S)3:0:0:0Credits03Total Teaching Hours40+0+0CIE + SEE Marks50+50PrereuisiteME1003-1, EE2002-1, EE3002-1Teaching Department: Electrical & Electronics EngineeringCourse Objectives:1.Understand the basics of automotive components, subsystems, and basics of Electronic Engine Control in today's automotive industry.2.Understand the automotive sensors and actuators.3.Acquire the knowledge of the Digital Engine Control Systems and control unit.4.Understand the networking, communication protocols and diagnostics of the sub systems.5.Understand the requirements of reliability, safety, and smartness and future Automotive Electronic Systems.UNIT-IAutomotive Fundamentals Overview04 Hours									
Total Teaching Hours 40+0 CIE + SEE Marks 50+50 Prerequisite ME1003-1, EE2002-1, EE3002-1 50 Teaching Department: Electrical & Electronics Engineering Course Objectives: 1. Understand the basics of automotive components, subsystems, and basics of Electronic Engine Control in today's automotive industry. Vertical and the automotive sensors and actuators. 3. Acquire the knowledge of the Digital Engine Control Systems and control unit. Vertical and the networking, communication protocols and diagnostics of the sub systems. 5. Understand the requirements of reliability, safety, and smartness and future Automotive Electronic Systems. UNIT-I Automotive Fundamentals Overview									
Prerequisite MELOOS-1, EE2O02-1, EESO02-1 Teaching Department: Electrical & Electronics Engineering Course Objectives: 1. Understand the basics of automotive components, subsystems, and basics of Electronic Engine Control in today's automotive industry. 2. Understand the automotive sensors and actuators. 3. Acquire the knowledge of the Digital Engine Control Systems and control unit. 4. Understand the networking, communication protocols and diagnostics of the sub systems. 5. Understand the requirements of reliability, safety, and smartness and future Automotive Electronic Systems. UNIT-I Automotive Fundamentals Overview									
Teaching Department: Electrical & Electronics Engineering Course Objectives: 1. Understand the basics of automotive components, subsystems, and basics of Electronic Engine Control in today's automotive industry. 2. Understand the automotive sensors and actuators. 3. Acquire the knowledge of the Digital Engine Control Systems and control unit. 4. Understand the networking, communication protocols and diagnostics of the sub systems. 5. Understand the requirements of reliability, safety, and smartness and future Automotive Electronic Systems. UNIT-I Automotive Fundamentals Overview									
1. Understand the basics of automotive components, subsystems, and basics of Electronic Engine Control in today's automotive industry. 2. Understand the automotive sensors and actuators. 3. Acquire the knowledge of the Digital Engine Control Systems and control unit. 4. Understand the networking, communication protocols and diagnostics of the sub systems. 5. Understand the requirements of reliability, safety, and smartness and future Automotive Electronic Systems. UNIT-I Automotive Fundamentals Overview									
1. Orderstand the basics of automotive components, subsystems, and basics of Electronic Engine Control in today's automotive industry. 2. Understand the automotive sensors and actuators. 3. Acquire the knowledge of the Digital Engine Control Systems and control unit. 4. Understand the networking, communication protocols and diagnostics of the sub systems. 5. Understand the requirements of reliability, safety, and smartness and future Automotive Electronic Systems. UNIT-I Automotive Fundamentals Overview									
2. Understand the automotive sensors and actuators. 3. Acquire the knowledge of the Digital Engine Control Systems and control unit. 4. Understand the networking, communication protocols and diagnostics of the sub systems. 5. Understand the requirements of reliability, safety, and smartness and future Automotive Electronic Systems. UNIT-I Automotive Fundamentals Overview									
2. Orderstand the adtomotive sensors and actuators. 3. Acquire the knowledge of the Digital Engine Control Systems and control unit. 4. Understand the networking, communication protocols and diagnostics of the sub systems. 5. Understand the requirements of reliability, safety, and smartness and future Automotive Electronic Systems. UNIT-I Automotive Fundamentals Overview									
3. Acquire the knowledge of the Digital Engine Control Systems and control unit. 4. Understand the networking, communication protocols and diagnostics of the sub systems. 5. Understand the requirements of reliability, safety, and smartness and future Automotive Electronic Systems. UNIT-I Automotive Fundamentals Overview									
5. Understand the requirements of reliability, safety, and smartness and future Automotive Electronic Systems. UNIT-I Automotive Fundamentals Overview 04 Hours									
St. Onderstand the requirements of reliability, safety, and sind these and lattice requirements of reliability, safety, and sind these and lattice requirements of reliability, safety, and sind these and lattice requirements of reliability, safety, and sind these and lattice requirements of reliability, safety, and sind these and lattice requirements of reliability, safety, and sind these and lattice requirements of reliability, safety, and sind these and lattice requirements of reliability, safety, and sind these and lattice requirements of reliability, safety, and sind these and lattice requirements of reliability, safety, and sind these and lattice requirements of reliability, safety, and sind these and lattice requirements of reliability, safety, and sind these and lattice requirements of reliability, safety, and sind these and lattice requirements of reliability, safety, and sind these and lattice requirements of reliability, safety, and sind these and lattice requirements of reliability, safety, and sind these and lattice requirements of reliability, safety, and sind these and lattice requirements of reliability, safety, and sind these and lattice requirements of reliability, safety, and sind these and lattice requirements of reliability and lattice requirements of reliability, safety, and sind these and lattice requirements of reliability and lattice requirements of regir									
UNIT-I Automotive Fundamentals Overview 04 Hours									
Automotive Fundamentals Overview 04 Hours									
Evolution of Automotive Electronics, Automobile Physical Configuration, Survey of Major Automotive									
Systems, The Engine – Engine Block, Cylinder Head, Four Stroke Cycle, Engine Control, Ignition System									
- Spark plug, High voltage circuit and distribution, Spark pulse generation, Ignition Timing, Diesel									
Engine, Drive Train - Transmission, Drive Shaft, Differential, Suspension, Brakes, Steering System,									
Starter Battery – Operating principle									
The Basics of Electronic Engine Control 04Hours									
Motivation for Electronic Engine Control – Exhaust Emissions, Fuel Economy, Concept of an Electronic									
Engine control system, Definition of General terms, Definition of Engine performance terms, Engine									
mapping, Effect of Air/Fuel ratio, spark timing and EGR on performance, Control Strategy, Electronic									
Fuel control system, Analysis of intake manifold pressure, Electronic Ignition.									
Automotive Control System applications of Sensors and Actuators07Hours									
Typical Electronic Engine Control System, Variables to be measured, Airflow rate sensor, Strain Gauge									
MAP sensor, Engine Crankshaft Angular Position Sensor, Magnetic Reluctance Position Sensor, Hall									
effect Position Sensor, Shielded Field Sensor, Optical Crankshaft Position Sensor, Throttle Angle									
Sensor (TAS), Engine Coolant Temperature (ECT) Sensor, Exhaust Gas Oxygen (O2/EGO) Lambda									
Sensors, Piezoelectric Knock Sensor. Solenoid, Fuel Injector, EGR Actuator, Ignition System									
UNIT-II									
Digital Engine Control Systems 06 Hours									
Digital Engine control features, Control modes for fuel Control (Seven Modes), EGR Control, Electronic									
Ignition Control - Closed loop Ignition timing, Spark Advance Correction Scheme, Integrated Engine									
Control System - Secondary Air Management, Evaporative Emissions Canister Purge, Automatic									
System Adjustment, System Diagnostics.									
Control Units U2 Hours									
Operating conditions, Design, Data processing, Programming, Digital modules in the Control unit,									
Automotive Networking									
Rus Systems – Classification Applications in the vehicle Coupling of networks Examples of									
networked vehicles Buses - CAN Bus LIN Bus MOST Bus Bluetooth Elex Bay Diagnostic Interfaces									
Vehicle Motion Control									
Typical Cruise Control System, Digital Cruise Control System, Digital Speed Sensor, Throttle									
Actuator, Digital Cruise Control configuration. Cruise Control Electronics (Digital only). Antilock									
Brake System (ABS)									

UNIT-III															
Auto	motive Diagnostics													04	Hours
Timin	g Light, Engine Analyzer, On-b	oard	d dia	gno	stics,	, Off	boar	d di	agno	ostic	s, Exp	oert S	ysten	ns, O	ccupant
Prote	ction Systems – Acceleromete	r ba	sed /	Air B	ag s	yste	ms.								
Emer	ging Technologies													05	Hours
Alterr	native Fuel Engines, Electric a	nd H	Hybr	id ve	ehicl	es, F	uel	cell	pov	vere	d car	s, Co	llisio	n Av	oidance
Radar	r warning Systems, Low tire	pres	sure	wai	rning	g sys	stem	n, He	eads	Up	disp	lay, S	Speed	:h Sy	nthesis,
Navig	jation – Navigation Sensors - R	adio	o Na	vigat	tion,	Sigr	npos	t na	viga	tion,	dead	d reck	onin	g nav	igation,
Voice	Recognition Cell Phone diali	ng, <i>I</i>	Adva	ince	d Cr	uise	Con	trol,	Sta	bility	y Aug	gmen	tatio	n, Au	tomatic
drivin	ig Control														
Cours	se Outcomes: At the end of th	ne co	ourse	e stu	dent	t will	be	able	to						
1.	Acquire an overview of auto	mot	ive c	omp	oone	ents,	subs	syste	ems,	and	basi	cs of	Elect	ronic	
	Engine Control in today's au	tom	otiv	e inc	lustr	у.									
2.	Use available automotive se	nsor	s an	d ac	tuate	ors v	vhile	inte	erfac	ing	with	micrc	cont	roller	's /
	microprocessors during auto	omo	tive	syste	em d	lesig	In.								
3.	Acquire the knowledge of th	e D	igita	l Eng	gine	Con	trol	Syst	ems	and	cont	rol u	nit of	а	
	automotive system.														
4.	Understand the networking	of v	ariou	is m	odul	les ir	n aut	tomo	otive	e sys	tems,	, com	mun	icatic	n
	protocols and diagnostics of the sub-systems.														
5.	5. Design and implement the electronics that attribute the reliability, safety, and smartness to														
	the automobiles, providing a	add-	on c	comt	orts	and	get	fair	idea	on	futur	e Aut	omo	tive	
	Electronic Systems.														
Cours	se Outcomes Mapping with	Prog	gran	<u>1 Ou</u>	tcor	nes	<u>& P</u>	<u>so</u>			10		10		
	Program Outcomes→	1	2	3	4	5	6	/	8	9	10	11	12	PS	, O ↓
\downarrow	Course Outcomes		_											1	2
	EE2251-1.1	2	3	-	-	-	-	-	-	-	-	-	-	-	1
	EE2251-1.2	2	3	-	-	-	-	-	-	-	-	-	-	-	1
	EE2251-1.3	2	3	-	-	1	-	-	-	-	-	-	-	-	1
	EE2251-1.4	2	3	-	-	2	-	-	-	-	-	1	-	-	2
	EE2251-1.5	2	2	3	-	1	-	-	-	-	-	2	1	-	2
											1: Lo	ow 2:	Med	ium	3: High
TEXT	BOOKS:			• •					• "						
1.	1. William B. Ribbens, "Understanding Automotive ElectronicsII", , 6th Edition, Elsevier														
	Publishing.														
2. Robert Bosch Gmbh (Ed.) "Bosch Automotive Electrics and Automotive Electronics Systems															
and Components, Networking and Hybrid Drive", 5th edition, John Wiley& Sons Inc., 2007															
1.	Najamuz Zaman, "Automot	ve E	lect	ronic	<u>s De</u>	esigr	<u>n ⊦ur</u> '	ndar	nent	al'' 1	irst e	dition	<u>а, Spi</u>	inge	<u>r 2015.</u>
2.	Hillier's, "Fundamentals of N	/loto	or Ve	enicle	eleo	chnc	logy	/ on	Cha	SSIS	and E	Body	Elect	ronic	s", Fifth
	Edition, Nelson Thrones, 2007.														

	HYBRID AN	ID PLUG-IN HYE									
		FEADED 1	Course Trues								
Cou	rse Code:	EE2252-1	Course Type								
Teac	Ling Hours/ Week (L: 1: P: S)	3:0:0:0		<u> </u>							
Dror		40 ME1002-1 K		50+50							
FIEI	Toaching Dopartmo	nt: Electrical & l	Electronics Engineering								
Cours	se Objectives:										
Cours	se objectives.										
	To study fundamentals of Hybrid	Electric Vehicles	(HEV) and EV powertrain (component							
1.	sizina.			lomponent							
2.	To understand advanced HEV are	chitectures and d	vnamics of HEV powertrair	 ו							
	To understand plug-in hybrid ele	ctric vehicles arc	hitecture, power managem	nent and							
3.	^{3.} component sizing.										
4.	4. To introduce special hybrid vehicles										
	UNIT-I										
HEV	HEV Fundamentals 05 Hours										
Introduction, Vehicle Model, Vehicle Performance, EV Powertrain Component Sizing, Series Hybrid											
Vehic	Vehicle, Parallel Hybrid Vehicle, Wheel Slip Dynamics										
Adva	Advanced HEV Architectures and Dynamics of HEV Powertrain: 10 Hours										
Princi	ple of Planetary Gears, Toyota Priu	s and Ford Escap	e Hybrid Powertrain, GM T	wo-Mode Hybrid							
Transi	Transmission, Dual-Clutch Hybrid Transmissions, Hybrid Transmission Proposed by Zhang et al.										
Renau	ult IVT Hybrid Transmission, Timker	Two-Mode Hyb	rid Transmission, Tsai's Hyb	orid Transmission,							
Hybrid	d Transmission with Both Speed an	d Torque Couplin	g Mechanism, Toyota High	nlander and Lexus							
Hybrid	d, E-Four-Wheel Drive, CAMRY H	ybrid, Chevy Vol [.]	t Powertrain, Dynamics of	[:] Planetary-Based							
Transi	missions										
		UNIT-II									
Plug-	in Hybrid Electric Vehicles			15 Hours							
Introc	duction to PHEVs, PHEV Architec	tures, Equivalen	t Electric Range of Blend	ded PHEVs, Fuel							
Econo	omy of PHEVs, Power Management	of PHEVs, PHEV	Design and Component Si	zing, Component							
Sizing	of EREVs, Component Sizing of E	Blended PHEVs, H	HEV to PHEV Conversions,	Other Topics on							
PHEV	s, Vehicle-to-Grid Technology										
		UNIT-III									
Speci	al Hybrid Vehicles			10 Hours							
Hydra	aulic Hybrid Vehicles, Off-road HEV	s, Diesel HEVs, El	ectric or Hybrid Ships, Airc	raft,							
Locon	notives, Other Industrial Utility App	blication Vehicles	HEV Applications for Milli	tary Vehicles							
Cours	Se Outcomes: At the end of the co	urse student will	be able to								
1.	Describe the fundamentals of HE	V and planetary	gears to estimate EV powe	rtrain							
-	component sizing										
Analyze advanced HEV architectures and speed - torque coupling mechanism to											
	understand hybrid transmissions	of different man	utacturers.								
3.	Describe the architecture of plug	-ın hybrid electri	c vehicles to understand pe	ower							
	management.										
4.	Analyze the component sizing ar	nd concept of ver	icle-grid technology.								
5.	Compare and contrast various sp	ecial hybrid vehi	cles.								
Cours	se Outcomes Mapping with Prog	ram Outcomes a	ያ PSO								
, F	· · · · ·			· · · · · · · · · · · · · · · · · · ·							
	Program Outcomes \rightarrow 1	2 3 4 5	6 7 8 9 10 11	12 PSO ↓							

\downarrow	Course Outcomes													1	2	
	EE2252-1.1	3	-	-	-	-	-	-	-	-	-	-	-	-	-	
	EE2252-1.2	2	3	-	-	-	-	-	-	-	-	-	-	-	-	
	EE2252-1.3	2	3	-	-	-	-	-	-	-	-	-	-	-	-	
	EE2252-1.4	2	3	-	-	-	-	-	-	-	-	-	-	-	2	
	EE2252-1.5	2	3	-	-	-	-	-	-	-	-	-	-	-	-	
											1: Lo	w 2:	Med	ium	3: Hi	gh
TEXT	BOOKS:															
1	Chris Mi, M. Abul Masrur, "H	Hybr	id E	lectri	ic Ve	ehicle	es-P	rinci	ples	and	l App	licatio	ons V	Vith F	Praction	cal
	Perspectives", Wiley, 2011															
REFE	REFERENCE BOOKS:															
1	Tom Denton, "Electric and H	lybr	id El	ectri	c Ve	hicle	es", s	seco	nd e	ditio	on, In	stitut	e of r	noto	r	
	Industry, 2 nd edition, 2020.															
E Boo	oks / MOOCs/ NPTEL															
1	https://nptel.ac.in/courses/1	1081	.030	09												

Г

HYBRID ELECTRIC VEHICLES											
Cour	rca Cada:	EE2252_1		PCC							
Teac	bing Hours/Week (I · T· P· S)	3.0.0.0	Credits	03							
Tota	I Teaching Hours	40	CIE + SEE Marks	50+50							
Prer	equisite	ME1003-1, I	E3101-1	50.50							
	Teaching Department:	Electrical &	Electronics Engineering								
Cours	e Objectives:										
1	To understand the fundamentals of	electric and h	ybrid electric vehicles, EV polic	cies,							
<u> </u>	standards and EV architecture										
2.	To understand control strategies an	id design princ	ciples of series hybrid vehicle c	lrive train.							
3.	3. train										
4. To study the control principles of plua-in hybrid electric vehicles											
5 To understand fundamentals of regenerative breaking and CAN fundamentals											
UNIT-I											
Electric Vehicles 06 Hours											
Configurations of electric vehicles (EVs), Performance of EVs, Tractive Effort in Normal Driving, Energy											
Consumption. EV Policies & Standards											
Hybrid Electric Vehicles 08 Hours											
Concept of Hybrid Electric Drive Trains, Architectures of Hybrid Electric Drive Trains, Series Hybrid											
Electric Drive Trains, Parallel Hybrid Electric Drive Trains											
		UNIT-II									
Desig	n Principle of Series (Electrical Cou	ıpling) Hybric	l Electric Drive Train	10 Hours							
Opera	ition Patterns, Control Strategies, Des	ign Principles	of a Series (Electrical Coupling)) Hybrid Drive							
I rain,	Design Example										
Paral	el (Mechanically Coupled) Hybrid I	Electric Drive	Train Design	06 Hours							
Drive	Train Configuration and Design Obi	ectives. Contr	ol Strategies, Parametric Desig	on of a Drive							
Train				g e. ae							
		UNIT-III									
Desig	n and Control Methodology of Ser	ries–Parallel (Torque and Speed Coupling)	04 Hours							
Hybri	d Drive Train										
Drive	Train Configuration, Drive Train Cont	rol Methodolc	ogy, Drive Train Parameters De	sign							
Desig	n and Control Principles of Plug-In	Hybrid Elect	ric Vehicles	04 Hours							
Statist	tics of Daily Driving Distance, Energy	Management	Strategy, Energy Storage Desig	gn.							
CAN Communication 02 Hours											
CAN Fundamentals, CAN message frames, Typical Automotive Networks,											
Cours	e Outcomes: At the end of the cours	se student will	be able to								
1.	Describe the fundamentals of electr	ric and hybrid	electric vehicles to understand	EV							
2	Analyze control strategies to design	of hybrid veh	icle drive train								
<u>∠.</u> २	Analyze control methodology and c	lesian of serie	s-parallel hybrid drive train								
5.	Describe the control principles of pl	lug-in hvhrid e	electric vehicles to predict the	enerav							
4.	4. requirements.										

Describe CAN communication and fundamentals of regenerative breaking to compare the 5. energy management strategies. **Course Outcomes Mapping with Program Outcomes & PSO PSO Program Outcomes**→ 1 2 3 4 5 7 8 9 10 12 6 11 **Course Outcomes** 1 2 EE2253-1.1 3 -_ _ _ -_ _ -_ _ _ _ _ EE2253-1.2 2 3 _ 2 _ _ _ _ _ _ _ _ 2 EE2253-1.3 2 3 _ _ _ _ _ _ _ _ _ _ _ 2 2 EE2253-1.4 3 -_ _ _ _ _ _ _ _ _ EE2253-1.5 _ _ 3 --_ -_ _ _ _ 1 _ 1: Low 2: Medium 3: High **TEXTBOOKS:** Mehrdad Ehsani, Yimin Gao, Ali Emadi, "Modern Electric, Hybrid Electric, and Fuel Cell 1. Vehicles", CRC Press, 2010. **REFERENCE BOOKS:** Tom Denton, "Electric and Hybrid Electric Vehicles", second edition, Institute of motor 1. Industry, 2nd edition, 2020.

E Books / MOOCs/ NPTEL

1. https://nptel.ac.in/courses/108106170

	ENERGY STORAGE 8	A BATTERY MAN	AGEMENT SYSTEMS	
Cour	co Codo:	EE2251 1		PCC
Teac	se code. hina Hours/Week (I · T· P·S)·	3.0.0.0	Course Type. Credits:	03
Tota	Teaching Hours:	40+0+0	CIF + SFF Marks	50+50
Prer		MF1003-1 FF3	8101-1	50.50
	Teaching Departmen	t: Flectrical & Fle	ctronics Engineering	
Cours	e Objectives:			
1.	To understand the selection of bat	tteries for Electric	vehicle.	
2.	To model energy storage system			
3.	To familiarize various concepts of	BMS		
4.	To understand functional blocks o	f BMS		
5.	To study design steps of BMS			
6.	To introduce hardware implement	ation of BMS		
	· · · · ·			
Enera	v storage for EV and HEV	UNIT-1		08 Hours
Energy	v storage requirements. Battery par	ameters. Types of	Batteries, Modelling of Batt	erv. Fuel Cell
basic	principle and operation. Types of F	Fuel Cells, PEMFC	and its operation. Modellin	a of PEMFC,
Super	capacitors.			g - · · - · · · · ·,
Paran	neter Estimation of Energy Storag	e System		07 Hours
Metho	ods of Determining the State of Ch	arge, Estimation of	of Battery Power Availability	, Battery Life
Predic	tion, Cell Balancing, Estimation of C	ell Core Temperat	ure, Battery System Efficienc	y
	<u> </u>	•		
		UNIT-II		
BMS (Options			07 Hours
Funct	ionality, CCCV Chargers, Regulato	ors, Meters, Monit	ors, Balancers, Protectors,	Functionality
Comp	arison, Technology, Simple (Ana	alog), Sophisticat	ed (Digital), Technology	Comparison,
Topol	ogy, Centralized, Modular Master-S	lave, Distributed, 1	opology Comparison	-
BMS	Functions			08 Hours
Measu	irement, Voltage, Temperature, C	urrent, Managem	ent, Protection, Thermal N	lanagement,
Baland	ing, Redistribution, Distributed Cha	arging, Evaluation,	State of Charge and Depth	of Discharge,
Capac	ity, Resistance, State of Health (S	SOH), External Co	mmunications, Dedicated A	Analog Wire,
Dedica	ated Digital Wire, Data Link, Loggir	ng and Telemetry,	Off-the-Shelf BMSs, Cell M	anufacturers'
BMSs,	Comparison			
Dople	wing a RMS	UNIT-III		10 Hours
Briof	wonviow of analog and digital BMS	docian Installing	Battony Pack Docian BMS Co	10 Hours
Drief C Dack	BMS Connections to System Con	uesign, mstailing, stiguring Coll Co	plattery rack Design, Divis CC	tion System
Fack,	uration Testing Troubleshooting (Grounding Shield	ing Filtering Wire Pouting	tion, system
Conne	Juration, resting, roubleshooting, v	Grounding, Smela	ing, rittering, whe routing	
Cours	e Outcomes: At the end of the cou	rse student will he	able to	
1	Explore concepts and selection of	storage devices fo	or electric vehicles	
2	Model and estimate parameter of	energy storage sy	stem.	
2. 2	Identify process to implement RM ¹	S		
4	Illustrate functionality of BMS	-		
5	Analyze the hardware implementa	tion aspects of RM	15	
Cours	e Outcomes Mapping with Progra	am Outcomes &	PSO	

		Program Outcomes \rightarrow	1	2	3	4	5	6	7	8	9	10	11	12	PS	O↓	
	↓ Co	ourse Outcomes													1	2	
		EE3251-1.1	1	3	-	-	-	-	-	-	-	I	-	-	-	-	
		EE3251-1.2	1	3	-	-	-	-	-	-	-	I	-	-	1	-	
		EE3251-1.3	1	2	3	-	-	-	-	-	-	-	-	-	1	-	
		EE3251-1.4	1	2	2	3	-	-	-	-	-	-	-	-	-	1	
		EE3251-1.5	1	3	-	-	-	-	-	-	-	-	-	-	-	1	
												1	L: Lo	w 2: I	Mediun	n 3: Hig	jh
Т	TEXTBOOKS:																
	1. Sandeep Dhameja, "Electric vehicle battery systems", Newnes Publishing, 2002																
	2.	Davide Andrea, "Battery	Mai	nage	emer	nt Sy	vster	ns fo	or La	arge	Lith	ium-I	on B	attery	/ Packs"	, ARTEC	Ή
		HOUSE 2010.															
R	EFER	ENCE BOOKS:															
	1.	Rui Xiong, "Battery Man	ager	men	t Alg	jorit	hm f	for E	lect	ric V	ehic	les", s	Sprin	ger 2	019		
	2.	Nicolae Tudoroiu, "Batt	ery	Man	age	men	t Sy	sten	ns o	f Ele	ectri	c and	Hyb	orid E	lectric \	/ehicles	s",
		MDPI 2021															

	POWER ELECT	RON	IICS	& D	RIV	ES F	OR I	ELEC	TRI	C VE	HICL	.ES			
Com				FF 2	252	1		<u> </u>						DCC	
Cour	rse Code: whing Hours (Mook (I., T. D. S	<u>``</u>		2.0	252	-1		Cou	rse	ıype)			02	
Teac	Lining Hours/ week (L: 1: P: 5)		5:U: 40-	0:0 .0±0	`				E M	arke			501	50
Dror				407 EE2	101	, _1			T 36		arks			50+	50
FIEI	Tooching Dono	rtm	onti	ELS	trica	- <u>-</u> , 	Eloc	tron	vice	Enai	incor	ina			
Cours	e Objectives:		ent.	LIEC	uica		LIEC		lics	Liigi	neer	ing			
	To explain the principles of	now	or o	loctr	onice	cor	wort	torci		lin L					
<u> </u>	To understand the concept	of h		w ch	arge	rc ar	nd th	norm	useu nal m	1 III I 1 2 1 2 1		ant of	FЦЕЛ	now	(or
2.	converters		atter	y ch	arge	15 01	iu ti	lenn		iana	yenne		I I I L V	pow	
2	To study various electric driv		الحما	in F	Vca	nd th	Doir	cont	rol						
<u>J</u> .	To analyze design and mod	olinc	n of t	tract	ion r	noto	rc	com	101						
<u>т.</u> 5	To introduce vehicular power	or co	ntro	d ctr			ns. anor	av n	nana	non	hont				
UNIT-I															
Power Electronics in HEVs 07 Hours															
Introd	luction Brinciple of Dower El	octro	nice	- Po	ctific	vrc 11	cod	in L		Bu	ck Co	nvor	tor Ll		
Introduction, Principle of Power Electronics, Rectifiers Used in HEVs, Buck Converter Used in HEVs, Non-isolated Bidirectional DC-DC Converter, Voltage Source Inverter, Current Source Inverter,															
Non-isolated Bidirectional DC-DC Converter, Voltage Source Inverter, Current Source Inverter, Isolated Bidirectional DC-DC Converter, ,															
	Converters Applied in Hy	hrid	<u>ہ ،</u> Flor	ctric	Voh	iclo								08	Hours
DC-DC Converters Applied in Hybrid Electric Vehicle08 HoursPWM Rectifier in HEVs, EV and PHEV Battery Chargers, Emerging Power Electronics Devices, Circuit															
PWM Rectifier in HEVs, EV and PHEV Battery Chargers, Emerging Power Electronics Devices, Circuit Packaging, Thermal Management of HEV Power Electronics															
Packaging, Thermal Management of HEV Power Electronics															
UNIT-II															
UNII-II Electric Drives and Control in HEVs 15 Hours															
Electric Drives and Control in HEVs 15 Hours Introduction, Induction Motor Drives, and Control, Permanent Magnet Motor Drives, Switched															
Introduction, Induction Motor Drives, and Control, Permanent Magnet Motor Drives, Switched Reluctance Motors, Doubly Salient Permanent Magnet Machines, BLDC Motor and Control, Design															
and Si	izing of Traction Motors. Ther	mal	Ana	lvsis	and	Μοι	delir	יווויכ זמ סו	f Tra	ctio	n Mo	tors		101,	Design
		inter	7 1110	19010	unu		aem	. <u>g</u> o.			11110				
				U	NIT-	·III									
Vehic	ular Power Control Strategy	/ an	d Fn	era	/ Ma	nad	eme	ent						10	Hours
Mode	ling and Simulation of HEV P) NWPI	r Fle	ctror	nics	mag								10	nours
widuc		5000		ctioi	lics										
Cours	At the end of the		nurs	e ctu	Iden	t will	he	ahle	to						
cours			5015		ucn		be	ubic	10						
1	Analyze various power elect	roni		าทุงค	rtorg		d in	HEV	/c						
<u> </u>	Describe various converters	for	EV h	attei	rv ch	ardi	na e	emer	<u>.</u> ainc		wer e	lectro	onics	devi	res
2.	and thermal management	101 1		atter	y ch	argn	ig, c	linei	ging	j po	wer e	iccur	JIICS	ucvi	
2	Analyze the operation and c	onti		fvar	ious	مامد	tric	drive	2011.20	i ha	n HE	/c			
<u> </u>	Soloct design model and p	orfo	rm t	horm		nalve		ftra	ction			v 5.			
4. 5	Applyze vehicular power cor	otrol	ctro	too	iai a	mode	515 U	cim			$\frac{1013}{1000}$	Norce		torc	
5.		nuOl	รแส	itegy		noue		21110	uiate	; n c	• hor		JIIVE	iers	
C	A Outcomes Manning with	Dura		~ ^-			o, n	50							
Cours	e Outcomes Mapping with	Pro	gran	n Ou	ττοι	nes	αΡ	50							
		1	٦ ا	2	Λ	F	G	7	0	0	10	11	10	DC	
		1	2	5	4	2	0	[′]	o	9	10	11		1	
		1	2	+										L	
			3 2	-	-	-	-	-	-	-	-	-	-	-	
	EE3252-1.2		5	-	- 1	-	- 1	- 1	-	- 1	-	-	-	-	-

2

EE3252-1.3

N

3

_

_

_ _ _

1

_

_

_

		EE3252-1.4	2	3	-	-	-	-	-	-	-	-	-	-	-	1	
		EE3252-1.5	2	3	-	-	-	-	-	-	-	-	-	-	-	2	
												1: Lo	w 2:	Med	ium	3: Hi	gh
TE	TEXTBOOKS:																
	1.	Chris Mi, M. Abul Masrur, "Hybrid Electric Vehicles-Principles and Applications With Practical															
		Perspectives", Wiley, 2011															
RE	FER	ENCE BOOKS:															
	1.	Wei Liu, "Hybrid Electric Vel	nicle	Sys	tem	Мос	delin	g ar	nd Co	ontro	ol", S	Secon	nd Ed	ition,	Wile	y,201	.7
EE	Bool	<pre>cs / MOOCs/ NPTEL</pre>															
	1.	https://www.coursera.org/co	ertif	icate	s/pc	wer	-eleo	ctror	nics-	mot	ors-	ev-iit	boml	bay			

	THER	MALN	/AN	AG	EME	NT (OF E	V S	/STI	EMS				
Cou	rse Code:		E	E32	53-1	_	С	ours	se T	ype			PCC	
Tead	hing Hours/Week (L: T: P: S	S)	3	8:0:0	:0		C	redi	ts				03	
Tota	I Teaching Hours		4	0			С	IE +	SEE	: Mai	rks		50+5	50
Prer	equisite		E	E10	01-1	_								
	Teaching Dep	oartme	nt: I	Elect	rica	8	Elec	tron	ics	Engir	neeri	ng		
Cours	se Objectives:													
1.	To study semiconductor tee	chnolo	qy a	nd t	he in	npo	rtan	ce o	f the	ermal	man	ager	nent	
2.	To understand and derive e	equival	ent 1	therr	mal r	esis	tanc	e ne	two	rk				
3.	To explain temperature dist	tributio	on in	the	fin a	nd	heat	trar	nsfer	[.] rate				
4.	To comprehend advanced	cooling	ı tec	hno	loaie	es in	eleo	tror	nic e	auipi	ment			
5.	To describe importance and	d speci	, ficat	ions	of n	nicro	bele	ctror	nics	pack	ages			
		I									<u> </u>			
				U	NIT-	·I								
Introduction to thermal management of Electronics 05 Hours Consistent ductor, Technology, Trende, Technology, Secondary, Secondar														
Semio	conductor Technology Trend	ls, Terr	pera	ature	e De	pen	den	t Ele	ctric	cal Fa	ailure	s, In	portance	of Heat
Trans	fer in Electronics, Thermal De	sign Pi	roce	SS		•							1	
Therr	nal Resistance Network	5											10 Hours	;
Thern	nal Resistance Concept, Sei	ries Th	erm	al L	ayer	s, P	aral	lel T	her	mal	Layer	rs, G	ieneral Re	esistance
Netw	ork, Thermal Contact Resist	ance, 1	Inter	face	Ma	teria	als, 1	Spre	adir	ng Th	nerma	al Re	esistance,	Therma
Resist	ance of Printed Circuit Board	ls (PCB	s)					•		5				
				U	NIT-	II								
Fins a	nd Heat Sinks												07 Hours	;
Fin Ed	quation; Fin Thermal Resista	nce, Ef	fecti	vene	ess a	nd	Effic	iency	y; Fi	ns w	ith V	ariab	le Cross S	Sections
Heat	Sink Thermal Resistance, Effe	ctivene	ess, a	and I	Effici	ency	y; He	eat S	ink	Manu	ufactu	uring	Processes	S
Adva	nced Cooling Technologies												08 Hours	i
Heat	Pipes- Capillary Limit, Boiling	J Limit,	Son	ic Li	mit,	Entr	ainn	nent	Lim	nit, O	ther I	Heat	Pipe Perfo	ormance
Limits	, Heat Pipe Applications in Ele	ectroni	c Co	oling	g, He	eat P	ipe S	Seleo	ctior	n and	Mod	leling	g, Thermos	syphons
Liquio	l Cooling													
				U	IT-I	III								
Therr	nal Specification of Microe	lectror	nic P	acka	ages								10 Hours	;
Impo	tance of Packaging, Packagi	ng Typ	es, S	Spec	ificat	tion	s of	Mic	roel	ectro	nic P	acka	ges- Juno	ction-to
Air T	hermal Resistance, Junction	-to-Ca	se a	nd.	Junct	tion	-to-	Boar	d T	herm	al R	esista	ances, Par	rameters
Affect	ing Thermal Characteristics o	of a Pao	ckag	е										
Cours	Se Outcomes: At the end of t	the cou	irse	stud	ent v	will I	be a	ble t	0					
1.	Understand the possible fa	ilures a	and t	the i	mpo	rtar	ice c	of eff	icie	nt he	at tra	ansfe	r techniqu	ies to
	modify the design to cool a	a systei	n											
2.	Develop equivalent therma	l resist	ance	e net	work	< to	calc	ulate	e the	e hea	t trar	nsfer	rate	
3.	Compute temperature distr	ibutior	n in t	he f	in an	d he	eat t	rans	fer r	ate to	o red	uce ł	<u>neat dissip</u>	ation
4.	Describe the different tech	niques	useo	d for	C00	ling	eleo	tror	nic e	quipi	ment			
5.	Calculate thermal resistance	e of dif	ferer	nt el	ectro	onic	pacl	kage	s to	calcu	late	maxi	mum allov	wable
	junction temperature													
Cours	e Outcomes Mapping with	Progr	am	Out	com	es 8	ν PS	0				1		
	Program Outcomes→	1 2	3	4	5	6	7	8	9	10	11	12	PSO	\downarrow
\downarrow	Course Outcomes												1	2

	EE3253-1.1	3	2	-	-	-	-	-	-	-	-	-	-	-	-	
	EE3253-1.2	З	2	I	-	-	-	I	-	-	-	-	-	-	-	
	EE3253-1.3	З	2	I	-	-	-	I	-	-	-	I	-	-	-	
	EE3253-1.4	3	2	I	-	-	-	I	-	-	-	1	-	-	-	
	EE3253-1.5	З	2	I	-	-	-	I	-	-	-	-	-	-	-	
												1: Lo	ow 2:	Mediu	m 3: Hi	gh
	ΤΕΥΤΡΟΟΚς.															
TEXT	TEXTBOOKS:															
1.	1. Younes Shabany, "Heat Transfer: Thermal Management of Electronics" 2010 , CRC Press.															
REFE	RENCE BOOKS:															
1.	Jerry Sergent, Al Krum, "Th	erm	al M	lana	gem	ent	Han	dbo	ok: F	or E	lectro	onic A	Assen	nblies H	ardcove	er",
	1998, Mc Graw- Hill.															
2.	"Vehicle thermal Manage	men	t Sy	sten	ns C	onfe	eren	ce P	roce	edir	ngs",	1st E	ditio	n; 2 <mark>013</mark> ,	Coven	try
	Techno centre, UK		-													
3.	T. Yomi Obidi, "Thermal M	lana	gem	ent	in A	utor	noti	ve a	pplic	catic	ns", 2	2015,	SAE	Internat	ional.	

Course Code:EE2351-1Course TypeTeaching Hours/Week (L: T: P:S):3:0:0:0CreditsTotal Teaching Hours:40+0+0CIE + SEE Marks														
Course Code: EE2351-1 Course Type Teaching Hours/Week (L: T: P:S): 3:0:0:0 Credits Total Teaching Hours: 40+0+0 CIE + SEE Marks														
Total Teaching Hours: 40+0+0 CIE + SEE Marks														
I Otal Teaching mours: $ 40+0+0 $ Cie + See Warks	5. U3													
Proroquisito	5. 50+50													
Teaching Department: Electrical & Electronics Engineering														
1 To understand the methods of cruptography														
To know the importance of embedded security														
2. To understand the natural cocurity issues in automative natural														
5. To understand the requirement of firmware regiliency in automotive application														
	11.													
Cruntography Introduction														
Introduction to cryptography, Classical Cryptosystem, Block Cipher Data Encryption Standard (DES),														
Introduction to cryptography, Classical Cryptosystem, Block Cipher Data Encryption Standard (DES), Triple DES, Modes of Operation, Stream Cipher. Advanced Encryption Standard (AES), Introduction														
Triple DES, Modes of Operation, Stream Cipher. Advanced Encryption Standard (AES), Introduction to Public Key Cryptosystem, Diffie-Hellman Key Exchange. Knapsack Cryptosystem, RSA														
Countosystem	Osystem, KSA													
Brotecting IP in cloud connected world														
Protecting IP in cloud connected world 0 Protection of IP, CODE isolation, encryption, hardware security, trustonic expertise to														
Protection of IP, CODE isolation, encryption, hardware security, trustonic expertise tool for IP protection.														
UNIT-II Emboddod Cogurity, Introduction														
Authoritication Integrity and Confidentiality Properties of secure system Security														
importance of keys in security sustemization shallenges distribution of ke	vic tools and													
examples (cryptoAuthlib)	ys, tools and													
Automotive Network security	08 Hours													
Motivation for automotive network security Automotive security message	authentication													
Automotive security IC attributes security challenges	dathernication,													
ratemetive security relations, security chancinges.														
UNIT-III														
Firmware Resiliency in Automotive application	10 Hours													
Automotive growth drivers. Firmware Vulnerabilities in automotive. Simplified protection														
Platform firmware protection (secure boot controller)	511,7 (atomotive													
Firmware Vulnerabilities in data centre.														
Course Outcomes: At the end of the course student will be able to														
 Course Outcomes: At the end of the course student will be able to 1. Comprehend the algorithms of cryptography for data and network security 	1. Comprehend the algorithms of cryptography for data and network security													
 Course Outcomes: At the end of the course student will be able to Comprehend the algorithms of cryptography for data and network security Explain the importance of Protection of IP in cloud connected network 														
 Course Outcomes: At the end of the course student will be able to Comprehend the algorithms of cryptography for data and network security Explain the importance of Protection of IP in cloud connected network Analyze the importance of key security and customization challenges for embed 	•dded													
 Course Outcomes: At the end of the course student will be able to Comprehend the algorithms of cryptography for data and network security Explain the importance of Protection of IP in cloud connected network Analyze the importance of key security and customization challenges for ember security 	edded													
 Course Outcomes: At the end of the course student will be able to Comprehend the algorithms of cryptography for data and network security Explain the importance of Protection of IP in cloud connected network Analyze the importance of key security and customization challenges for ember security Describe the importance of message authentication and security challenges are 	edded													
 Course Outcomes: At the end of the course student will be able to Comprehend the algorithms of cryptography for data and network security Explain the importance of Protection of IP in cloud connected network Analyze the importance of key security and customization challenges for embed security Describe the importance of message authentication and security challenges are for automotive network. 	edded Id solutions													
 Course Outcomes: At the end of the course student will be able to Comprehend the algorithms of cryptography for data and network security Explain the importance of Protection of IP in cloud connected network Analyze the importance of key security and customization challenges for ember security Describe the importance of message authentication and security challenges ar for automotive network. Analyze the importance of firmware resiliency in automotive applications 	edded 1d solutions													
 Course Outcomes: At the end of the course student will be able to 1. Comprehend the algorithms of cryptography for data and network security 2. Explain the importance of Protection of IP in cloud connected network 3. Analyze the importance of key security and customization challenges for ember security 4. Describe the importance of message authentication and security challenges ar for automotive network. 5. Analyze the importance of firmware resiliency in automotive applications. 	edded 1d solutions													
 Course Outcomes: At the end of the course student will be able to Comprehend the algorithms of cryptography for data and network security Explain the importance of Protection of IP in cloud connected network Analyze the importance of key security and customization challenges for ember security Describe the importance of message authentication and security challenges ar for automotive network. Analyze the importance of firmware resiliency in automotive applications. 	edded nd solutions													
 Course Outcomes: At the end of the course student will be able to Comprehend the algorithms of cryptography for data and network security Explain the importance of Protection of IP in cloud connected network Analyze the importance of key security and customization challenges for ember security Describe the importance of message authentication and security challenges ar for automotive network. Analyze the importance of firmware resiliency in automotive applications. 	edded nd solutions													
 Course Outcomes: At the end of the course student will be able to Comprehend the algorithms of cryptography for data and network security Explain the importance of Protection of IP in cloud connected network Analyze the importance of key security and customization challenges for ember security Describe the importance of message authentication and security challenges ar for automotive network. Analyze the importance of firmware resiliency in automotive applications. 	edded nd solutions													

			2	-		I	I	I								
		EE2351-1.1	3	2	-	-	-	-	-	-	-	-	-	-	-	-
		EE2351-1.2	3	2	-	-	-	-	-	-	-	-	-	-	-	-
		EE2351-1.3	3	2	-	-	-	-	-	-	-	-	-	-	-	-
		EE2351-1.4	3	2	-	-	-	-	-	-	-	-	-	-	-	-
		EE2351-1.5	3	2	I	-	-	-	-	-	-	I	-	-	-	-
													L: Lov	w 2: I	Mediur	n 3: High
TEX	EXTBOOKS:															
-	1. Wiiliam Stallings, "Cryptography and Network security Principles and practices ", 4 th Edition,															
	prentice hall, November 16,2015.															
E-Re	-Resources:															
-	1.	https://onlinecourses.nptel.ac.in/noc21_cs16/preview														
	2.	https://www.microchip.com/en-us/solutions/embedded-security														
	3.	https://vimeo.com/3713	953	54												
2	4.	https://vimeo.com/3915	793	50?a	liId=	=eyJ	pIjoi	K1V	6Z1	M0V	'TRIc	dVR3	SmIP	aCIsIr	nQiOiJN	/bWxYM
		1prT2ZQNXhTemVoWE	₹kR\	/RBP	T0if	Q%2	253C	0%2	53D							
[5.	https://vimeo.com/4009	913	51?a	liId=	=eyJ	pIjoi	N2I	1Z2I	N2c0) pBN	JUloc	lmFs2	ZyIsIn	QiOiJ5	bFlzT3IV
		UnVkRjNRSIpXd0xJNmR	BPT	0ifQ	%25	3D%	6253	BD			-			-		
6	<u>5</u> .	SHIELDS UP! Webinar #2	27: F	Platfo	orm	Firm	war	e Re	silie	ncy	in A	utom	otive	Арр	lication	<u>s</u>
		(2822370) (on24.com)								-						
	7.	https://page.microchip.o	.om,	/FY2	1Q2	-Shi	elds	UP-	Harc	dGat	es_L	P-Sh	ieldsl	Jp-W	/ebinar3	8.html
8	3.	SHIELDS UP! Webinar #	33: C	Data	Cen	ter S	Secu	rity	Solu	ition	s (29	97732	22) (o	n24.c	com)	

BATTERY STORAGE AND	FUEL CELLS	FOR ELECTRIC	VEHICLES
---------------------	------------	--------------	----------

Course Code:	EE2352-1	Course Type	PCC
Teaching Hours/Week (L: T: P: S)	3:0:0:0	Credits	03
Iotal leaching Hours	40+0+0	CIE + SEE Marks	50+50
Prerequisite	CY1001-1		
Teaching Departme	nt: Electrical & I	Electronics Engineering	
Course Objectives:		Lieetronies Engineering	
1. To understand working of various	s energy storage	devices	
2. To introduce the concept of fuel	cells		
3. To analyze fuel cell hybrid electri	c drive train desi	ign	
4. To compare various energy stora	ige systems and	modeling	
5. To discuss battery charge control	and manageme	nt	
	UNIT-I		
Peaking Power Sources and Energy St	orages		09 Hours
Electrochemical Batteries, Ultracapacito	ors, Ultra-High-S	Speed Flywheels, Hybridiz	zation of Energy
Storages			
Battery Characterization			07 Hours
Comparison of Different Energy Storag	je Technologies	for HEVs, Modeling Base	ed on Equivalent
Electric Circuits			
	UNI1-11		0.011
Fuel cells	ada Datantial an	d Current Valtage Curre	UbHours
Consumption Eucl Coll System Character	oue Potential an	Tachnologias Eyel Synnly	
	ensuics, ruei Cell	rechnologies, ruei suppr	y, Non-Hydrogen
Fuel Cell Hybrid Electric Drive Train D	esian		08 Hours
Configuration, Control Strategy, Parame	tric Design, Mot	or Power Design, Power D	esian of the Fuel
Cell System, Design of the Power and En	ergy Capacity of	the PPS, Design Example	eeigii ei tiie i tee
	UNIT-III		
Battery charge management			10 Hours
Battery Charging Control, Charge Manag	jement of Storag	je Devices, Flywheel Energ	y Storage
System, Hydraulic Energy Storage System	n, Fuel Cells and	Hybrid Fuel Cell Energy St	orage System
modeling.			
Course Outcomes: At the end of the cou	urse student will	be able to	
1. Describe various energy storage t	echnologies use	d in EVs	
2. Analyze the various energy storac	ge technologies	tor HEV	
3. Analyze the characteristics of fuel	cells	<u> </u>	
4. Analyze the design of Hybrid Elec	tric Vehicle using	g tuel cells	
5. Analyze battery charge control ar	nd charge manag	gement of storage devices.	<u>.</u>
	0.1		
Course Outcomes Mapping with Prog	ram Outcomes a	x rsu	

Program Outcomes→	1	2	3	4	5	6	7	8	9	10	11	12	PSO↓		
↓ Course Outcomes													1	2	

		EE2352-1.1	3	-	-	-	-	-	-	I	I	-	1	-	1	-	
		EE2352-1.2	2	З	I	I	-	I	-	I	I	-	1	-	1	1	
		EE2352-1.3	2	3	-	-	-	-	-	-	-	-	-	-	-	1	
		EE2352-1.4	2	3	-	-	-	-	-	-	-	-	-	-	-	1	
		EE2352-1.5	2	3	-	-	-	-	-	-	-	-	-	-	-	1	
												1: Lo	w 2:	Med	ium	3: Hi	gh
ТЕХ	FEXTBOOKS:																
	1. Mehrdad Ehsani, Yimin Gao, Ali Emadi, "Modern Electric, Hybrid Electric, and Fuel Cell																
		Vehicles", CRC Press, 2010.															
	2.	2. Chris Mi, M. Abul Masrur, "Hybrid Electric Vehicles-Principles and Applications With Practical															
		Perspectives", Wiley, 2011	-														
REF	ER	ENCE BOOKS:															
	1.	Tom Denton, "Electric and H	lybr	id El	ectri	c Ve	hicle	es", s	seco	nd e	ditic	on, Ins	stitut	e of r	noto	r	
		Industry, 2 nd edition, 2020.															
ΕB	ook	s / MOOCs/ NPTEL															
	1.	https://nptel.ac.in/courses/1	081	0300)9												

	ELECTRIC VEHICLE E	BATTERY CHAP	RGING TECHNIQUES						
Cou	rse Code:	EE3351-1	Course Type	PCC					
Tead	ching Hours/Week (L: T: P: S)	3:0:0:0	Credits	03					
Tota	al Teaching Hours	40+0+0	CIE + SEE Marks	50+50					
Prer	requisite	CY1001-1							
	Teaching Department:	: Electrical & E	lectronics Engineering						
Cours	se Objectives:								
1.	To understand fundamentals and se	election of stora	age devices for electric vehic	les					
2. To study the electric vehicle battery parameters and analyze effect on battery efficiency									
3.	To explain electric vehicle battery cl	harging techno	logies						
4.	To understand electric vehicle batte	ery discharging	behavior.						
5.	To understand electric vehicle batte	ery performance	e and thermal management.						
		UNIT-I							
Elect	ric Vehicle Batteries			03 Hours					
Electr	ic Vehicle Operation, Battery Basic	s, Introductior	n to Electric Vehicle Batte	ries, Fuel Cell					
Techr	nology, Choice of a Battery Type for E	lectric Vehicles							
Elect	ric Vehicle Battery Efficiency			06 Hours					
Effect	s of VRLA Battery Formation on Ele	ctric Vehicle Pe	erformance, Regenerative B	raking, Electric					
Vehic	le Body and Frame, Fluids, Lubricar	nts, and Coolar	nts. Effects of Current Dens	sity on Battery					
Form	ation. Effects of Excessive Heat on Ba	itterv Cycle Life	Battery Storage. The Lithiu	im-ion Battery.					
Tracti	on Battery Pack Design		,,,						
indet									
Elect	ric Vehicle Battery Capacity			06 Hours					
Batte	ry Capacity. The Temperature Deper	ndence of Batt	ery Capacity, State of Cha	rge of a VRLA					
Batte	ry. Capacity Discharge Testing of VRL	A Batteries, Bat	tery Capacity Recovery. Defi	nition of NiMH					
Batte	ry Capacity, Li-ion Battery Capacity,	Battery Capaci	ity Tests, Energy Balances f	for the Flectric					
Vehic	le		,						
		UNIT-II							
Flect	ric Vehicle Battery Charging	•••••		05 Hours					
Charc	ning a Single VRIA Battery Charge	e Completion	of a Single VRIA Battery						
Com	pensation During Battery Charging	harging NiMH	Batteries Bate of Charge Ef	fect on Charge					
	ptance Efficiency of Traction Battery	Packs Environ	mental Influences on Char	aina Charaina					
Moth	ods for NiMH Batteries Charging Tec	hnology Batter	w Pack Corrective Actions	ging, charging					
Floct	ric Vehicle Battery East Charging Tee	n-board & off	-hoard charging						
Fact	Tharaing Process East Charging Strate	anies The Fast	Charger Configuration Usin						
Equal	izing/Loveling Chargers, Inductive Ch	arging_Makin	a Pocharging Easion Pango	y Tosting of					
Eloctr	is Vahielas Using East Charging, Elast	ric Vobiclo Spor	g Recharging Easier, Range	resting of					
Electi	ic vehicles Using Fast charging, Elect	ne venicie spee		ess charging.					
Float	ric Vohiclo Pottom, Discharging								
Defin		finition of NIN	All Battom Canadity Diash						
	ition of VRLA Battery Capacity, De		vin Dattery Capacity, Discr	arge Capacity					
Benav	Nor, Discharge Characteristics of Li-io	on Battery, Disc	-	e Battery Pack,					
Cold-	weather impact on Electric Venicle Ba	attery Discharge	e						
P1 4		UNI1-111		10.11					
Elect	ric venicle Battery Performance								
The E	Sattery Performance Management S	ystem, BPMS	Inermal Management Syste	em, The BPMS					
Charg	ging Control, High-Voltage Cabling a	and Disconnec	ts, Satety in Battery Desigr	i, Battery Pack					

Safety—Electrolyte Spillage and Electric Shock, Charging Technology, Electrical Insulation Breakdown Detection, Electrical Vehicle Component Tests, Building Standards, Ventilation

Course Outcomes: At the end of the course student will be able to

4		
	1.	Explore concepts and selection of storage devices for electric vehicles.
	2.	Analyze the electric vehicle battery parameters and battery efficiency.
	3.	Explore electric vehicle battery charging technologies
	4.	Analyze electric vehicle battery discharging behavior.
	5.	Analyze electric vehicle battery performance and thermal management.
1		

Course Outcomes Mapping with Program Outcomes & PSO

Program Outcomes→	1	2	3	4	5	6	7	8	9	10	11	12	PS	O↓
↓ Course Outcomes													1	2
EE3351-1.1	3	-	-	-	-	-	-	-	-	-	-	-	-	-
EE3351-1.2	2	3	-	-	-	-	-	-	-	-	-	-	-	1
EE3351-1.3	2	3	-	-	-	-	-	-	-	-	-	-	-	1
EE3351-1.4	2	3	-	-	-	-	-	-	-	-	-	-	-	1
EE3351-1.5	2	3	-	-	-	-	-	-	-	-	-	-	-	-

1: Low 2: Medium 3: High

TEXTBOOKS:

1. Sandeep Dhameja, "Electric vehicle battery systems", Newnes Publishing, 2002

REFERENCE BOOKS:

1. Wei Liu, "Hybrid Electric Vehicle System Modeling and Control", Second Edition, Wiley, 2017

MODELING AND CON	TROL OF HYBR	ID ELECTRIC VEHICLES	
Course Code:	EE3352-1	Course Type	
Teaching Hours/ Week (L: 1: P: S)	3:0:0:0		03
Droroquicito	40	CIE + SEE WIARKS	50+50
Tooching Department	EEIUUI-2	actronics Engineering	
Course Objectives:		ectronics Engineering	
Course Objectives.			
1 To model hybrid electric vehicle sys	tem component	c	
2 To model energy storage system	tem component	3	
3 To study hybrid electric vehicle vibr	ation noise & c	ontrol	
4 To analyze the performance of HEV			
Modeling of Hybrid Electric Vehicle			15 Hours
Modeling of an Internal Combustion Engli	ne Modeling of	an Electric Motor Mode	ling of the Battery
System Modeling of the Transmission	System Modeli	ng of a Multi-mode F	lectrically Variable
Transmission Lever Analogy as a Tool for	r FCVT Kinemati	ic Analysis Modeling of	the Vehicle Body
Modeling of the Final Drive and Wheel PIC)-based Driver M	lodel	the vehicle body,
	bused briver in		
Modeling and Parameter Estimation of	Energy Storage	System	08 Hours
Modeling and Parameter Estimation of I Electrical equivalent model of energy stora	Energy Storage ge system, Meth	System nods of Determining the	08 Hours State of Charge,
Modeling and Parameter Estimation of Electrical equivalent model of energy stora Estimation of Battery Power Availability, Ba	Energy Storage ge system, Meth Ittery Life Predic	System nods of Determining the tion, Cell Balancing, Estir	08 Hours State of Charge, nation of Cell Core
Modeling and Parameter Estimation of I Electrical equivalent model of energy stora Estimation of Battery Power Availability, Ba Temperature, Battery System Efficiency	ge system, Meth ttery Life Predict	System nods of Determining the tion, Cell Balancing, Estir	08 Hours State of Charge, nation of Cell Core
Modeling and Parameter Estimation of I Electrical equivalent model of energy stora Estimation of Battery Power Availability, Ba Temperature, Battery System Efficiency Hybrid Electric Vehicle Vibration, Noise,	Energy Storage ge system, Meth attery Life Predict	System nods of Determining the tion, Cell Balancing, Estir	08 Hours State of Charge, nation of Cell Core 07 Hours
Modeling and Parameter Estimation of I Electrical equivalent model of energy stora Estimation of Battery Power Availability, Ba Temperature, Battery System Efficiency Hybrid Electric Vehicle Vibration, Noise, Basics of Noise and Vibration, General Des	ge system, Meth ittery Life Predict and Control scription of Nois	System nods of Determining the tion, Cell Balancing, Estir se, Vibration, and Contro	08 HoursState of Charge, nation of Cell Core07 Hoursol in Hybrid Electric
Modeling and Parameter Estimation of I Electrical equivalent model of energy stora Estimation of Battery Power Availability, Ba Temperature, Battery System Efficiency Hybrid Electric Vehicle Vibration, Noise, Basics of Noise and Vibration, General Des Vehicles	Energy Storage ge system, Meth attery Life Predict and Control scription of Nois	System nods of Determining the tion, Cell Balancing, Estir se, Vibration, and Contro	08 HoursState of Charge, nation of Cell Core07 Hoursol in Hybrid Electric
Modeling and Parameter Estimation of I Electrical equivalent model of energy stora Estimation of Battery Power Availability, Ba Temperature, Battery System Efficiency Hybrid Electric Vehicle Vibration, Noise, Basics of Noise and Vibration, General Des Vehicles	Energy Storage ge system, Meth attery Life Predict and Control scription of Nois	System nods of Determining the tion, Cell Balancing, Estir se, Vibration, and Contro	08 HoursState of Charge, nation of Cell Core07 Hoursol in Hybrid Electric
Modeling and Parameter Estimation of I Electrical equivalent model of energy stora Estimation of Battery Power Availability, Ba Temperature, Battery System Efficiency Hybrid Electric Vehicle Vibration, Noise, Basics of Noise and Vibration, General Des Vehicles	Energy Storage ge system, Meth attery Life Predict and Control scription of Nois	System nods of Determining the tion, Cell Balancing, Estir se, Vibration, and Contro	08 Hours State of Charge, nation of Cell Core 07 Hours ol in Hybrid Electric
Modeling and Parameter Estimation of I Electrical equivalent model of energy stora Estimation of Battery Power Availability, Ba Temperature, Battery System Efficiency Hybrid Electric Vehicle Vibration, Noise, Basics of Noise and Vibration, General Des Vehicles Performance Analysis of Hybrid Electric	Energy Storage ge system, Meth attery Life Predict and Control scription of Nois UNIT-III Vehicle	System nods of Determining the tion, Cell Balancing, Estir se, Vibration, and Contro	08 HoursState of Charge, nation of Cell Core07 Hoursol in Hybrid Electric10 Hours
Modeling and Parameter Estimation of I Electrical equivalent model of energy stora Estimation of Battery Power Availability, Ba Temperature, Battery System Efficiency Hybrid Electric Vehicle Vibration, Noise, Basics of Noise and Vibration, General Des Vehicles Performance Analysis of Hybrid Electric Hybrid Electric Vehicle Simulation System,	Energy Storage ge system, Meth attery Life Predict and Control scription of Nois UNIT-III Vehicle Typical Test Driv	System nods of Determining the tion, Cell Balancing, Estir se, Vibration, and Contro ing Cycles, Sizing Comp	08 Hours State of Charge, nation of Cell Core 07 Hours ol in Hybrid Electric 10 Hours onents and Vehicle
Modeling and Parameter Estimation of I Electrical equivalent model of energy stora Estimation of Battery Power Availability, Ba Temperature, Battery System Efficiency Hybrid Electric Vehicle Vibration, Noise, Basics of Noise and Vibration, General Des Vehicles Performance Analysis of Hybrid Electric Hybrid Electric Vehicle Simulation System, Performance Analysis, Fuel Economy, Emiss	Energy Storage ge system, Meth ittery Life Predict and Control scription of Nois UNIT-III Vehicle Typical Test Driv sions, and Electri	System nods of Determining the tion, Cell Balancing, Estir se, Vibration, and Contro ing Cycles, Sizing Comp of Mileage Calculation	08 Hours State of Charge, nation of Cell Core 07 Hours ol in Hybrid Electric 10 Hours onents and Vehicle
Modeling and Parameter Estimation of I Electrical equivalent model of energy stora Estimation of Battery Power Availability, Ba Temperature, Battery System Efficiency Hybrid Electric Vehicle Vibration, Noise, Basics of Noise and Vibration, General Des Vehicles Performance Analysis of Hybrid Electric Hybrid Electric Vehicle Simulation System, Performance Analysis, Fuel Economy, Emiss	Energy Storage ge system, Meth attery Life Predict and Control scription of Nois UNIT-III Vehicle Typical Test Driv sions, and Electri	System nods of Determining the tion, Cell Balancing, Estir se, Vibration, and Contro ing Cycles, Sizing Comp c Mileage Calculation	08 Hours State of Charge, nation of Cell Core 07 Hours ol in Hybrid Electric 10 Hours onents and Vehicle
Modeling and Parameter Estimation of I Electrical equivalent model of energy stora Estimation of Battery Power Availability, Ba Temperature, Battery System Efficiency Hybrid Electric Vehicle Vibration, Noise, Basics of Noise and Vibration, General Des Vehicles Performance Analysis of Hybrid Electric Hybrid Electric Vehicle Simulation System, Performance Analysis, Fuel Economy, Emiss Course Outcomes: At the end of the course	Energy Storage ge system, Meth attery Life Predict and Control scription of Nois UNIT-III Vehicle Typical Test Driv sions, and Electri	System nods of Determining the tion, Cell Balancing, Estir se, Vibration, and Contro ing Cycles, Sizing Comp ic Mileage Calculation	08 Hours State of Charge, nation of Cell Core 07 Hours ol in Hybrid Electric 10 Hours onents and Vehicle
Modeling and Parameter Estimation of I Electrical equivalent model of energy stora Estimation of Battery Power Availability, Ba Temperature, Battery System Efficiency Hybrid Electric Vehicle Vibration, Noise, Basics of Noise and Vibration, General Des Vehicles Performance Analysis of Hybrid Electric Hybrid Electric Vehicle Simulation System, Performance Analysis, Fuel Economy, Emiss Course Outcomes: At the end of the cours	Energy Storage ge system, Meth attery Life Predict and Control scription of Nois UNIT-III Vehicle Typical Test Driv sions, and Electri	System nods of Determining the tion, Cell Balancing, Estir se, Vibration, and Contro ing Cycles, Sizing Comp ic Mileage Calculation e able to	08 Hours State of Charge, nation of Cell Core 07 Hours ol in Hybrid Electric 10 Hours onents and Vehicle
Modeling and Parameter Estimation of I Electrical equivalent model of energy stora Estimation of Battery Power Availability, Ba Temperature, Battery System Efficiency Hybrid Electric Vehicle Vibration, Noise, Basics of Noise and Vibration, General Des Vehicles Performance Analysis of Hybrid Electric Hybrid Electric Vehicle Simulation System, Performance Analysis, Fuel Economy, Emiss Course Outcomes: At the end of the cours	Energy Storage ge system, Meth attery Life Predict and Control scription of Nois UNIT-III Vehicle Typical Test Driv sions, and Electric se student will be	System nods of Determining the tion, Cell Balancing, Estir se, Vibration, and Contro ing Cycles, Sizing Comp ic Mileage Calculation e able to	08 Hours State of Charge, nation of Cell Core 07 Hours ol in Hybrid Electric 10 Hours onents and Vehicle
Modeling and Parameter Estimation of I Electrical equivalent model of energy stora Estimation of Battery Power Availability, Ba Temperature, Battery System Efficiency Hybrid Electric Vehicle Vibration, Noise, Basics of Noise and Vibration, General Dest Vehicles Performance Analysis of Hybrid Electric Hybrid Electric Vehicle Simulation System, Performance Analysis, Fuel Economy, Emiss Course Outcomes: At the end of the cours 1. Analyze and model mechanical com	Energy Storage ge system, Meth attery Life Predict and Control scription of Nois UNIT-III Vehicle Typical Test Driv sions, and Electri se student will be	System nods of Determining the tion, Cell Balancing, Estir se, Vibration, and Contro ing Cycles, Sizing Comp ic Mileage Calculation e able to rid electric vehicle syster	08 Hours State of Charge, nation of Cell Core 07 Hours ol in Hybrid Electric 10 Hours onents and Vehicle n.
Modeling and Parameter Estimation of I Electrical equivalent model of energy stora Estimation of Battery Power Availability, Ba Temperature, Battery System Efficiency Hybrid Electric Vehicle Vibration, Noise, Basics of Noise and Vibration, General Dest Vehicles Performance Analysis of Hybrid Electric Hybrid Electric Vehicle Simulation System, Performance Analysis, Fuel Economy, Emiss Course Outcomes: At the end of the course 1. Analyze and model mechanical com 2. Analyze and model electrical component	Energy Storage ge system, Meth attery Life Predict and Control scription of Nois UNIT-III Vehicle Typical Test Driv sions, and Electri se student will be ponents of hybrid	System nods of Determining the tion, Cell Balancing, Estir se, Vibration, and Contro ing Cycles, Sizing Comp ic Mileage Calculation e able to rid electric vehicle system.	08 Hours State of Charge, nation of Cell Core 07 Hours ol in Hybrid Electric 10 Hours onents and Vehicle n.
Modeling and Parameter Estimation of I Electrical equivalent model of energy stora Estimation of Battery Power Availability, Ba Temperature, Battery System Efficiency Hybrid Electric Vehicle Vibration, Noise, Basics of Noise and Vibration, General Destrices Vehicles Performance Analysis of Hybrid Electric Hybrid Electric Vehicle Simulation System, Performance Analysis, Fuel Economy, Emission Course Outcomes: At the end of the course 1. Analyze and model mechanical composition 2. Analyze and model electrical composition 3. Model and estimate parameter of electrical composition	Energy Storage ge system, Meth attery Life Predict and Control scription of Nois UNIT-III Vehicle Typical Test Driv sions, and Electri se student will be apponents of hybrid mergy storage sy	System nods of Determining the tion, Cell Balancing, Estir se, Vibration, and Contro ing Cycles, Sizing Comp ic Mileage Calculation e able to rid electric vehicle system electric vehicle system. ystem.	08 Hours State of Charge, nation of Cell Core 07 Hours ol in Hybrid Electric 10 Hours onents and Vehicle n.
Modeling and Parameter Estimation of I Electrical equivalent model of energy stora Estimation of Battery Power Availability, Ba Temperature, Battery System Efficiency Hybrid Electric Vehicle Vibration, Noise, Basics of Noise and Vibration, General Des Vehicles Performance Analysis of Hybrid Electric Hybrid Electric Vehicle Simulation System, Performance Analysis, Fuel Economy, Emiss Course Outcomes: At the end of the cours 1. Analyze and model mechanical com 2. Analyze and model electrical compo 3. Model and estimate parameter of e 4. Analyze and control hybrid electric	Energy Storage ge system, Meth attery Life Predict and Control scription of Nois UNIT-III Vehicle Typical Test Driv sions, and Electric se student will be apponents of hybrid mergy storage sy vehicle vibration	System nods of Determining the tion, Cell Balancing, Estir se, Vibration, and Contro ing Cycles, Sizing Comp ic Mileage Calculation e able to rid electric vehicle system electric vehicle system. (stem. & noise.	08 Hours State of Charge, nation of Cell Core 07 Hours ol in Hybrid Electric 10 Hours onents and Vehicle n.

Course Outcomes Mapping with Program Outcomes & PSO

Program Outcomes →	1	2	3	4	5	6	7	8	9	10	11	12	PS	SO↓
↓ Course Outcomes													1	2
EE3352-1.1	2	3	-	-	-	-	-	-	-	-	-	-	-	1
EE3352-1.2	2	3	-	-	-	-	-	-	-	-	-	-	-	1
EE3352-1.3	2	3	-	-	-	-	-	-	-	-	-	-	-	1
EE3352-1.4	2	3	-	-	-	-	-	-	-	-	-	-	-	1
EE3352-1.5	2	3	-	-	-	-	-	-	-	-	-	-	-	1
										1: Lo	ow 2:	: Med	dium	3: Hi
TBOOKS:														

E Books / MOOCs/ NPTEL

1. https://archive.nptel.ac.in/courses/108/103/108103009/

	/EHICLE MANAGEMENT AND CO	ONTROL
Course Code:	EE3353-1	Course Type: PCC
N		Page 290

50
lours ve line
lours ve line
lours Dassive
lours ve line
lours Dassive
lours Dassive
lours passive
lours Dassive
lours bassive
lours bassive
bassive ve line
ve line
ram of
lours
ours
HVAC
handle
ox, rear
entry
,
ours
lours
lours
lours lours
lours lours
lours lours lours
lours lours lours
lours lours lours
lours lours
lours lours
lours lours
lours lours
Hours Hours Hours em ed
Hours Hours Hours
Hours Hours Hours em ed
Hours Hours Hours
Hours Hours Hours Em
Hours Hours Hours Hours em ed ied
Hours Hours Hours Hours em

N

	EE3353-1.3	2	3	-	-	3	-	-	1	-	-	-	-	3	3
	EE3353-1.4	2	3	-	-	3	-	-	1	-	-	-	-	3	3
	EE3353-1.5	2	3	-	-	3	-	-	-	-	-	-	-	3	3
												1: Lo	w 2: N	/ledium	3: High
REFI	ERENCE BOOKS:														
-	1. https://www.microchip.	com	/en-	-us/s	olut	ions									
	2. https://www.ti.com/a	ppli	catio	ons/	auto	omc	otive	e/ov	ervi	ew.ł	ntml				
	3. Bosch Automotive Han	dbo	ok, S	Sixth	edit	ion,	2004	1.							

N)

Professional Elective Courses (IT Stream)

DATABASE MANAGEMENT SYSTEMS

Com	rse Code:	EE.	2261.	1	Cou	rco T	vne			PCC
Teac	bing Hours/Week (I · T· P· S)	3.0	2201· 1·0·0	-	Croc	lite lite	уре			03
Tota	I Teaching Hours	40	+0+0		CIE		F Marks			50+50
Prer	equisite				U.L					50.50
	Teaching Departme	nt: Ele	ctrica	l & El	ectror	nics I	Engineer	ring		
Cours	e Objectives: This course will enal	ole stu	dents	to						
1.	Describe databases and database	e mana	geme	nt sys	tems					
2.	Understand database structures	and the	eir wo	rking	orincip	oles.				
3.	Design simple database models u	using E	ntity-	Relatio	onship	Moo	deling			
4.	Learn how to relate tables togeth	ner in a	datal	base						
5. Recognize structured query language (SQL) statements and write queries using SQL										QL
6.	Construct the stages of database	projec	t desi	gn-qı	ery pr	oces	sing and	optim	izing	g database,
	concurrency control using locking	g techr	niques	5						
7.	Understand the issues associated	l with T	ransa	ction	Proces	sing	and Rec	overy		
			UNIT	-I						
Intro	duction:									06 Hours
DBMS	Administrators, Designers, Users,	Develo	pers	& mai	ntenar	nce u	sers of D	BMS.		
DBMS	5									07 Hours
Archit	ecture, Schemes & Interfaces. E	ntity-R	elatic	nship	mode	el, R	ecord st	orage	&	primary file
organ	ization: Hashing techniques, Index	structi	ures, I	, Aultile	vel ind	dexes	s using B	-trees.		
Relati	ional data model & Relational al	gebra								03 Hours
Oueri	es in relational algebra									I
	<u>_</u>									
			JNIT	II						
SQL										07 Hours
A Rela	ational Database language, Differe	nt clau	ses &	exam	ole qu	eries	•			ſ
Datak	base Design									07 Hours
I, II, III	Normal forms, BCNF, Join depend	lencies	, IV &	V No	mal fo	orms.				
		<u> </u>	JNIT-	III						
Proce	ssing and optimization								•.	10 Hours
Query	processing & Optimization, Transa	actions	, Reco	overy &	l Cond	curre	ncy cont	rol. Sec	curit	y & Integrity
constr	aints.									
Cours	Outcomes: At the end of the co	urco ct	udont	will b	a abla	to				
	Evolution the working principle of a	uise si datab				10				
<u> </u>	Construct a simple database more		ase si	ity D	e.	chin	Modelin	0		
<u>∠.</u>	Develop the queries using SQL to		iy Ent	ily- Ke		bacc	wouein	y		
5.	Develop the queries using SQL to							lform	- cf	databass
4.	design.	project	aesig	jn con	siderir	ig th	e norma	Torms	S OT C	latabase
5.	Describe the stages of database design.	project	desig	jn con	siderir	ng th	e norma	l forms	s of o	database
		-		0-						
Cours	e outcomes mapping with Prog	ram O	utcor	nes &	230					
—	Due nue of the second s	<u> </u>	Λ				0 10	11	10	
	Program Outcomes $\rightarrow \perp $	2 3	4	5 () /	ŏ	9 10		Τζ	r3U↓

	↓ C	ourse Outcomes													1	2	
		EE2261-1.1	3	I	-	I	I	I	-	-	2	I	-	-	1	-	
		EE2261-1.2	3	1	-	-	-	-	-	-	2	-	-	-	1	-	
		EE2261-1.3	3	2	-	-	-	-	-	-	2	-	-	-	1	-	
		EE2261-1.4	3	-	-	-	-	-	-	-	2	-	-	-	1	-	
Γ		EE2261-1.5	3	-	-	-	-	-	-	-	2	-	-	-	1	-	
_												1: Lo	w 2:	Med	ium	3: Hi	gh
TE	ΧТВ	OOKS:															
	1.	Ramez Elmasri, Shamkant B	. Na	vath	e, "F	unda	amei	ntals	s of I	Data	base	e Syst	ems"	, The			
		Benzamin/Cummings, Addi	son-	Wes	ley, '	VI Ec	ditio	n, 20)11.								

Г

OBJECT ORIENTE	D PROGRAM	MING USING C++	
Course Code:	EE2262-1	Course Type	PCC
Teaching Hours/Week (L: T: P: S)	3:0:0:0	Credits	03
Total Teaching Hours	40+0+0	CIE + SEE Marks	50+50
Prerequisite	CS1001-1		
Teaching Department	: Electrical & I	Electronics Engineering	
Course Objectives:			
1. To study the concept of Object Orie	ented program	ming and its realization in C	++.
2. To discuss the concept of functions	and classes.		
3. To illustrate the concepts of objects	constructors	and destructors	
4. To understand the meaning of open	rator overloadi	ng type conversion and inhe	eritance.
	UNIT-I		
Principles of Object-Oriented Programm	ning		03 Hours
Review of Procedure Oriented Programm	ning, Basic cor	cepts of Object Oriented I	Programming –
Object, Class, Encapsulation, Inheritance, P	olymorphism;	Benefits of OOPs, Applicatio	ns of OOP's
The Basic Language C++			05 Hours
A comparison of C and C++, Structure o	f C++ progran	m with Class, Preprocessor	directives, C++
Statements – Input/Output, Comments, To	kens, Keyword	s, Identifiers, Constants, Dat	a types – string,
pointer, reference, Boolean, enumeration, a	array, complex	number; typedef names, typ	e compatibility,
type conversion, qualifier – const, volatile;	Operators in C	++, Operator Precedence; C	++ expressions
– New and Delete.			
Functions and Classes			07 Hours
Introduction, The main function, Function	prototype, Ca	II by reference, Return by r	eference, Inline
functions, Default arguments, const Argum	ents, Function	Overloading. Introduction –	declaration and
definition of a Class, defining member fu	Inctions, C++	program with a Class, Mak	king an outside
function Inline, Nesting of member func	tions, Arrays v	vithin a class, Static data r	nembers, static
member functions.			
	UNIT-II		
Objects			04 Hours
Global & local objects, scope & lifetime, me	emory allocatic	on for objects, dynamically al	located objects,
pointers to objects, arrays of objects, fu	nction argume	ents with objects, returning	objects; const
member functions, pointer to members			
Constructors and Destructors			04 Hours
Introduction, Constructors, Parameterized	Constructors, N	Multiple constructors in a cla	ISS,
Constructors with default arguments, Dyna	imic initializatio	on of objects, Copy construc	ctor,
Constructing two-dimensional arrays, cons	t Objects, Dest	ructors.	
Operator Overloading and Type Convers	sion		05 Hours
Introduction, Defining operator overloadin	g, Overloading	unary operators, Overloadi	ng binary
operators, Overloading binary operators us	sing Friends, R	ules for overloading operato	ors, overloading
a comma operator, overloading the output	t operator, Typ	e conversion	

Inheritance

Introduction, defining derived classes, Single inheritance, Making a private member Inheritable, Multilevel inheritance, Multiple inheritances, Hierarchical inheritance, Hybrid inheritance, Virtual base classes, Abstract classes.

UNIT-III

Pointer, Virtual Functions, and Polymorphism

Introduction, Pointers, Pointers to Objects, this pointer, Pointers to derived classes, type-checking pointers, pointers to members, Virtual functions, Pure virtual functions.

Managing Console I/O and File I/O

05 Hours

04 Hours

03 Hours

C++ streams, C++ stream classes, examples of formatted and unformatted I/O operations, Classes for file stream operations, Methods of Opening and Closing a File, Examples of Opening file using constructor open, file modes (simple programming exercises).

Course Outcomes: At the end of the course student will be able to

1	Describe the concept of Object-Oriented Programming and basics of C++ to compare C
т.	with C++

2. Apply functions and classes to develop simple programs

3. Apply the concept of constructors to dynamically initialize objects

4. Describe the operator overloading, type conversion and inheritance concepts to develop reliable programs.

5. Apply the concept of pointers, polymorphism and C++ stream classes to use with objects.

Course Outcomes Mapping with Program Outcomes & PSO

Program Outcomes $ ightarrow$	1	2	3	4	5	6	7	8	9	10	11	12	PS	O↓
↓ Course Outcomes													1	2
EE2262-1.1	2	З	I	I	I	-	-	-	-	-	-	-	1	-
EE2262-1.2	2	З	I	I	З	-	-	-	-	-	-	1	1	1
EE2262-1.3	2	3	-	-	3	-	-	-	-	-	-	1	-	1
EE2262-1.4	2	3	-	-	3	-	-	-	-	-	-	1	-	1
EE2262-1.5	2	3	-	-	3	-	-	-	-	-	-	1	-	1

1: Low 2: Medium 3: High

TEXTBOOKS:

Balagurusamy, E, "Object-Oriented Programming with C++", TMH,6th edition, 2013. 1. Herbert Schildt, "C++, The Complete Reference", TMH, 4th edition,2002 2. Farrell, "Object-Oriented Programming with C++", Cengage Learning, Fourth Edition, 2009. 3. **REFERENCE BOOKS:** Bjarne Stroustrup, "The C++ programming language", Pearson Education, 4th edition, 2013. 1. Bhave, "Objected oriented programming with C++", Pearson Education, First Edition, 2012. 2. **E Books / MOOCs/ NPTEL** https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-088-1. introduction-to-c-memory-management-and-c-object-oriented-programming-january-iap-2010/lecture-notes/ http://nptel.ac.in/courses/106105151/ 2.

MATLAB PROGRAMMING FOR ENGINEERS

Course Code:

Teaching Hours/Week (L: T: P)	3:0:0	Credits	03
Total Teaching Hours	40	CIE + SEE Marks	50+50
Teaching Department:	Electrical and E	lectronics Engineering	
Course Objective:			
1. To get familiarized with concept of	MATLAB progr	amming for array, matrices,	logical
operations and conditional statemer	nts		
2. To acquainted with MATLAB prog	ramming for nur	nerical methods to solve diff	erential
equations.		Q' 1' 1	
3. To analyse the electrical circuits us	INIT I	Simulink .	
	UNIT-I		1
			15 Hours
An Overview of MATLAB®: MATLAB Interac	ctive Sessions, N	lenus and the Toolbar, Script	Files and the
Editor/Debugger, The MATLAB Help Syster	n		
Getting started: Creating MATLAB variabl	es, Overwriting	variable, Error messages, N	lanaging the
Arrays and Matrices: Creating vector, creating	na matrix Matrix	rindeving Colon operator cr	reating a sub-
matrix, deleting row or column. Transposi	ing a matrix, Co	incatenating matrices. Matri	x generators,
Special matrices, Matrix arithmetic operation	ons, Array arithm	netic operations, Matrix inver	se
Control flow and operators: Relational C	Operators and L	ogical Variables, Logical O	perators and
Functions, Conditional Statements, for Loop	os, while Loops, 1	he switch Structure, Operato	or precedence
Plots: Introduction to plots, x-y Plotting Fu	nctions, Additioi -	hal Commands and Plot Type	es, Interactive
Functions and Files: Elementary Mathemati	s. Cal Functions Us	ser Defined Functions	
Functions and files. Elementary mathemati	UNIT-II		
			15 Hours
Linear Algebraic Equations: Matrix Metr	hods for Linear	Equations, The Left Divis	ion Method,
Numerical Methods for Calculus and D	ifferential Foua	tions: Numerical Integration	n Numerical
Differentiation, First-Order Differential E	quations, High	er-Order Differential Equat	ions, Special
Methods for Linear Equation			· 1
Statistics, Probability, and Interpolation: Sta	atistics and Histo	grams, Normal Distribution.	Random
Number Generation, Interpolation			
	UNIT-III		
			10 Hours
Introduction to Simulink, Simulink model o	f a first order and	d second order systems, simu	lation of RLC
series circuit using Simulink blocks (mather	matical modellin	g).	
Simscape Electrical: Introduction Simsca	pe Electrical Blo	cks, overview of Specialized p	oower system
blocks, simulation of simple electrical circu	its, RLC series cir	cuit	
Course Outcomes: At the end of the course	se student will be	e able to	
1. Use matrices and operators in MAT	LAB programmi	ng	
2. Use and write functions; use MATL	AB toolbox		

3. Apply linear algebra and numerical methods using MATLAB programming

4. Write MATLAB programs for statistics and probability

5. Use Simulink and Simscape tools for modelling electrical systems.

	Program Outcomes $ ightarrow$	1	2	3	4	5	6	7	8	9	10	11	12
↓ (Course Outcomes												
	EE2263-1.1	1	-	-	-	3	-	-	-	-	-	-	-
	EE2263-1.2	1	-	-	-	3	-	-	-	-	-	-	-
	EE2263-1.3	1	-	-	-	3	-	-	-	-	-	-	-
	EE2263-1.4	1	-	-	-	3	-	-	-	-	-	-	-
	EE2263-1.5	1	-	-	-	3	-	-	-	-	-	-	-
										1: Lov	w 2: M	edium	3: Hig
EX	TBOOKS												
1	Millions Dolmo III "Instru-			N 4 A TI		for F		o	T la i u al	۲ ما : ۴: ۵	201	1 14-0	
L.	vviillam J. Palm III, Intro	auctio	on to	MAIL	AB®	TOT E	ngine	ers,	Inira	Ealtic	on, 201	I, MCG	iraw-H
2.	<u>Timmy Siauw</u> , <u>Alexandre</u>	Baye	<u>en</u> , "A	n Inti	roduc	tion t	o MA	ATLAE	3® Pr	ograr	nming	and N	lumeri
	Methods for Engineers",	2014	, <u>Elsev</u>	vier So	cience	2							
3.	O. Beucher, M. Weeks,	"Intro	ducti	on to	MA [·]	TLAB	& SI	MULI	NK (A	A Pro	ject Ap	proach	n)", Thi
	Edition, 2008, <u>Laxmi Puk</u>	olicati	ons P	vt Lin	<u>nited</u>								
			•					<u> </u>		A Ro	ainnar'	c Intro	duction
4.	Eugeniy E. Mikhailov, "P	rogra	mmir	ng wi	th MA	ATLAE	3 for	Scien	tists:	A De	yiiiiei	s muo	auctio
4.	Eugeniy E. Mikhailov, "P 2018, <u>CRC Press</u>	rogra	mmir	ng wi	th MA	ATLAE	3 for	Scien	tists:	A Dei	gimer	s muo	auctio
4. Ref i	Eugeniy E. Mikhailov, "P 2018, <u>CRC Press</u> E RENCE BOOKS	rogra	mmir	ng wi	th M/	ATLAE	3 for	Scien	tists:	A Dei	gimei		
4. REF	Eugeniy E. Mikhailov, "P 2018, <u>CRC Press</u> ERENCE BOOKS	rogra		ng wi	th M/		Bract						
4. (EF L.	Eugeniy E. Mikhailov, "P 2018, <u>CRC Press</u> ERENCE BOOKS Dorothy C. Attaway, Sto Problem Solving" 3rd ill	rogra		ay, "N	1ATLA	ATLAE	3 for Practi	ical Ir	itrodu			ogramr	ning a
4. REF 1.	Eugeniy E. Mikhailov, "P 2018, <u>CRC Press</u> ERENCE BOOKS Dorothy C. Attaway, Sto Problem Solving", 3rd illu	rogra rmy A ustrat	Attawa ed ec	ng wi ay, "N lition,	1ATLA 2013	ATLAE AB: A 5, Elsev	3 for Practivier S	ical Ir	tists: itrodu	Iction	to Pro	ogramr	ning a
4. EF 1. 2.	Eugeniy E. Mikhailov, "P 2018, <u>CRC Press</u> ERENCE BOOKS Dorothy C. Attaway, Sto Problem Solving", 3rd illu Patrick Marchand, O. The	rogra rmy <i>A</i> ustrat	Attawa ed ec Holla	ay, "N lition, nd, "(th M/ 1ATLA 2013 Graph	ATLAE AB: A , Elsev ics an	3 for Practi vier S nd GU	ical Ir cience Is wit	itrodu e h MA	uction TLAB	to Pro ", Thire	ogramr d Editic	ning a
EF	Eugeniy E. Mikhailov, "P 2018, <u>CRC Press</u> ERENCE BOOKS Dorothy C. Attaway, Sto Problem Solving", 3rd illu Patrick Marchand, O. Tho <u>CRC Press</u>	rmy A ustrat	Attawa ed ec Holla	ay, "N lition, nd, "C	IATLA 2013 Graph	ATLAE AB: A , Elsev ics an	3 for Practi vier S nd GU	ical Ir cience Is wit	tists: htrodu e h MA	uction TLAB	to Pro	ogramr d Editic	ning a
EF 2.	Eugeniy E. Mikhailov, "P 2018, <u>CRC Press</u> ERENCE BOOKS Dorothy C. Attaway, Sto Problem Solving", 3rd illu Patrick Marchand, O. Tho <u>CRC Press</u> "Select a web site," Crea	rmy A ustrat	Attawa ed ec Holla d Rui	ay, "N lition, nd, "C	1ATLA 2013 Graph mple	ATLAE AB: A , Elsev ics an	Practivier S Nd GU	ical Ir cience Is wit	tists: htrodu h MA	TLAB	, to Prc ", Third - MATI	ogramr d Editic	ning an on, 200
4. REF 1. 2. 3.	Eugeniy E. Mikhailov, "P 2018, <u>CRC Press</u> ERENCE BOOKS Dorothy C. Attaway, Sto Problem Solving", 3rd illu Patrick Marchand, O. The <u>CRC Press</u> "Select a web site," Crea [Online]. Available: htt	rogra rmy A ustrat omas te an ps://v	Attawa ed ec Holla d Rui vww.r	ay, "M lition, nd, "C n a Si nathw	IATLA 2013 Graph mple vorks.	ATLAE AB: A , Elsev ics an App com/	Practivier Sund GU	ical Ir cienco Is wit App matla	h MA Desig	TLAB	, to Prc ", Thirc - MATI _guis/c	ogramr d Editic _AB & reate-a	ning al on, 200 Simulii a-simp

	COM	1PU	TAT	ION/	AL LI	INE/	AR A	LGE	BRA	4				
Cou	rsa Cada:			EE2	261	1			rco 7	Typo				PCC
Tea	rhing Hours/Week (I · T· P· S	<u>۱</u>		3.0.	201- 0.0	· T		Cred	litc	уре				03
Tota	al Teaching Hours)		<u>40+</u>	<u>0.0</u> 0+0				+ SE	E Ma	rks			50+50
Prei	equisite			MA	1001	L-1,	MA	2009	9-1					
	Teaching Depa	rtme	ent:	Elec	trica	1&	Elec	tron	ics	Engir	neer	ing		
Cour	se Objectives:													
1.	To understand the Vectors a	nd I	Matr	ices										
2.	To aquatinted with linear ma	appi	ng, r	neas	urer	nent	S							
3.	To understand fundamental	the	orem	<u>n of l</u>	inea	r alg	ebra	3						
4.	To know the Least squares a	lgor	ithm	tor	data	scie	ence							
				U	NIT	-I								
Vect	ors and Matrices													08 Hours
Quar	itities, Vectors, Matrices, Li	nea	r co	mbi	nati -	ons,	ve 	ctor	's ar	nd Iv	/latri	ces	in da	ita science,
Linea	ir mapping: Functions, Meas	sure	mer	nts, (•	_om	pos	Itior	<u>15.</u>		I				
Vecto	or Spaces: Formal rules,	Alge	ebra	IC S	truc	ture	S, レ	ata	rec	lund	ancy	/: Lir	near	
depe	ndence, basis and dimensic	ns				TT								07 Hours
Euro	amontal theorem of lines	ير ما	ach	<u> </u>	N11-	-11								
Data repre Orthe prob Leas	Information , Data Inform esentations, measurement ogonal matrices, Intrinsic ba lems. t Square: Data Compression r algebra problems, Model I	atio of r asis on, Redu	n , nap of a proj uctio	Map ping line jecti on.	oping is. T ear r on,	gs: ` he nap Gra	Vect Sing ping m-S	gula g an	spac r Va d SV nidt,	ces c alue VD s QR	of m Dec olut sol	iappi comp ion c utior	ngs positi of line n of	and matrix on (SVD) : ear algebra 05 Hours
				U	NIT-	<u>III</u>						•		10.11
facto Eige Data	rization, Inverse matrix, n Problems: Stability: The eigenvalue pro	n ei oble	imir m, C	Lom	n a puta	nd i	ow	ecn	SVD	n red , Dat	ta re	ion, sona	LU-	10 Hours
Cour	se Outcomes: At the end of th	ne co	ourse	e stu	dent	will	be a	able	to					
1.	Describe the vectors and	mat	rices	s in d	data	scie	ence	e pei	rspe	ctive	ġ			
2.	Apply vector space in the	data	a sci	ence	e									
3.	Explain the significance of	f fur	ndan	nent	al th	neor	ems	s of	line	ar al	gebi	ra in	data	science
4.	Apply least squares as too	ol fo	r da	ta co	omp	ress	ion,	pro	ject	ions				
5.	Analyse the importance o	f ch	ange	e of	basi	s as	dat	a tra	ansf	orm	atio	n		
Cour	se Outcomes Mapping with	Prog	gram	ו Ou	tcon	nes	& P.	SO						
↓	Program Outcomes→ Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	PSO ↓ 1 2

		EE3261-1.1	3	3	-	-	-	-	-	-	-	-	-	-	-	-	
		EE3261-1.2	3	3	-	-	2	-	-	-	-	-	-	-	-	-	
		EE3261-1.3	3	3	-	-	2	-	-	-	-	-	-	-	-	-	
		EE3261-1.4	3	3	-	-	3	-	-	-	-	-	-	-	-	-	
		EE3261-1.5	3	3	-	-	3	-	-	-	-	-	-	-	-	-	
												1: Lo	w 2:	Med	ium	3: Hi	gh
TE	XTB	OOKS:															
	1	Lloyd N. Trefethen and D. Bau, "Numerical Linear Algebra", SIAM (1997), ISBN 0-89871-361- 7															
	1.	7.															
	r	Linear algebra for data science by SORIN MITRAN, Department of Mathematics															
	۷.	University of North Carolina at Chapel Hill.															
	ſ	Introduction to Linear A	lgek	ora l	by G	ilbe	ert S	trar	ng, l	Sixtł	n Ec	lition	n (20	23), 1	ISBN	: 97	-8'
	3.	17331466-7-8	-		-				-								
RE	FER	ENCE BOOKS:															
	1	D. Kincaid and W. Cheney, "	Nur	nerio	al A	naly	sis: N	Лath	nema	atics	of S	cient	ific C	ompi	uting	", 3rd	
	⊥.	Ed, Brooks/Cole (2002), ISBN	N 0-	534-	3890)5-8											
EE	Book	s / MOOCs/ NPTEL															
	1.	https://nptel.ac.in/courses/1	111	.071	06												

Ø

OPERATIN	NG SYSTEMS FUI	NDAMENTALS	
Course Code:	FF2361_1		PCC
Tooching Hours (Mook (I · T· P· S)	2.0.0.0	Crodite	02
Total Teaching Hours	<u> </u>		50+50
Prerequisite	40+0+0		50+50
Teaching Departme	ant: Flactrical &	Electronics Engineering	
Course Objectives:		Liectionics Engineering	
1. To introduce the concepts of the	e operating syste	m.	
2. To explain the concepts of struct	ture in operating	systems	
3. To discuss on the process management	gement and tread	ds in operating systems	
4. To understand the memory man	agement and me	emory allocation in opera	tina systems.
5. To introduce the concept of virtu	ual memory in or	perating systems with an	example of UNIX.
	UNIT-I		
Introduction and Overview Of Operation	ting Systems		08 Hours
Operating system, Goals of an O.S, Op	eration of an O.S	, Resource allocation and	d related functions
User interface related functions, Classes	s of operating sys	stems, O.S, and the comp	outer system, Batc
processing system, Multiprogramming	systems, Time-sh	aring systems, Real-time	operating systems
distributed operating systems.	-		
Structure of the Operating Systems			08 Hours
Operation of an O.S, Structure of the	supervisor, Con	figuring and installation	of the superviso
Operating system with monolithic stru	ucture, layered c	lesign, Virtual machine	operating systems
Kernel-based operating systems, and M	licrokernel based	operating systems.	
	UNIT-II		I
Process Management			07 Hours
Process concept, Programmer view o	f processes, OS	view of processes, Inte	eracting processes
Threads, Processes in UNIX, Threads in S	Solaris		
Memory Management			07 Hours
Memory allocation to programs, Memo	ry allocation prel	iminaries, Contiguous an	d non-contiguous
allocation to programs, Memory allocat	ion for program-	controlled data, kernel m	emory allocation
	UNI1-111		10 Hours
Virtual memory	, using paging	Domand paging Daga	IU HOURS
virtual memory basics, virtual memor	y using paging,	Demanu paying, Paye	V virtual momon
Schoduling: Eurodomontals of schoduling	n long-torm sch	ns, rage sharing, UND aduling Modium and sho	vrt-torm schoduling
Real-time scheduling. Process scheduling	g, Long-term sch	eduling, Medium and Sho	
Real-time scheddling, Process scheddlin			
Course Outcomes: At the end of the co	ourse student will	be able to	
1 Summarize the overview of oper	rating systems		
2 Describe the structure of operation	ing systems		
3 Analyze the concent of process	management pr	cesses and threads	
4 Illustrate memory allocation and	management, pro	operating systems	
5 Analyze the concent of virtual m	emory and schoo	Juling algorithms as impl	emented in LINIV
Course Outcomes Manning with Proc			chienteu in UNIA.
Course outcomes mapping with Plot			
Drogrom Outcomer 1	2 2 1	6 7 0 0 10 11	
$r_1 og_1 a_1 i_1 outcomes \rightarrow 1$			- ⊥∠ гз∪ ↓

\downarrow (Course Outcomes													1	2	
	EE2361-1.1	1	2	-	-	-	-	-	-	-	-	-	1	-	-	
	EE2361-1.2	1	2	-	-	-	I	-	-	-	-	-	1	-	-	
	EE2361-1.3	2	3	-	-	2	-	-	-	-	-	-	2	-	1	
	EE2361-1.4	2	2	1	3	2	-	-	-	-	-	-	2	-	2	
	EE2361-1.5	2	2	1	3	2	-	-	-	-	-	-	2	-	2	
											1: Lo	w 2:	Med	ium	3: Hi	gh
TEXT	BOOKS:															
1	D.M. Dhamdhare, "Operating Systems A Concept-Based Approach" Mcgraw Hill Higher															
1.	Education, 2nd Ed, 2007.															
с	Abraham Silberschatz, Pete	r Ba	er G	alvin	, Gr	eg G	iagn	e, "C	Dper	atin	g Sys	tem	Princi	iples"	', Wile	ey,
Ζ.	8th Edition, 2009.															
REFE	RENCE BOOKS:															
1.	Silberschatz and Galvin, "Op	bera	ting	Syste	ems	Con	cept	ts", J	ohn	Wile	ey, 5t	h Edi	tion,	2001	•	
2.	P.C.P. Bhatt, "Operating Sys	tem	s", P	HI, 2	nd E	ditic	n, 2	008.								
3.	3. Harvey M Deital, "Operating Systems", Pearson Education, 3rd Edition.															
E Boo	ooks / MOOCs/ NPTEL															
1.	https://nptel.ac.in/courses/1	.061	.052	14												
2.	https://www.coursera.org/s	peci	aliza	tions	s/co	dio-i	ntro	duc	tion	-ope	eratin	g-sys	tems			

	INTRODUCTION TO M	ACHINE LEA	RNING WITH PYTHON	
Cour	rse Code:	EE2261_1	Course Type	DCC
Teac	-hing Hours/Week (I · T· P· S)	3.0.0.0	Credits	03
Tota	I Teaching Hours	40+0+0	CIE + SEE Marks	50+50
Prer	equisite	MA1001-1.	MA1003-1, MA2004-1,	MA2009-1
	Teaching Department:	Electrical &	Electronics Engineering	
Cours	se Objectives:			
	•			
1.	To analyse the given data set.			
2.	To perform Linear and non-linear re	egression tech	niques using scikit learn	package.
3.	To perform kNN and DT techniques	s using scikit le	earn package.	
4.	To perform Logistic regression and	SVM techniqu	es using scikit learn pack	age.
5.	To perform clustering and Design a	recommende	r system	
		UNIT-I		
Intro	duction			03 Hours
Introc	duction to Machine Learning, Python t	for Machine Le	earning, Supervised vs Ur	nsupervised.
Regre	ession			12 Hours
Introc	<u>duction to Regression</u> , Simple Linea	ar Regression,	Model Evaluation in R	legression Models
Evalua	ation Metrics in Regression Models, M	Iultiple Linear I	Regression, Gradient Des	cent Method, Non
Linear	r Regression.			
Class	-	UNIT-II		15 U.S.
Introc	Nuction K Nearost Neighbourg Eval	untion Matrice	in classification Introd	LIS HOURS
Troos	Building Decision Trees(DT) Introdu	iction to Logis	tic Regression Logistic r	acression vs Linea
reares,	ssion Logistic Regression Training Su	innort Vector	Machine(SVM)	egression vs Linea
regree				
		UNIT-III		
Cluste	ering			05 Hours
Introc	duction, Introduction to k-Means, Intr	oduction to H	ierarchical Clustering, DB	SCAN
Recor	mmender Systems			05 Hours
Introc	duction, Content-based Recommende	er Systems, Co	llaborative Filtering.	I
		,	J	
Cours	se Outcomes: At the end of the cours	se student will	be able to	
1.	Identify the characteristics of datase	ets and compa	re the trivial data for vari	ious applications
2	solve regression problems using line	ear/non-linear	regression analysis tech	niques for various
2.	applications.	-	2	•
		т с ·		
_	Perform classification using KNN, D	I for various a	pplications	
3.	Perform classification using kINN, D	I for various a	pplications	
3. 4.	solve classification problem using L	ogistic regress	pplications ion and SVM for various	applications
3. 4. 5.	solve classification using kNN, D solve classification problem using L Perform clustering analysis and des	ogistic regress	pplications sion and SVM for various ader system for various a	applications pplications

Course Outcomes Mapping with Program Outcomes & PSO

г				r –	r —	r –	r —	r —	r –	1	1	1	r –	r —		
		Program Outcomes→	1	2	3	4	5	6	7	8	9	10	11	12	PS	O↓
	↓ C	ourse Outcomes													1	2
		EE3361-1.1	2	3	-	-	-	-	-	-	-	-	-	-	-	-
		EE3361-1.2	2	3	-	-	3	-	-	-	-	-	-	1	-	1
		EE3361-1.3	2	3	-	-	3	-	-	-	-	-	-	1	-	1
		EE3361-1.4	2	3	-	-	3	-	-	-	-	-	-	1	-	1
		EE3361-1.5	2	3	-	-	3	-	-	-	-	-	-	1	-	1
												1: Lo	w 2:	Med	ium	3: High
TE)	(ТВ	OOKS:														
	1	Rebala, A. Ravi, and S. Chu	riwa	ala, "	An I	ntro	duct	ion	to N	Mach	nine	Learr	ning",	, 1st	ed. S	Springer
	⊥.	International Publishing, 20	19.										0			
	2	Miroslav Kubat, "An Introd	duct	ion	to N	Ласŀ	nine	Lea	rnin	g",	1st	ed.	Sprin	ger l	Interi	national
	Ζ.	Publishing, 2015.												2		
RE	ER	ENCE BOOKS:														
	4	A. C. Müller and S. Guido, "I	ntro	duc	tion	to N	1achi	ine L	ear	ning	with	n Pytł	non A	Guio	le fo	r Data
	⊥.	Scientists", 1st ed. O'Reilly N	/led	ia, In	c., 2	016				5		,				
		Aurélien Géron, "Hands-on	Mad	chine	e Lea	rnin	g wi	th So	cikit	-Lea	rn, K	leras,	and	Tenso	orFlo	w
	2.	Concepts, Tools, and Techni	ique	s to	Buil	d Int	ellig	ent	Syst	ems	", 2n	id ed.	O'Re	eilly N	/ledia	, Inc.,
		2019	1				5		,		,			,		
ΕB	ook	s / MOOCs/ NPTEL														
	1.	https://nptel.ac.in/courses/1	.061	.051	52											
	2.	https://www.coursera.org/le	arn	/mag	- hine	-lea	rnin	a-wi	ith-r	ovth	on					
	·							3	· · · · ·		•••					

PRO	BABILITY AND INFORM	ATION THEORY	
Course Code:	EE3362-1	Course Type	PCC
M			Page 305

Total Toaching Hours	3:0:	0:0		Credits			03
Total reaching Hours	40+	0+0		CIE + S	E Mark	s	50+50
Prerequisite	MA	2009-	L				
Teaching Department	t: Elect	trical 8	٤ Ele	ctronics	Engine	ering	
Course Objectives:							
1. To Understand different method	ds of I	ntorma	tion	and pro	babilisti	<u>c modell</u>	ing
2. To understand the importance of	of stat	istical	nter	terence	n data p	rocessin	g
3. 10 understand the inequality m	easure		orma	ation			
Information and probabilistic mode	U	INI I -1					
information and probabilistic mode	ntc of	nroha		. Marko	vinogu	olity lim	15 Hours
Incertainty, compression, and entron	v: sou	piùba rce mo	Jinty dol	notivati	ng eyan	anty, mm poles a c	compression
problem Shannon entropy random	n hash	Ran	lomi	ness an	ng exan d entroi	$n_{\rm V}$. $n_{\rm C}$	ortainty and
randomness. Total variation distance.	genera	ntina u	hifor	m bits. c	eneratir	na from i	iniform bits.
typical sets and entropy.	90	. en 19 ei			,	.9	
	U	NIT-II					
Information and statistical inference	e:						15 Hours
Hypothesis testing and estimation, ex	kample	es, the	og-l	likelihoc	d ratio t	test, Kull	back-Leibler
divergence and Stein's lemma, proper	ties of	KL div	erge	nce,			
Information per coin toss multiple by	nothes	ic tocti	na n	nutual ir	formati	on Fano'	s inequality
Properties of measures of informati	ion-1.	Defini	ig, i	chain	rulo ch	ane of	information
functions (boundedness, concavity/co	nvevitv	v non-	nena	s, chann ativity) c	lata prov	ape oi	neguality
	Песке	,	negt			cessing i	lequality.
	UN	NIT-III					
Properties of measures of informati	ion-						1.0.1
						·	10 Hours
Proof of Fano's inequality, variationa	al form	nulae,	capa	icity as	informat	ion radi	10 Hours us, proof of
Proof of Fano's inequality, variationa Pinsker's inequality, continuity of entro	al form opy; In oin's lo	nulae, format	capa ion t	acity as theoretic	informat lower b	ion radi ounds: L	10 Hours us, proof of ower bound
Proof of Fano's inequality, variationa Pinsker's inequality, continuity of entro for source coding, lower bound for Ste lower, bound, for randomness, gene	al form opy; In ein's le	nulae, format emma. stro	capa ion t	acity as theoretic	informat lower b	ion radio ounds: L	10 Hours us, proof of ower bound
Proof of Fano's inequality, variationa Pinsker's inequality, continuity of entro for source coding, lower bound for Ste lower bound for randomness gene estimation: Compression Variable lend	al form opy; In ein's le eration oth sou	nulae, format mma. , stro	capa ion t ng co	acity as theoretic onverse,	informat lower b lower	ion radi ounds: L bound	10 Hours us, proof of ower bound for minmax
Proof of Fano's inequality, variationa Pinsker's inequality, continuity of entro for source coding, lower bound for Ste lower bound for randomness gene estimation; Compression Variable leng	al form opy; In ein's le eration gth sou	nulae, format emma. , stro urce co	capa ion t ng co des	acity as theoretic onverse,	informat lower b lower	ion radi ounds: L bound	10 Hours us, proof of ower bound for minmax
Proof of Fano's inequality, variational Pinsker's inequality, continuity of entro- for source coding, lower bound for Ste- lower bound for randomness gene estimation; Compression Variable leng	al form opy; In- ein's le eration gth sou course	nulae, format mma. , stro urce cc	capa ion t ng co des nt wi	acity as theoretic onverse, ill be abl	informat lower b lower e to	ion radi ounds: L bound	10 Hours us, proof of ower bound for minmax
Proof of Fano's inequality, variationa Pinsker's inequality, continuity of entro for source coding, lower bound for Ste lower bound for randomness gene estimation; Compression Variable leng Course Outcomes: At the end of the o	al form opy; In- ein's le eration gth sou course	nulae, format mma. , stro urce cc stude	capa ion t ng co des nt wi	acity as theoretic onverse, ill be abl	informat lower b lower e to	ion radii ounds: L bound	10 Hours us, proof of ower bound for minmax
Proof of Fano's inequality, variational Pinsker's inequality, continuity of entro- for source coding, lower bound for Ste- lower bound for randomness gene estimation; Compression Variable leng Course Outcomes: At the end of the of 1. Explain the concept of uncertain	al form opy; In- ein's le eration gth sou course nty, pre	nulae, format mma. , stro urce co stude	capa ion t ng co des nt wi	acity as theoretic onverse, ill be abl nd entro	informat lower b lower e to py	ion radi ounds: L bound	10 Hours us, proof of ower bound for minmax
Proof of Fano's inequality, variational Pinsker's inequality, continuity of entro- for source coding, lower bound for Ste- lower bound for randomness gene estimation; Compression Variable lence Course Outcomes: At the end of the of <u>1. Explain the concept of uncertain</u> <u>2. Describe the randomness and te</u>	al form opy; In- ein's le eration gth sou gth sou course nty, pro-	nulae, format mma. , stro urce co stude stude	capa ion t ng co des nt wi ty ar dist	acity as theoretic onverse, ill be abl nd entro cance	informat lower b lower e to py	ion radio ounds: L bound	10 Hours us, proof of ower bound for minmax
Proof of Fano's inequality, variational Pinsker's inequality, continuity of entro for source coding, lower bound for Ste lower bound for randomness gene estimation; Compression Variable lence Course Outcomes: At the end of the of <u>1. Explain the concept of uncertain</u> <u>2. Describe the randomness and to</u> Analyse the statistical interferent	al form opy; In- ein's le eration gth sou gth sou course nty, pro- otal va nces us	nulae, format emma. , stro urce cc e stude obabil ariatior sing hy	capa ion t ng co des nt wi ty ar dist poth	acity as theoretic onverse, ill be abl nd entro cance nesis test	informat lower b lower e to py ing and	ion radii ounds: L bound estimatio	10 Hours us, proof of ower bound for minmax
Proof of Fano's inequality, variational Pinsker's inequality, continuity of entro for source coding, lower bound for Ste lower bound for randomness gene estimation; Compression Variable lence Course Outcomes: At the end of the of 1. Explain the concept of uncertain 2. Describe the randomness and to 3. Analyse the statistical interferent methods	al form opy; In- ein's le eration gth sou gth sou course nty, pro- otal va	nulae, format mma. , stro urce co stude obabil ariation sing hy	capa ion t ng co des nt wi ty ar dist	acity as theoretic onverse, ill be abl nd entro cance nesis test	informat lower b lower e to py ing and	ion radii ounds: L bound estimatio	10 Hours us, proof of ower bound for minmax
Proof of Fano's inequality, variational Pinsker's inequality, continuity of entropic for source coding, lower bound for Stellower bound for randomness genere estimation; Compression Variable lence Course Outcomes: At the end of the orgonization 1. Explain the concept of uncertain 2. Describe the randomness and to 3. Analyse the statistical interferent 4. Explain the Properties of measure	al form opy; In- ein's le eration gth sou gth sou course nty, pro- otal va nces us	nulae, format mma. , stro urce co stude stude obabil ariatior sing hy inform	capa ion t ng co des nt wi ty ar dist poth atio	acity as theoretic onverse, ill be abl nd entro cance nesis test	informat lower b lower e to py ing and	ion radi ounds: L bound estimati	10 Hours us, proof of ower bound for minmax
Proof of Fano's inequality, variational Pinsker's inequality, continuity of entro- for source coding, lower bound for Ste- lower bound for randomness gene estimation; Compression Variable leng Course Outcomes: At the end of the of 1. Explain the concept of uncertain 2. Describe the randomness and to 3. Analyse the statistical interferen- methods 4. Explain the Properties of measu 5. Analyse the Information theorem	al form opy; In- ein's le eration gth sou gth sou course nty, pro- otal va nces us ures of tic low	nulae, format mma. , stro urce cc stude stude obabil ariation sing hy inform ver bou	ty ar dist dist atio nds	acity as theoretic onverse, <u>ill be abl</u> nd entro tance nesis test	informat lower b lower <u>e to</u> py ing and	ion radii ounds: L bound estimatio	10 Hours us, proof of ower bound for minmax
Proof of Fano's inequality, variational Pinsker's inequality, continuity of entro- for source coding, lower bound for Ste- lower bound for randomness gene estimation; Compression Variable lence Course Outcomes: At the end of the or 1. Explain the concept of uncertain 2. Describe the randomness and to 3. Analyse the statistical interferent methods 4. Explain the Properties of measu 5. Analyse the Information theorem	al form opy; In- ein's le eration gth sou gth sou course nty, pro- otal va nces us ures of tic low	nulae, format emma. , stro urce cc e stude obabil ariation sing hy inform er bou	ty ar dist dist dist dist atio nds	acity as theoretic onverse, ill be able nd entro cance nesis test n	informat lower b lower e to py ing and	ion radii ounds: L bound estimatio	10 Hours us, proof of ower bound for minmax
Proof of Fano's inequality, variational Pinsker's inequality, continuity of entro- for source coding, lower bound for Ste- lower bound for randomness gene estimation; Compression Variable lence Course Outcomes: At the end of the or 1. Explain the concept of uncertain 2. Describe the randomness and to 3. Analyse the statistical interferent methods 4. Explain the Properties of measu 5. Analyse the Information theoret	al form opy; In- ein's le eration gth sou gth sou course nty, pro- otal va nces us ures of tic low	nulae, format emma. , stro urce co e stude obabil ariation sing hy inform ver bou	ty ar dist dist dist dist atio nds	acity as theoretic onverse, ill be abl nd entro cance nesis test n	informat lower b lower e to py ing and	ion radii ounds: L bound estimatio	10 Hours us, proof of ower bound for minmax
Proof of Fano's inequality, variationa Pinsker's inequality, continuity of entro for source coding, lower bound for Ste lower bound for randomness gene estimation; Compression Variable leng Course Outcomes: At the end of the o 1. Explain the concept of uncertain 2. Describe the randomness and to 3. Analyse the statistical interferent methods 4. Explain the Properties of measu 5. Analyse the Information theorem Course Outcomes Mapping with Pro	al form opy; In- ein's le eration gth sou gth sou course nty, pro- otal va nces us ures of tic low	nulae, format emma. , stro urce cc e stude obabil ariation sing hy inform ver bou	capa ion t ng co des nt wi dist dist poth atio nds	acity as theoretic onverse, ill be able nd entro tance nesis test n	informat lower b lower e to py ing and	ion radii ounds: L bound estimatio	10 Hours us, proof of ower bound for minmax
Proof of Fano's inequality, variational Pinsker's inequality, continuity of entro- for source coding, lower bound for Ste- lower bound for randomness gene estimation; Compression Variable lence Course Outcomes: At the end of the of 1. Explain the concept of uncertain 2. Describe the randomness and to 3. Analyse the statistical interferent methods 4. Explain the Properties of measu 5. Analyse the Information theorem Course Outcomes Mapping with Pro-	al form opy; In- ein's le eration gth sou gth sou course nty, pro- total va nces us ures of tic low	nulae, format emma. , stro urce co e stude obabil ariation sing hy inform ver bou	apa ion t ng co des nt wi ty ar dist poth atio nds	acity as theoretic onverse, ill be able nd entro cance nesis test n	informat lower b lower e to py ing and	ion radii ounds: L bound estimatii	10 Hours us, proof of ower bound for minmax

	EE3362-1.1	3	-	-	-	-	-	-	-	-	I	-	-	I	-	
	EE3362-1.2	2	2	-	I	-	-	-	-	-	I	-	-	2	-	
	EE3362-1.3	2	2	-	-	-	-	-	-	-	-	-	1	2	-	
	EE3362-1.4	2	3	-	-	-	-	-	-	-	-	-	1	2	-	
	EE3362-1.5	3	2	-	-	-	-	-	-	-	-	-	1	2	-	
	1: Low 2: Medium 3: High															
TEX	XTBOOKS:															
1.	T. Cover and J. Thomas, Elements of Information Theory, Second edition, Wiley, 2006															
2.	I. Csiszar and J. Korner, Information Theory: Coding Theorems for Discrete Memoryless															
	Systems, Second edition, Cambridge, 2011.															
	T. S. Han, Information spectrum methods in Information Theory, Stochastic Modelling															

and Applied Probability series, Springer, 2003.

N)

Professional Elective Courses (AIDS Stream)

	Dat	ta Science E	nginee	ering							
Cou	rse Code:	FF2271.	.1	Course	Type			PCC			
Teac	hing Hours/Week (I · T· P· S)	3.0.0.0	-	Credits	JPC			03			
Tota	I Teaching Hours	40+0+0		CIE + SE	E Marks			50+50			
Prer	equisite		<u> </u>								
Teaching Department: Electrical & Electronics Engineering											
Cours	se Objectives:										
	•										
1.	To understand the Python function	ons and type	es								
2.	To know the python objects and	expressions									
2	To understand simple statistical r	models and t	the bas	sics of mad	chine lear	ning te	chr	niques of			
э.	regression.										
4.	Skills in the use of tools such as p	bython, IDE									
		UNIT	-I								
Intro	duction							15 Hours			
Introc	luction to Data Science using the F	Python prog	rammiı	ng langua	ge: Pythc	on funct	ion	s, types and			
seque	ences, reading writing CSV files, py	thon dates	and tir	nes, advai	nced pytł	non obj	ect	s, Advanced			
pytho	n Lambda and List Comprehension	ons. Manipu	ılating	text with	regular	express	ion	, Expression			
opera	tions documentations.										
Introc	luction to Pandas, The series data	structure, q	uerying	g a series,	data frai	me and	da	ta structure,			
data f	rame indexing and loading, Query	ing a data fra	ame, in	idexing a	data fram	ne, miss	ing	values.			
		UNIT-	-II								
Data	Analysis							15 Hours			
distrik Statis	pution, measuring asymmetry. Sa tical Inference frequency approach	mple and e	estimat of estim	ed mean, nates, hypo	variance othesis te	e and sesting us	star	adon, data ndard score.			
interv	als, using p-values	, j		, JI		5	-	,			
Super	vised Learning: First step, learni	ng curves,	trainin	g-validatio	on and t	test. Le	earr	ning models			
gener	alities, support vector machines, ra	ndom forest	t. Exam	ples				2			
		UNIT-	III								
Regre	essions Analysis							10 Hours			
Regre	ssion analysis, Regression: linear	regression s	imple	linear reg	ression, ı	multiple	e &	Polynomial			
regree	ssion, Sparse model. Unsupervis	ed learning	, clust	ering, sir	nilarity a	and dis	tan	ces, quality			
measu	ures of clustering, case study.										
Cours	se Outcomes: At the end of the co	urse student	t will be	e able to							
1.	Describe what Data Science is an	d the skill se	ets need	ded to be	a data sc	ientist					
2.	Comprehend the data structure a	and querying	g data f	rame							
3.	Explain the significance of explor	atory data a	nalysis	(EDA) in c	lata scier	nce					
4.	4. Learn the supervised learning, SVM in data science										
5.	Apply basic machine learning alg	orithms (Lin	ear Reg	gression)							
Cours	se Outcomes Mapping with Prog	ram Outcor	nes &	PSO							
	Program Outcomes \rightarrow 1	2 3 4	5 6	7 8	9 10	11 1	.2	PSO↓			

2

-

1

_

↓ Course Outcomes

EE2271-1.1

3 -

_

_

_

- -

_

- -

-

_

	EE2271-1.2	2	2	-	-	-	-	-	-	-	-	-	-	2	-	
	EE2271-1.3	2	2	-	-	-	-	-	I	I	-	1	1	2	I	
	EE2271-1.4	2	3	-	-	-	-	-	I	I	-	-	1	2	I	
	EE2271-1.5	3	-	-	-	-	-	-	I	I	-	-	1	2	I	
-											1: Lo	w 2:	Med	ium	3: Hi	gh
TE	XTBOOKS:															
2	2. Introduction to Data Science	:e a	Pyth	non a	appr	oach	n to	cond	cept	s, Te	chnic	ques	and A	Appli	catio	ns,
	Igual, L;Seghi', S. Springer, I	SBN	:978	-3-3	19-5	5001	6-4									
(11)	B. Data Analysis with Pythor	۱A	Мо	dern	Ар	proa	ach,	Dav	vid 1	「aieł	o, Pa	ckt F	Publis	hing,	ISB	N-
	9781789950069															
Z	I. Python Data Analysis, S	Seco	nd	Ed.,	Ar	man	do	Far	ndan	go,	Pac	kt P	ublis	hing,	ISE	SN:
[9781787127487															
Z	1. https://www.coursera.org/le	earn	/pvtł	non-	data	-ana	alvsi	s/ho	me							

INTRODUCTION TO ARTIFICIAL INTELLIGENCE								
Course Code:	FE2272_1							
Teaching Hours/Week (L: T: P: S)	3:0:0:0	Credits	03					
Total Teaching Hours	40+0+0	CIE + SEE Marks	50+50					

Prer	equisite														
	Teaching Depa	rtme	ent:	Elec	trica	al &	Elec	tror	nics	Eng	ineer	ing			
Cours	e Objectives:														
1	To Understand concepts of Artificial Intelligence and different types of intelligent agents									nts					
	¹ and their architecture														
2.	2. To Formulate problems as state space search problem & efficiently solve them.														
3	To Understand the working of various informed and uninformed searching algorithms and														
5.	different heuristics														
4.	4. To Reasoning with uncertainty and Machine learning algorithms														
5.	To Understand how learning	j haj	pper	ns in	neu	ral n	etwo	orks							
				l	JNIT	-I								1	
Introd	duction to AI, Intelligent Ag	ents	s and	d Sea	arch	ing								15	Hours
Defini	tion of AI, birth of AI, brief hi	stor	у, Ті	uring	g tes	t, Ty	pes	of e	nvir	onm	ent, 1	Гуреs	of a	gent	s, PEAS(
Perfor	mance measure , Environme	nt, i	Actu	ator	s, Se	enso	rs), 1	Intro	oduc	tion	to s	earch	ing,	State	e Space,
SAGP	(State, Action, Goal test, I	Path	CO	st),	DFS,	BF:	S (C	Com	plete	enes	s, Tir	ne c	ompl	exity	, Space
comp	lexity, Optimality), Heuristics,	Loc	al S	earc	h Al	gorit	:hm,	Hill	l Clir	nbir	ng. Aj	oplica	ations	s of a	Artificial
Intellig	gence in real word.														
				U	NIT	-11								1	
CSP, C	Game Playing and Logics							<u> </u>			_			15	Hours
Const	rain Satisfaction Problems ex	amp	oles,	App	proa	ches	to s	solve	e CS	Ps,	Test a	and g	gener	ate	nethod,
back 1	tracking. Game Playing, Optir	nal	decis	sion	in g	ame	s, M	lin N	Лах	algo	rithm	ı, Eva	luatic	on fu	nctions,
Introd	luction to Propositional Logic	and	First	Ord	ler L	ogic,	Syn	itax,	Sub	stitu	tion,	Unific	catior	n, De	duction,
Sound	dness, Completeness, Consiste	ency	, Sat	isfial	bility	, Exp	bert	Syst	ems	•					
						TTT									
Unco	rtain Knowledge Beasoning	200	- M -	U achiu		·III	ina							10	Hours
Droh	abilistic Passoning Poviou of	Dro	habi	lity 7		eann nu D	niy robi	hili	ctic I	nfor	onco	Pulo	Bay		hoorom
PIODa	abilistic Reasoning, Review of	PIO	tion	to I	loar	nina				of	loorn	ing S	s, Day	es i	Concont
Loarni	ing Find S algorithm Candi	date		mina	tion	ning, Ale	, id.	hm	Jiny Inti	ol odu	ction	to I	Nour	115, V 51 NI	otworks
Bioloc	nig, Thu-S algorithm, Carlor	uate al M				rka	Dorc	ontr	inu on	Dorc	ontro	nlo	arning	יואו וג ערו וג	Dolta
	Applications of Neural Netwo	ai iv rkc	eura			165, 1	erc	epu	ΟΠ,	reic	eptio			y nu	e, Deita
Rule, I	Applications of Neural Netwo	15.													
Cours	a Outcomes: At the end of th		ourc	o ctu	Idon	t will	ho	ahlo	to						
Cours	e Outcomes. At the end of th		Juis		uen		De	able	10						
	Describe the concepts of Ar	tific	ial Ir	ntolli	aon	-0 2r	d di	iffor	ont t	Vno	s of ir	tollic	iont a	nan	ts and
1.	their architecture	unc	101 11	nem	yen	Le ai	iu u	men		ype	5 01 11	nemg	jent a	igen	
2	Explain the methods of heur	ictic		cal a	nd h	ام ال	imhi	ina c	oar	hind		rithn	<u>ר</u>		
2.	Describe the solutions for C	onst	., 100 rain	catio	fact	ion r	nnbi	lom	c		y aigc	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1		
<u>J.</u>	Explain the propositional loc	nic a	nd f	irct o	ordo	r log		unta	3 V						
4 .	Describe the Uncertain Know	yic a wlod		Pose	onin	n log	d M	ynta Iachi	no l	oarr	nina				
<u> </u>		vieu	ye, i	\eas		iy ai		acm		ean	iiriy				
Course	o Outcomes Manning with	Due			4.00		o, n	50							
Cours	se Outcomes Mapping with	Prog	gran			nes	αΡ	30							
	Drogram Quitcomas	1	C	2	Л	E	6	7	0	0	10	11	17	D	
	$\frac{1}{1}$	1	2	5	4			[′]	0	9	10		<u>1</u> 2	1	
		۲ ۲		+	+				+					1	<u> </u> ∠
		2	-	-	-	-	-	-	-	-	-	-	-	- 2	+
		2	2	-	-	-	-	-	-	-	-	-	-	2	+
	CC22/2-1.5	∠	4	1 -	-	-	1 -	1 -	-	1 -	- 1	- 1	1	L _	1 - 1

3

2

-

-

-

-- -_ - -

2

1

-

EE2272-1.4

	EE2272-1.5	2	2	-	-	-	-	-	-	-	-	-	1	2	-	
											1: Lo	ow 2:	: Mec	lium	3: Hi	gh
TEX	FBOOKS:															
1.	Stuart Russell and Peter Norv	ig –	Artif	ficial	Inte	llige	nce	ΑM	odei	rn A	ppro	ach, l	PEAR	SON		
	Education															
2.	Simon Haykin -Neural Netwo	rks I	PHI.													
REFE	RENCE BOOKS:															
1.	N. P. Padhy – Artificial Intellig	ence	e and	d Int	ellig	ence	e Sys	tem	s, O)	KFO	RD pi	ublic	ation			
2.	B. YagnaNarayana - Artificial	Neu	ral N	letw	orks	, PH]										

INTRODUCTION	TO ARTIFICIAL I	NEURAL NETWORKS						
Course Code	FF2272 1	Course Trees	DCC					
Course Code:	EE22/3-1	Course Type	PCC					
Teaching Hours/Week (L: T: P: S)	3:0:0:0	Credits	03					
Total Teaching Hours	40+0+0	CIE + SEE Marks	50+50					
Prerequisite								
Teaching Departme	nt: Electrical & I	Electronics Engineering						
Course Objectives:								
1. To introduce the concept and us	e of ANN							
2. To explain the concept of supervised learning and various leaning algorithms								

To familiarize with the conceTo understand the need of	ept o optir	of Le	arnir	ng ve	ecto										
. To understand the need of	optir	4. To familiarize with the concept of Learning vector quantizing and associative modeling													
			U	INIT	-I										
oduction													06	Hour	'S
duction, history, structure and	func	tion	of si	ngle	neu	ron,	neu	ral n	et ar	chite	cture	s, nei	ural le	earnir	ng,
of neural networks.															
ervised learning													04	Hour	S
rvised learning, single layer rithm, guarantees of success, n	netv nodit	vork: ficati	s, pe ions	ercep	otror	n's,	linea	ar se	epara	ability	y, pe	rcept	ron	traini	ng
ticlass networks-I													05	Hour	'S
Multiclass networks-I, multilevel discrimination, preliminaries, back propagation, setting parameter values, theoretical results															
UNIT-II															
lerated learning process													04	Hour	'S
lerated learning process in lay	erec	l neu	ural	netw	ork,	арр	olicat	ion,	mai	ndalir	ne, ac	daptiv	/e mi	ultilay	/er
orks															
iction networks											<u> </u>		04	Hour	Ϋ́S
iction networks, radial basis ing, winner take all networks	fun	ictio	ns,	polyı	nom	ial ı	netw	orks/	s, re	egula	rizatio	on, ι	insup	bervis	ed
ning vector quantizing													04	Hour	°S
ning vector quantizing, co	unte	r p	ropa	gati	on	netv	vork	S, 6	adap	otive	resc	nanc	e th	neore	m,
logically organized networks, o	dista	nce	base	d lea	arnir	ng, re	ecog	Initio	on						
ciative models					Associative models 04 Hours										
Associative models, hop field networks, brain state networks, Boltzmann machines, hetero															
ciations.	orks,	brai	in sta	ate r	netw	orks	, Bol	tzma	ann	mach	nines,	hete	ro		
ciations.	orks,	brai	in sta	ate r	etw	orks	, Bol	tzma	ann	mach	ines,	hete	ro		
ciations.	orks,	brai	in sta U	ate r NIT-	ietw III	orks	, Bol	tzma	ann	mach	ines,	hete	ro		
mization using hop filed net	orks, worl	brai	in sta U	ate n	ietw III	orks	, Bol	tzma	ann	mach	ines,	hete	ro 09	Hour	ŕS
mization using hop filed net mization using hop filed r mization using hop filed r putation	orks, worl	brai ks orks,	U U	nula	III ted	orks anr	, Bol	ng,	ran	dom	sear	hete	ro 09 evolu	Hour utiona	's ary
mization using hop filed net mization using hop filed net mization using hop filed r	orks, worl	brai	in sta U sir	nula	III ted	orks anr	, Bol	ng,	ran	dom	sear	hete	ro 09 evolu	Hour utiona	rs ary
mization using hop filed net mization using hop filed r putation	worl	ks orks,	U U sir	nula	III ted	orks anr be	, Bol neali able	ng, to	rand	dom	sear	hete	ro 09 evolu	Hour utiona	rs ary
mization using hop filed net mization using hop filed r putation rse Outcomes: At the end of t	worl netwo	brai	U U sir	nula nula	III ted	anr be a	, Bol neali able y the	ng, to e fur	rand	dom	sear	hete rch, diffe	ro 09 evolu rent	Hour utiona	r s ary
mization using hop filed net mization using hop filed r poutation rse Outcomes: At the end of the Describe the architecture of Apply the single layer and n	worl netwo ne co neu nultil	brai ks orks, ourse ral n layer	U sir	nula nula	III ted t will o ide j alg	orks anr be a entif	, Bol neali able y the	tzma ng, to e fur	rand	dom naliti nonli	sear sear es of near	hete rch, diffe syste	ro 09 evolu rent	Hour utiona	r s ary
mization using hop filed net mization using hop filed net mization using hop filed r putation rse Outcomes: At the end of t Describe the architecture of Apply the single layer and n Describe the accelerated lea	worl netwo ne co neu nultil	brai ks orks, ourse ral n layer g pro	U U sir e stu e stu e stu e stu e stu	nula nula dent ork tr ning s an	III ted ted talg d un	orks anr be a entif orith	, Bol neali able y the nms	tzma ng, to to so ed lo	rand	dom naliti nonli	sear es of near Igorit	hete rch, diffe syste	ro 09 evolu rent	Hour utiona	r s ary
mization using hop filed net mization using hop filed net mization using hop filed r putation se Outcomes: At the end of t Describe the architecture of Apply the single layer and n Describe the accelerated lea Analyse the learning vector	worl netwo necco neu nultil nrnin	brai ks orks, ourse ral n layer g pro uant	U U sir e stu etwo r lear oces izing	NIT - NIT - nula dent ork t ning s an g an	III ted ted i will o ide i alg d un d a:	anr be a entif orith supe	, Bol neali able y the nms ervis iativ	tzma ng, to e fur to so ed la e m	ran ran octio olve earn ode	dom naliti nonli ing a lling	sear sear <u>es of</u> <u>near</u> Igorit	hete rch, diffe syste :hm nique	ro evolu rent m	Hour utiona layers	r s ary
mization using hop filed net mization using hop filed net mization using hop filed r putation rse Outcomes: At the end of t Describe the architecture of Apply the single layer and n Describe the accelerated lea Analyse the learning vector uncertainty in the system	worl netwo ne cc neu nultil nrnin	brai ks orks, ourse ral n layer g pro	U U sir e stu ee stu ee stu ee stu etwo r lear oces	nula dent ork t s an g an	III ted ted alg d un d as	anr be a entif supo	, Bol neali able y the nms ervis iativ	tzma ng, to e fur to so ed la e m	ann ran nctio olve earn ode	dom naliti nonli ing a lling	sear sear near lgorit tech	hete rch, diffe syste hm nique	ro evolu rent m es to	Hour utiona layers	r s ary
mization using hop filed net mization using hop filed net mization using hop filed r poutation rse Outcomes: At the end of the Describe the architecture of Apply the single layer and n Describe the accelerated lead Analyse the learning vector uncertainty in the system Describe the various neural	worl network netwo nultil nultil nrnin netwo	brai ks orks, ourse ral n layer g pro uant	U sir e stu etwo ces coes opti	nula nula <u>dent</u> <u>ork t</u> <u>ning</u> <u>s an</u> <u>miza</u>	III ted ted alg d un d as	anr be a entif orith supp ssoc	, Bol neali <u>able</u> <u>y the</u> <u>ervis</u> iativ	tzma ng, to e fur to so ed la e m ims	ran ran olve earn ode	dom naliti nonli ing a lling	sear sear <u>near</u> lgorit tech	hete rch, diffe syste hm nique	ro evolu m es to	Hour utiona layers	r s ary
mization using hop filed net mization using hop filed net mization using hop filed r poutation se Outcomes: At the end of the Describe the architecture of Apply the single layer and n Describe the accelerated lead Analyse the learning vector uncertainty in the system Describe the various neural	worl netwo netwo neu nultil nrnin pr q	brai ks orks, ourse ral n layer g pro uant vork	U U sir e stu etwo r lear oces izing opti	NIT- NIT- nula dent ork t ning s an g an miza	III ted ted alg d un d a:	anr be a entif orith supe alge	, Bol meali able y the ervis iativ	tzma ng, to e fur to so ed la e m	ran ran olve earn ode	dom naliti nonli ing a lling	sear sear lgorit tech	hete rch, diffe syste hm nique	ro evolu rent m es to	Hour utiona layers	r s ary
mization using hop filed net mization using hop filed net mization using hop filed r butation rse Outcomes: At the end of t Describe the architecture of Apply the single layer and n Describe the accelerated lea Analyse the learning vector uncertainty in the system Describe the various neural	worl netwo ne cc neu nultil nultil netwo Prog	brai ks orks, ourse ral n layer g pro uant vork	U v v v v v v v v v v v v v v v v v v v	NIT - NIT - nula dent ork t rning s an g an miza	III ted ted alg d un d a: tion	anr be a entif orith supe alge	, Bol neali able y the ervis iativ orith	tzma ng, to e fur to so ed la e m 	ran ran olve earn ode	dom naliti nonli ing a lling	sear sear lgorit tech	hete rch, diffe syste hm nique	ro evolu rent m es to	Hour utiona layers	r s ary
mization using hop filed net mization using hop filed net mization using hop filed r putation rse Outcomes: At the end of t Describe the architecture of Apply the single layer and n Describe the accelerated lea Analyse the learning vector uncertainty in the system Describe the various neural rse Outcomes Mapping with	worl netwo ne cco neu nultil nrnin pr q netwo Proc	brai	U U sir e stu ee stu oopti	nula nula <u>dent</u> <u>ork t</u> <u>ork t</u> <u>ork t</u> <u>orning</u> <u>an</u> miza	III ted ted tailing d un d a: tion mes	anr be a entif supo algo & P	, Bol neali able y the ervis iativ orith SO	tzma ng, to e fur to so ed la e m ims	ann rand olve earn ode	dom dom <u>naliti</u> <u>nonli</u> ing a lling	sear sear lgorit tech	hete rch, diffe syste hm nique	ro evolu m es to	Hour utiona layers	rs ary
mization using hop filed net mization using hop filed net mization using hop filed r outation rse Outcomes: At the end of t Describe the architecture of Apply the single layer and n Describe the accelerated lea Analyse the learning vector uncertainty in the system Describe the various neural Describe the various neural Program Outcomes→ Course Outcomes	me co ne co neu nultil nultil pr q Prog	brai	U v sir e stu etwo c lear occes izing opti	NIT - NIT - nula dent ork t rning s an g an miza tcor	III ted ted alg d un d a: tion mes	anr be a entif orith supo algo & P	, Bol meali able y the ervis iativ orith SO	tzma ng, to so e fur to so e d la e m ims	ann ran nctio olve earn node	dom naliti nonli ing a lling 10	sear sear lgorit tech	hete rch, diffe syste hm nique	ro evolu rent es to	Hour utiona layers	r s ary
mization using hop filed net mization using hop filed net mization using hop filed r poutation rse Outcomes: At the end of the Describe the architecture of Apply the single layer and n Describe the accelerated leat Analyse the learning vector uncertainty in the system Describe the various neural rse Outcomes Mapping with Program Outcomes→ Course Outcomes EE2273-1.1	metworks, metworks, mector metworks met	brai	U sir e stu etwo opti opti	nula nula <u>dent</u> <u>ork t</u> <u>ning</u> <u>an</u> <u>miza</u>	III ted ted alg d un d a: tion mes	anr be a entif orith supe ssoc alge 8 P	, Bol neali able y the ervis iativ orith SO	tzma ng, to e fur to sc ed lo e m ms	ann rand olve earn ode	dom dom <u>naliti</u> <u>nonli</u> ing a lling	sear sear lgorit tech	hete rch, diffe syste hm nique 12	ro evolu m es to PS 1 -	Hour utiona layers solv	rs ary
mization using hop filed net mization using hop filed net mization using hop filed r outation rse Outcomes: At the end of t Describe the architecture of Apply the single layer and n Describe the accelerated lea Analyse the learning vector uncertainty in the system Describe the various neural rse Outcomes Mapping with Program Outcomes→ Course Outcomes EE2273-1.1 EE2273-1.2	metworks, metworks, metworks ne ccc neu nultil mnin pr q networks	brai	U v sir e stu etwo c lear oces izing opti a v opti	NIT - NIT - nula denti ork t rning s an g an miza tcor 4	III ted ted alg d un d a: tion tion	anr be a entif orith support ssoc algu 6 -	, Bol meali able y the mms iativ orith SO	tzma ng, to so ed la e m ms 8 -	ann rand olve earn ode	dom naliti nonli ing a lling 10 -	sear sear lgorit tech	hete rch, diffe syste hm nique	ro evolu rent es to PS 1 - -	Hour utiona layers solv	rs ary
mization using hop filed net mization using hop filed net mization using hop filed r poutation rse Outcomes: At the end of the Describe the architecture of Apply the single layer and n Describe the accelerated leat Analyse the learning vector uncertainty in the system Describe the various neural rse Outcomes Mapping with Program Outcomes EE2273-1.1 EE2273-1.2 EE2273-1.3	metworks, metworks, metworks metwo metworks metw	brai	U U v sir e stu e stu etwo opti opti opti 3	nula nula nula nula ning an nula ning an niza niza niza	III III ted ted alg d un d an tion mes 5 - - - -	anr be a entif orith supe ssoc alge & P 6	, Bol meali able y the ervis iativ orith SO	tzma ng, to sc ed lo e m ims 8 8 - -	ann rand olve earn ode 9 - -	dom naliti nonli ing a lling 10 - -	sear	hete rch, nique 12	ro evolu m es to PS 1 - -	Hour utiona layers solv	rs ary
	ervised learning ervised learning, single layer eithm, guarantees of success, n ciclass networks-I iclass networks-I, multilevel di es, theoretical results es, theoretical results erated learning process lerated learning process in lay orks iction networks, radial basis ing, winner take all networks ning vector quantizing ning vector quantizing, cou logically organized networks, o ciative models	ervised learning ervised learning, single layer networksed learning, single layer networks- ithm, guarantees of success, modifications networks-I, multilevel discrimes, theoretical results es, theoretical results es, theoretical results erated learning process lerated learning process in layered orks iction networks, radial basis fun- ing, winner take all networks ning vector quantizing ning vector quantizing, counte logically organized networks, dista ciative models	ervised learning, single layer network rithm, guarantees of success, modificat riclass networks-I iclass networks-I, multilevel discrimina es, theoretical results elerated learning process lerated learning process in layered net orks iction networks, radial basis function ing, winner take all networks ning vector quantizing hing vector quantizing, counter p logically organized networks, distance ciative models	ervised learning, single layer networks, perithm, guarantees of success, modifications icitass networks-I iclass networks-I, multilevel discrimination, es, theoretical results U lerated learning process lerated learning process in layered neural re- orks iction networks, radial basis functions, pring, winner take all networks ning vector quantizing hing vector quantizing, counter propar logically organized networks, distance base ciative models	ervised learning, single layer networks, perception rithm, guarantees of success, modifications ficlass networks-I iclass networks-I, multilevel discrimination, preses, theoretical results UNIT: Iterated learning process lerated learning process in layered neural networks iction networks, radial basis functions, polyning, winner take all networks ning vector quantizing hing vector quantizing, counter propagation logically organized networks, distance based lear iction models	ervised learning, single layer networks, perceptror rithm, guarantees of success, modifications ficlass networks-I iclass networks-I, multilevel discrimination, prelimin es, theoretical results UNIT-II lerated learning process lerated learning process in layered neural network, orks iction networks, radial basis functions, polynom ing, winner take all networks ning vector quantizing hing vector quantizing, counter propagation logically organized networks, distance based learnin ciative models	ervised learning ervised learning, single layer networks, perceptron's, eithm, guarantees of success, modifications eiclass networks-I iclass networks-I, multilevel discrimination, preliminarie es, theoretical results UNIT-II Herated learning process lerated learning process in layered neural network, app orks iction networks, radial basis functions, polynomial in ing, winner take all networks ning vector quantizing hing vector quantizing, counter propagation networks, distance based learning, re- logically organized networks, distance based learning, re- ciative models	ervised learning rivised learning, single layer networks, perceptron's, linearithm, guarantees of success, modifications ficlass networks-I ficlass networks-I, multilevel discrimination, preliminaries, bases, theoretical results UNIT-II lerated learning process lerated learning process in layered neural network, applicate orks fiction networks, radial basis functions, polynomial networks ing, winner take all networks ning vector quantizing hing vector quantizing, counter propagation networks logically organized networks, distance based learning, recognized fiction metworks, radial basis functions, polynomial networks fiction networks and percent propagation networks fiction networks and percent per	ervised learning rvised learning, single layer networks, perceptron's, linear sec- rithm, guarantees of success, modifications riclass networks-I iclass networks-I, multilevel discrimination, preliminaries, back es, theoretical results UNIT-II lerated learning process lerated learning process in layered neural network, application, orks iction networks, radial basis functions, polynomial networks ing, winner take all networks ning vector quantizing hing vector quantizing, counter propagation networks, a logically organized networks, distance based learning, recognitic ictior models	ervised learning rvised learning, single layer networks, perceptron's, linear separa- rithm, guarantees of success, modifications ficlass networks-I ficlass networks-I, multilevel discrimination, preliminaries, back prop- es, theoretical results UNIT-II lerated learning process lerated learning process in layered neural network, application, main orks iction networks iction networks, radial basis functions, polynomial networks, re- ing, winner take all networks ning vector quantizing ning vector quantizing, counter propagation networks, adap logically organized networks, distance based learning, recognition ciative models	ervised learning rvised learning, single layer networks, perceptron's, linear separability rithm, guarantees of success, modifications riclass networks-I iclass networks-I, multilevel discrimination, preliminaries, back propagat es, theoretical results UNIT-II lerated learning process lerated learning process in layered neural network, application, mandalin orks iction networks iction networks, radial basis functions, polynomial networks, regular ing, winner take all networks ning vector quantizing ning vector quantizing, counter propagation networks, adaptive logically organized networks, distance based learning, recognition ciative models	ervised learning rvised learning, single layer networks, perceptron's, linear separability, perithm, guarantees of success, modifications ciclass networks-I iclass networks-I, multilevel discrimination, preliminaries, back propagation, sets, theoretical results UNIT-II lerated learning process lerated learning process in layered neural network, application, mandaline, act orks iction networks, radial basis functions, polynomial networks, regularization ing, winner take all networks ning vector quantizing ning vector quantizing, counter propagation networks, adaptive resc logically organized networks, distance based learning, recognition ciative models	ervised learning rvised learning, single layer networks, perceptron's, linear separability, percept rithm, guarantees of success, modifications riclass networks-I iclass networks-I iclass networks-I, multilevel discrimination, preliminaries, back propagation, settin es, theoretical results UNIT-II lerated learning process lerated learning process in layered neural network, application, mandaline, adaptive orks iction networks, radial basis functions, polynomial networks, regularization, u ing, winner take all networks ning vector quantizing ning vector quantizing, counter propagation networks, adaptive resonance logically organized networks, distance based learning, recognition ciative models	ervised learning 04 invised learning, single layer networks, perceptron's, linear separability, perceptron itithm, guarantees of success, modifications iticlass networks-I 05 iclass networks-I, multilevel discrimination, preliminaries, back propagation, setting pages, theoretical results UNIT-II derated learning process 04 lerated learning process in layered neural network, application, mandaline, adaptive morks iction networks, radial basis functions, polynomial networks, regularization, unsuping, winner take all networks ning vector quantizing 04 ning vector quantizing, counter propagation networks, adaptive resonance the logically organized networks, distance based learning, recognition 04	ervised learning 04 Hour rvised learning, single layer networks, perceptron's, linear separability, perceptron traini rithm, guarantees of success, modifications siclass networks-I 05 Hour iclass networks-I, multilevel discrimination, preliminaries, back propagation, setting parameters, theoretical results UNIT-II 04 Hour elerated learning process 04 Hour lerated learning process in layered neural network, application, mandaline, adaptive multilay orks 04 Hour iction networks, radial basis functions, polynomial networks, regularization, unsupervising, winner take all networks 04 Hour ning vector quantizing 04 Hour ning vector quantizing, counter propagation networks, adaptive resonance theore theore logically organized networks, distance based learning, recognition 04 Hour

3

3

-

-

- -

- - -

-

-

1

_

_

EE2273-1.5

1: Low 2: Medium 3: High

TEXTB	OOKS:
1.	Kishan Mehrotra, C. K. Mohan, Sanjay Ranka, Elements of artificial neural networks, 2 nd Edition,
	Penram International Publishing India Pvt. Ltd, 2009
2.	Martin T. Hagan, Demuth and Beale, "Neural network design", 2 nd Edition, Cengage Learning,
	2008.
REFER	ENCE BOOKS:
1.	R, Schalkoff, Artificial neural networks, 2 nd Edition, Tata McGraw - Hill Education, 1998.
2.	J. Zurada, "Introduction to artificial neural systems", Jaico, 2003
3.	Simon Haykin, Neural networks, 3rd Edition, Phi Learning Pvt. Ltd-New Delhi, 2010
4.	Hertz, Krogh, Palmer, Introduction to theory of neural computation, Addison Wesley, 1991.
E Book	<s moocs="" nptel<="" th=""></s>
1.	http://nptel.ac.in/courses/117105084/

AI APPLICATIONS TO POWER SYSTEMS										
Course Code:	EE4271-1	Course Type	PCC							
Teaching Hours/Week (L: T: P: S)	3:0:0:0	Credits	03							
Total Teaching Hours	40+0+0	CIE + SEE Marks	50+50							
Prerequisite EE3102-1										
Teaching Department: Electrical & Electronics Engineering										
Course Objectives:										
1. To study the Difference between A	Algorithmic base	d methods and knowledge	based methods							
2. To understand the use of the soft	computing tech	iniques for voltage control	problems							
3. To know the appropriate AI frame	ework for solving	power system protection	problems							
4. To study the different AI techniqu	ues for demand f	orecasting								
5. To know the Adaptive AI technique	ues in the power	system protection and cor	ntrol							
	UNIT-I									
Introduction	Introduction 07 Hours									

Definition of AI difference between soft computing techniques and hard computing systems, expert

systems brief history of ANN, Fuzzy and GA												
Fuzzy logic and Hybrid systems: Concept of Fuzzy in Power system, Fuzzy Techniques and												
Applications in power system												
Comparison among Various Artificial Intelligence Techniques	08 Hours											
ANN, Fuzzy, Evolutionary algorithms, Expert systems, Hybrid systems: Fuzzy expert sy	stem Hybrid,											
Neural Network system Hybrid, Application in Power system												
Artificial Intelligence techniques for voltage control:												
Introduction, Algorithm methods, Voltage collapse monitoring, Reactive power r	nanagement,											
Combined active and reactive dispatch, AI techniques for Voltage control												
UNIT-II												
AI Techniques for protection systems	05 Hours											
Introduction: An expert system for Protective relaying settings, Fuzzy logic for p	ower system											
protection, Artificial neural network in phase selection												
Artificial Neural network for static security assessment: Introduction to power sys	tem security											
assessment, AI techniques to power system security assessment- Fuzzy techniques, ANI	N											
A supervised ANN for power system security prediction	03 Hours											
ANN Architecture, Training set selection, A new prediction performance measure, ANN	performance											
evaluation	-											
Intelligence systems for demand forecasting	08 Hours											
Introduction, stages in building a forecast model, Identifying the model, survey of intellig	gence system											
for demand forecasting												
UNIT-III												
UNIT-III A practical application and implementation of adaptive techniques using neural	09 Hours											
UNIT-III A practical application and implementation of adaptive techniques using neural networks into auto-reclose protection and system control	09 Hours											
UNIT-III A practical application and implementation of adaptive techniques using neural networks into auto-reclose protection and system control Introduction, Auto recloser description: Conventional scheme, Adaptive reclose descri	09 Hours											
UNIT-III A practical application and implementation of adaptive techniques using neural networks into auto-reclose protection and system control Introduction, Auto recloser description: Conventional scheme, Adaptive reclose description network description, system simulation, fault records, feature extraction, Neural Network	09 Hours ption, neural vork training,											
UNIT-III A practical application and implementation of adaptive techniques using neural networks into auto-reclose protection and system control Introduction, Auto recloser description: Conventional scheme, Adaptive reclose descri- network description, system simulation, fault records, feature extraction, Neural Network Neural Network testing	09 Hours ption, neural vork training,											
UNIT-III A practical application and implementation of adaptive techniques using neural networks into auto-reclose protection and system control Introduction, Auto recloser description: Conventional scheme, Adaptive reclose descri network description, system simulation, fault records, feature extraction, Neural Netw Neural Network testing	09 Hours ption, neural vork training,											
UNIT-III A practical application and implementation of adaptive techniques using neural networks into auto-reclose protection and system control Introduction, Auto recloser description: Conventional scheme, Adaptive reclose descri- network description, system simulation, fault records, feature extraction, Neural Network Neural Network testing Course Outcomes: At the end of the course student will be able to	09 Hours ption, neural vork training,											
UNIT-III A practical application and implementation of adaptive techniques using neural networks into auto-reclose protection and system control Introduction, Auto recloser description: Conventional scheme, Adaptive reclose descri- network description, system simulation, fault records, feature extraction, Neural Netw Neural Network testing Course Outcomes: At the end of the course student will be able to	09 Hours ption, neural vork training,											
UNIT-III A practical application and implementation of adaptive techniques using neural networks into auto-reclose protection and system control Introduction, Auto recloser description: Conventional scheme, Adaptive reclose description etwork description, system simulation, fault records, feature extraction, Neural Network testing Course Outcomes: At the end of the course student will be able to 1. List the various soft computing and hard computing techniques to apply in pow	09 Hours ption, neural vork training, er system											
UNIT-III A practical application and implementation of adaptive techniques using neural networks into auto-reclose protection and system control Introduction, Auto recloser description: Conventional scheme, Adaptive reclose description, etwork description, system simulation, fault records, feature extraction, Neural Network Neural Network testing Course Outcomes: At the end of the course student will be able to 1. List the various soft computing and hard computing techniques to apply in pow 2. Compare different AI techniques to choose an appropriate method for voltage	09 Hours ption, neural vork training, er system e control in											
UNIT-III A practical application and implementation of adaptive techniques using neural networks into auto-reclose protection and system control Introduction, Auto recloser description: Conventional scheme, Adaptive reclose description etwork description, system simulation, fault records, feature extraction, Neural Network testing Course Outcomes: At the end of the course student will be able to 1. List the various soft computing and hard computing techniques to apply in pow 2. Compare different AI techniques to choose an appropriate method for voltag power system	09 Hours ption, neural vork training, er system e control in											
UNIT-III A practical application and implementation of adaptive techniques using neural networks into auto-reclose protection and system control Introduction, Auto recloser description: Conventional scheme, Adaptive reclose description, etwork description, system simulation, fault records, feature extraction, Neural Network testing Course Outcomes: At the end of the course student will be able to 1. List the various soft computing and hard computing techniques to apply in pow 2. Compare different AI techniques to choose an appropriate method for voltag power system 3. Select appropriate AI framework for solving power system protection problems	09 Hours ption, neural vork training, er system e control in											
UNIT-III A practical application and implementation of adaptive techniques using neural networks into auto-reclose protection and system control Introduction, Auto recloser description: Conventional scheme, Adaptive reclose description etwork description, system simulation, fault records, feature extraction, Neural Network Neural Network testing Course Outcomes: At the end of the course student will be able to 1. List the various soft computing and hard computing techniques to apply in pow 2. Compare different AI techniques to choose an appropriate method for voltag power system 3. Select appropriate AI framework for solving power system protection problems 4. Describe various AI techniques for demand forecasting	09 Hours ption, neural vork training, er system e control in											
UNIT-III A practical application and implementation of adaptive techniques using neural networks into auto-reclose protection and system control Introduction, Auto recloser description: Conventional scheme, Adaptive reclose description, etwork description, system simulation, fault records, feature extraction, Neural Network description Neural Network testing Course Outcomes: At the end of the course student will be able to 1. List the various soft computing and hard computing techniques to apply in pow 2. Compare different AI techniques to choose an appropriate method for voltag power system 3. Select appropriate AI framework for solving power system protection problems 4. Describe various AI techniques for demand forecasting 5. Describe the Adaptive AI techniques to apply in power system protection and computing	09 Hours ption, neural work training, er system e control in											
UNIT-III A practical application and implementation of adaptive techniques using neural networks into auto-reclose protection and system control Introduction, Auto recloser description: Conventional scheme, Adaptive reclose description etwork description, system simulation, fault records, feature extraction, Neural Network lesting Course Outcomes: At the end of the course student will be able to 1. List the various soft computing and hard computing techniques to apply in pow 2. Compare different AI techniques to choose an appropriate method for voltag power system 3. Select appropriate AI framework for solving power system protection problems 4. Describe various AI techniques for demand forecasting 5. Describe the Adaptive AI techniques to apply in power system protection and computing techniques to apply in power system protection and computing techniques to apply in power system	09 Hours ption, neural vork training, er system e control in ontrol											
UNIT-III A practical application and implementation of adaptive techniques using neural networks into auto-reclose protection and system control Introduction, Auto recloser description: Conventional scheme, Adaptive reclose description; etwork description, system simulation, fault records, feature extraction, Neural Network version Neural Network testing Course Outcomes: At the end of the course student will be able to 1. List the various soft computing and hard computing techniques to apply in pow 2. Compare different AI techniques to choose an appropriate method for voltag power system 3. Select appropriate AI framework for solving power system protection problems 4. Describe various AI techniques for demand forecasting 5. Describe the Adaptive AI techniques to apply in power system protection and computing techniques & PSO	09 Hours ption, neural vork training, er system e control in ontrol											
UNIT-III A practical application and implementation of adaptive techniques using neural networks into auto-reclose protection and system control Introduction, Auto recloser description: Conventional scheme, Adaptive reclose description etwork description, system simulation, fault records, feature extraction, Neural Network testing Course Outcomes: At the end of the course student will be able to 1. List the various soft computing and hard computing techniques to apply in pow 2. Compare different AI techniques to choose an appropriate method for voltag power system 3. Select appropriate AI framework for solving power system protection problems 4. Describe various AI techniques for demand fore asting 5. Describe the Adaptive AI techniques to apply in power system protection and computing 6. Course Outcomes Mapping with Program Outcomes & PSO	09 Hours ption, neural work training, er system e control in ontrol											
UNIT-III A practical application and implementation of adaptive techniques using neural networks into auto-reclose protection and system control Introduction, Auto recloser description: Conventional scheme, Adaptive reclose descrinetwork description, system simulation, fault records, feature extraction, Neural Network testing Course Outcomes: At the end of the course student will be able to 1. List the various soft computing and hard computing techniques to apply in pow 2. Compare different AI techniques to choose an appropriate method for voltag power system 3. Select appropriate AI framework for solving power system protection problems 4. Describe various AI techniques for demand forecasting 5. Describe the Adaptive AI techniques to apply in power system protection and computing techniques to apply in power system protection and computing techniques for demand forecasting 5. Describe the Adaptive AI techniques to apply in power system protection and computing techniques for demand forecasting 6. Describe the Adaptive AI techniques to apply in power system protection and computing techniques for demand forecasting 7. Describe the Adaptive AI techniques to apply in power system protection and computing techniques for demand forecasting 8. Describe the Adaptive AI techniques to apply in power system protection and computing techniques for demand forecasting 9. Describe the Adaptive AI techniques to a	09 Hours ption, neural vork training, er system e control in ontrol											
UNIT-III A practical application and implementation of adaptive techniques using neural networks into auto-reclose protection and system control Introduction, Auto recloser description: Conventional scheme, Adaptive reclose descrinetwork description, system simulation, fault records, feature extraction, Neural Network testing Course Outcomes: At the end of the course student will be able to 1. List the various soft computing and hard computing techniques to apply in pow 2. Compare different AI techniques to choose an appropriate method for voltag power system 3. Select appropriate AI framework for solving power system protection problems 4. Describe various AI techniques for demand forecasting 5. Describe the Adaptive AI techniques to apply in power system protection and complement of the course structure apply in power system protection and complement of the course of the power system protection and complement of the course of the course of the power system protection and complement of the course of the power system protection and complement of the course of the power system protection and complement of the course of the power system protection and complement of the course of the power system protection and complement of the power system protection and complement of the power system of the power system protection and complement of the power system power system protection and complement of the power system power system protection and complement of the power system power system power system po	09 Hours ption, neural vork training, er system e control in ontrol											
UNIT-III A practical application and implementation of adaptive techniques using neural networks into auto-reclose protection and system control Introduction, Auto recloser description: Conventional scheme, Adaptive reclose descrinetwork description, system simulation, fault records, feature extraction, Neural Network testing Course Outcomes: At the end of the course student will be able to 1. List the various soft computing and hard computing techniques to apply in pow 2. Compare different AI techniques to choose an appropriate method for voltag power system 3. Select appropriate AI framework for solving power system protection problems 4. Describe various AI techniques for demand forecasting 5. Describe the Adaptive AI techniques to apply in power system protection and complement of the course structure appropriate and forecasting 6. Program Outcomes for demand forecasting 7. Lescribe the Adaptive AI techniques to apply in power system protection and complement of the course structure appropriate and the course structure approprise approprise approprise appropriate appropriate approprise approp	09 Hours ption, neural vork training, er system e control in ontrol											
UNIT-III A practical application and implementation of adaptive techniques using neural networks into auto-reclose protection and system control Introduction, Auto recloser description: Conventional scheme, Adaptive reclose description: description, system simulation, fault records, feature extraction, Neural Network description, system simulation, fault records, feature extraction, Neural Network description; system simulation, fault records, feature extraction, Neural Network description; system simulation, fault records, feature extraction, Neural Network testing Course Outcomes: At the end of the course student will be able to 1. List the various soft computing and hard computing techniques to apply in power system 2. Compare different AI techniques to choose an appropriate method for voltag power system 3. Select appropriate AI framework for solving power system protection problems 4. Describe various AI techniques for demand forecasting 5. Describe the Adaptive AI techniques to apply in power system protection and complexity in power system protection and complexity in power system protection and complexity in power system Course Outcomes Mapping with Program Outcomes & PSO Program Outcomes 1 2 3 4 5 6 7 8 9 10 11 12 EE4271-1.1 3 - - <t< td=""><td>09 Hours ption, neural vork training, er system e control in ontrol PSO↓ 1 2 - - - - - 1 - - - - - 1</td></t<>	09 Hours ption, neural vork training, er system e control in ontrol PSO↓ 1 2 - - - - - 1 - - - - - 1											
UNIT-III A practical application and implementation of adaptive techniques using neural networks into auto-reclose protection and system control Introduction, Auto recloser description: Conventional scheme, Adaptive reclose descrinter description, system simulation, fault records, feature extraction, Neural Network description; system simulation, fault records, feature extraction, Neural Network testing Course Outcomes: At the end of the course student will be able to 1. List the various soft computing and hard computing techniques to apply in pow 2. Compare different AI techniques to choose an appropriate method for voltag power system 3. Select appropriate AI framework for solving power system protection problems 4. Describe various AI techniques for demand forecasting 5. Describe the Adaptive AI techniques to apply in power system protection and complexity in power system protection and complexity is apply in power system is apply in power system protection and complexity is	09 Hours ption, neural vork training, er system e control in ontrol PSO↓ 1 2 1 2 - 1											
UNIT-IIIA practical application and implementation of adaptive techniques using neural networks into auto-reclose protection and system controlIntroduction, Auto recloser description: Conventional scheme, Adaptive reclose description network description, system simulation, fault records, feature extraction, Neural Netw Neural Network testingCourse Outcomes: At the end of the course student will be able to1.List the various soft computing and hard computing techniques to apply in pow 2.2.Compare different AI techniques to choose an appropriate method for voltag power system3.Select appropriate AI framework for solving power system protection problems 4.4.Describe various AI techniques for demand forecasting 5.5.Describe the Adaptive AI techniques to apply in power system protection and complexityVertice Outcomes 4.Program Outcomes \rightarrow 123456789101112EE4271-1.13.Course OutcomesProgram Outcomes \rightarrow 123456789101112Course OutcomesProgram Outcomes \rightarrow 123EE4271-1.13Interview of the course student will b	09 Hours ption, neural vork training, er system e control in ontrol											

1: Low 2: Medium 3: High

TEXTB	OOKS:
1.	K. Warwick, Arthur Ekwue, Raj Aggarwal, "Artificial Intelligence Techniques in Power Systems",
	Institution of Electrical Engineers
2.	Loi Lei Lai John "Intelligent system applications in power engineering: evolutionary
	programming and neural network", Wiley, 1998
REFER	ENCE BOOKS:
1.	Dan W Patterson, "Introduction to Artificial Intelligence and Expert System", PHI
2.	Elaine Rich, Kevin Knight, "Artificial intelligence", McGraw-Hill, 1991

FUZZ	Y LOGIC CONT	ROL	
Course Code:	EE2371-1	Course Type	PCC
Teaching Hours/Week (L: T: P: S)	3:0:0:0	Credits	03
Total Teaching Hours	40+0+0	CIE + SEE Marks	50+50
Prerequisite	MA1001-1, EE	3002-1	
Teaching Department:	Electrical & Ele	ectronics Engineering	
Course Objectives:			
1. To differentiate conventional Set the	eory and Fuzzy l	ogic	
2. To study the concept of linguistic va	ariables and infe	rence rules	
3. To analyse the application of fuzzy	logic controller	systems	
4. To understand the fuzzy knowledge	-based controlle	ers (FKBC)	
5. To understand the process of perfor	mance monitori	ng and adaption mechanism	using FKBC
	UNIT-I	5	
Introduction			07 Hours
Fuzzy sets, Properties of fuzzy sets, operati	on in fuzzy sets,	fuzzy relations, cardinality of	perations on
fuzzy relations, Fuzzy Cartesian product and	d composition, f	uzzy Tolerance and equivale	nce relations
Theory of approximate reasoning	•	· · ·	08 Hours
Linguistic variables, linguistic hedges, Fuzzy	/ if then stateme	nts, inference rules, compos	itional rule of
inference, graphical technique of inference,	, Fuzzification ar	d defuzzification procedure	S

UNIT-II									
Development of membership functions	08 Hours								
Intuition, inference, rank ordering, neural networks, genetic algorithm, inductive	reasoning								
Assumptions in a Fuzzy control system design, Simple fuzzy logic controllers, Examples o	f fuzzy logic								
controllers									
	08 Hours								
Relations, Introduction to fuzzy relations Projections, Equivalence relation, transit compatibility relation	ive closure,								
UNIT-III									
Fuzzy knowledge-based controllers (FKBC)	09 Hours								
Basic concept structure of FKBC, choice of membership functions, scaling factors, rules	s, FKBC as a								
Non-linear transient element, Design of P, PI, PD, PID controllers, sliding mode FKBC, Sug	geno FKBC								
Course Outcomes: At the end of the course student will be able to									
1. Describe the fundamentals of Fuzzy logic to apply in systems with uncertainty									
2. Classify the linguistic variables & inference rules to formulate knowledge based sy	ystem								
3. Design sample fuzzy control systems to study the system behavior									
4. Analyze fuzzy knowledge-based controllers (FKBC) to compare its perform	ance with								
conventional controllers									
5. Describe the adaptive fuzzy control system to enhance the performance of FKBC	systems								

Course Outcomes Mapping with Program Outcomes & PSO

				<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>						
	Program Outcomes→	1	2	3	4	5	6	7	8	9	10	11	12	PS	O↓
\downarrow	Course Outcomes													1	2
	EE2371-1.1	3	3	-	-	-	-	-	-	-	-	-	1	-	-
	EE2371-1.2	3	3	-	-	-	-	-	-	-	-	-	1	-	-
	EE2371-1.3	3	3	-	-	-	-	-	-	-	-	-	1	-	-
	EE2371-1.4	3	3	-	-	-	-	-	-	-	-	-	1	-	-
	EE2371-1.5	3	3	-	-	-	-	-	-	-	-	-	1	-	-
											1: Lo	w 2:	Med	ium	3: High
If any	If any task is given using simulation software PO5, PO9, PO10 and PSO2														
TEXT	TEXTBOOKS:														
1	Timothy J Ross, "Fuzzy Logic with engineering applications", 3rd Edition, John Wiley And Sons														
	, 2010.			0										5	
2	. Dimiter Driankov, Hans Hel	lend	oorr	n, Mi	chae	el Re	einfra	ank-	"An	intr	oduc	tion	to Fu	zzy c	ontrol",
	Narosa Publishers India, 2	1996	5												
3	. G. J. Klir and T. A. Folger, "F	uzzy	sets	s unc	erta	inty	and	infc	orma	tion	" [Par	is] :D	idero	pub	lishers ,
	1996														
REFE	RENCE BOOKS:														
1	. R. R. Yaser and D. P. Filer "E	ssen	tials	of F	uzzy	' mo	delli	ng a	nd o	cont	rol" Jo	ohn V	Viley,	1994	4
2	. Yen, "Fuzzy Logic Intelligen	ce co	ontro	ol an	d In	form	atio	n″ P	ears	on e	duca	tion.	1st e	ditio	n,2002
3	. M Amirthavalli "Fuzzy logi	c an	d Ne	eural	net	worl	<s", 1<="" td=""><td>SciTe</td><td>ech</td><td>Publ</td><td>icatic</td><td>ons (I</td><td>ndia)</td><td>Pvt</td><td>Limited,</td></s",>	SciTe	ech	Publ	icatic	ons (I	ndia)	Pvt	Limited,
	2004														
E Bo	oks / MOOCs/ NPTEL														
1	. https://nptel.ac.in/courses/1	081	.0404	49											
2	. http://videolectures.net/aca	i05	bert	hold	_fl/										

INTRODUCTION TO BIG DATA ANALYTICS								
Course Code:	EE2372-1	Course Type	PCC					

Ø

Teac	hing Hours/Week (L: T: P: S)		3	8:0:0	0:0		(Crec	lits				03	
Tota	l Teaching Hours		4	0+0)+0		(CIE ·	+ SE	E Marks			50+	-50
Prer	equisite													
	Teaching Depar	tmen	t: El	lect	rical	8	Elec	tron	ics	Enginee	ring			
Cours	se Objectives:													
1.	Understand fundamentals of	Big D)ata	ana	alytic	CS								
2.	Explore the Hadoop framewo	ork an	d H	ado	op [Distı	ibut	ted F	ile s	ystem		-		
3.	Illustrate the concepts of Nos	SQL u	sing	g Mo	ongo	оDВ	anc	l Cas	san	dra for B	ig Data			
4.	Employ MapReduce program	nming	mo	odel	to p	oroc	ess ⁻	the l	oig c	lata		-		
	• • • • • • •			U	NIT-	·I								
Intro	duction to Big Data Analytics	5:											08	Hours
Big Da	ata, Scalability and Parallel Pro	cessin	ng, D	Desi	gnin	ng D	ata	Arch	itect	ture, Dat	a Source	es, (Qua	lity,
Pre-P	rocessing and Storing, Data Sto	orage	and	d An	alys	sis, B	ig D)ata	Ana	lytics Ap	plication	is a	nd (Case
Studie	es.	5			,		5			,				
Intro	duction to Hadoop												07	Hours
Introc	luction, Hadoop and its Ecosys	tem, l	Had	loop) Dis	trib	utec	l File	e Sys	tem, Ma	pReduce	e Fr	ame	ework
and P	rogramming Model, Hadoop Y	′arn, F	Hado	oop	Eco	syst	em	Тоо	s.		•			
Hado	op Distributed File System Basi	ics (T2	2): H	IDFS	5 De	sign	Fea	ature	es, C	ompone	nts, HDF	ร บ	Jser	
Comn	nands.					5				•				
				UN	JIT-	II								
Bia D	ata Management			•.	<u></u>								08	Hours
NoSO	I Big Data Management Mon	aoDB	and	d Ca	issar	ndra	• Int	rodi	ictio	n NoSO	L Data S	itor	e N	
Data	Architecture Patterns, NoSOL to	o Mar	าลตะ	e Bio	n Da	ata. 9	Shar	ed-l	Noth	ina Arch	itecture	for	· Bio	Data
Tasks.	MongoDB. Databases. Cassan	dra D	atal	base	9 - ° 25.								9	2 0 00
MapR	educe. Hive and Pig: Introduct	ion. N	/apl	Red	uce	Ma	o Ta	sks.	Red	uce Task	s and		07	Hours
MapR	educe Execution. Composing N	MapR	edu	ice f	or C	alcu	latio	ons a	and	Algorith	ns. Hive		•	
HiveC)L, Pig.	- 1-								9	-, -,			
Ň												I		
				UN	IIT-I	II								
Reare	essions Analysis												10	Hours
Machi	ine Learning Algorithms for Big	n Data	a An	nalvt	ics:	Intro	odu	ctior	. Est	imating	the relat	tior	 nshir)5.
Outlie	ers. Variances. Probability Distri	ibutio	ns. a	and	Cor	rela	tion	s. Re	ares	sion ana	llvsis. Fir	ndir	na S	imilar
Items	Similarity of Sets and Collabo	rative	Filte	erin	a. Fi	reau	ient	Iten	nset	s and Ass	sociatior	ו ו Rı	ile N	Minina.
					<i></i>									
Cours	e Outcomes: At the end of the	e cou	rse s	stud	lent	will	be a	able	to					
1	Understand fundamentals of	Big D)ata	ana	alvtic	~<								
2	Investigate Hadoop framewo	ork and	d Ha	ado	on F	Distr	ibut	ed F	ile s	vstem				
2.	Illustrate the concents of No		sino	n Ma	op c		anc	l Cae	scan	dra for B	ia Data			
	Demonstrate the ManBeduce	$\frac{1}{2}$	aran	nmi	na n	nod		$\frac{1}{2}$		the bia	data alo	na	wit	
4.	Hadoon tools	e prog	Jian		ng n	nou		, hic	CESS	ine big	uata alu	ng	vviti	I
5	Liso Machino Loarning algorit	thmc	forr	roal	wor	ld b	ia d	ata						
J.	Use machine Learning algorit	01115		rear	0001	iu D	ıy u	ald.						
Course	o Outcomes Manning with D)re ===		<u></u>			o, ה	50						
Cours	be Outcomes wapping with P	rogra	am (out	con	ies	x P	30						
	Dreaman Automa	1 -	<u>, .</u>	2	1	г	6	7	0	0 10	111 1	<u>_</u>	D /	
	Program Outcomes \rightarrow		2 :	3	4	5	6	/	ð	9 10		∠	1	
\downarrow (Lourse Outcomes												T	2

	EE2372-1.1	2	-	-	-	-	-	-	-	-	-	-	-	-	-	
	EE2372-1.2	2	2	-	-	-	-	-	-	-	-	-	-	1	-	
	EE2372-1.3	2	2	-	-	-	-	-	-	-	-	-	1	1	-	
	EE2372-1.4	2	3	-	-	-	-	-	-	-	-	-	1	1	-	
	EE2372-1.5	3	-	-	-	-	-	-	-	-	-	-	1	1	-	
											1: Lo	ow 2:	Med	lium	3: Hi	gh
TEXT	TEXTBOOKS:															
5.	Raj Kamal and Preeti Sax	ena,	"Bi	g Da	ata	Anal	ytics	s Int	trod	uctio	on to	нас	doop,	Spa	irk, a	nd
	Machine-Learning", McGrav	v Hil	ll Ed	ucati	on,	2018	B ISB	3N: 9	789	3531	L6496	56.				
6.	Douglas Eadline, "Hadoop	2 Qi	uick-	Star	t Gu	ide:	Lear	rn th	ne Es	sent	tials c	of Big	Data	a Cor	nputi	ng
	in the Apache Hadoop 2 I	Ecos	yste	m",	1stE	ditio	n, P	ears	ion	Educ	atior	n, 201	16. IS	BN-1	3: 97	78-
	9332570351															
REFE	RENCE BOOK:															
1.	Tom White, "Hadoop: The I	Defir	nitive	e Gu	ide",	4th	Edit	tion,	O"F	Reilly	' Mec	dia, 20	015.IS	SBN-3	13: 97	78-
	9352130672															
2.	Boris Lubinsky, Kevin T	Smit	th, /	Alex	ey `	Yaku	bov	ich,	"Pr	ofes	siona	l Ha	doop	So	lutior	۱s",
	1stEdition, Wrox Press, 2014	4ISB	N-13	3: 97	8-81	.265	5107	71					•			
3.	Eric Sammer, "Hadoop Ope	ratic	ons: /	A Gu	iide	for D	Deve	elope	ers a	nd A	Admir	nistra	tors",	1stEc	dition	,

IMAGE PROCESSING									
Course Code:	EE3371-1	Course Type	PCC						
Teaching Hours/Week (L: T: P: S)	3:0:0:0	Credits	03						
Total Teaching Hours	40+0+0	CIE + SEE Marks	50+50						
Prerequisite EE3003-1									
Teaching Departme	nt: Electrical &	Electronics Engineering							
Course Objectives: This course will ena	ble students to								
1. Recall the mathematical & signal	principles, formi	ng the basis for methods	for image						
processing.									
			Page 320						
			0						

Ζ.	Understand image representation, enhancement, filtering, restoration, analysis									
	&reconstruction 3. Know the processing techniques including various image transformations, image									
3.	Know the processing techniques including various image transformations, image									
1	Design & conduct imaging experiments using MATLAP									
4. 5	Design & conduct imaging experiments using MATLAB	duction								
5.	convert image from RGB to gray, black & white, remove blurning effects, hoise re	duction,								
	edge detection, compression and segmentation									
	UNIT-I									
Defin	ition of Digital Image Processing	07 Hours								
Origir	ns and examples of DIP, Fundamental steps in DIP, Elements of visual perception, A s	imple image								
forma	ition model, Concepts of sampling & quantization, Representation of digital images	, Spatial and								
Gray	level resolution, Zooming& Shrinking of digital images, Basic relationships betw	ween pixels.								
Under	rstanding of Satellite image & Concept of False Color Composite	I .								
Image	e Enhancement in Spatial domain	04 Hours								
Conce	ept & Importance of Histogram Some basic gray level transformations, Histogram s of spatial filtering, smoothing spatial filters, sharpening filters	processing,								
Imag	e Enhancement in Frequency domain	04 Hours								
Introd	duction to Fourier Transform & Frequency Domain Basics of filtering in frequen	ncy domain.								
Desig	ning the filter in for smoothening and sharpening the images	,								
5										
	UNIT-II									
Image	e Restoration	06 Hours								
A mo	del of image degradation & Restoration process, Noise models, Restoration in the	presence of								
Noise	only-spatial filtering, Periodic noise reduction by frequency domain filtering, Inve	rse filterina.								
Minimum Mean Square (Wiener) filtering										
Minim	num Mean Square (Wiener) filtering									
Minim Color	num Mean Square (Wiener) filtering • Fundamentals	05 Hours								
Minim Color Color	num Mean Square (Wiener) filtering • Fundamentals models, Pseudocolor Image processing, Basics of Full color image processing, Colo	05 Hours								
Minim Color Color transf	num Mean Square (Wiener) filtering Fundamentals models, Pseudocolor Image processing, Basics of Full color image processing, Colo formations, Smoothing & Sharpening, Noise in color images, Color image compress	05 Hours or sion								
Minim Color Color transf Image	num Mean Square (Wiener) filtering Fundamentals models, Pseudocolor Image processing, Basics of Full color image processing, Color formations, Smoothing & Sharpening, Noise in color images, Color image compress e Compression	05 Hours or sion 04 Hours								
Minim Color transf Image Funda	num Mean Square (Wiener) filtering Fundamentals models, Pseudocolor Image processing, Basics of Full color image processing, Color formations, Smoothing & Sharpening, Noise in color images, Color image compress e Compression amentals, Image compression models, Some basic compression methods: Huffr	05 Hours or sion 04 Hours man coding,								
Minim Color transf Image Funda Arithn	num Mean Square (Wiener) filtering Fundamentals models, Pseudocolor Image processing, Basics of Full color image processing, Color formations, Smoothing & Sharpening, Noise in color images, Color image compress e Compression amentals, Image compression models, Some basic compression methods: Huffr metic coding, Run length coding, JPEG, MPEG.	05 Hours or sion 04 Hours man coding,								
Minim Color transf Image Funda Arithn	num Mean Square (Wiener) filtering Fundamentals models, Pseudocolor Image processing, Basics of Full color image processing, Color formations, Smoothing & Sharpening, Noise in color images, Color image compress e Compression amentals, Image compression models, Some basic compression methods: Huffr metic coding, Run length coding, JPEG, MPEG. UNIT-III	05 Hours or sion 04 Hours man coding,								
Minim Color transf Image Funda Arithn Morp	num Mean Square (Wiener) filtering Fundamentals models, Pseudocolor Image processing, Basics of Full color image processing, Color formations, Smoothing & Sharpening, Noise in color images, Color image compress e Compression amentals, Image compression models, Some basic compression methods: Huffr metic coding, Run length coding, JPEG, MPEG. UNIT-III bhological Image Processing	05 Hours or sion 04 Hours man coding, 10 Hours								
Minim Color transf Image Funda Arithn Morp Introd	num Mean Square (Wiener) filtering Fundamentals models, Pseudocolor Image processing, Basics of Full color image processing, Color formations, Smoothing & Sharpening, Noise in color images, Color image compress e Compression amentals, Image compression models, Some basic compression methods: Huffr metic coding, Run length coding, JPEG, MPEG. UNIT-III phological Image Processing duction, Dilation & Erosion, Opening & Closing operations, Some basic methods:	05 Hours or sion 04 Hours man coding, 10 Hours orphological								
Minim Color transf Image Funda Arithn Morp Introd algori	num Mean Square (Wiener) filtering Fundamentals models, Pseudocolor Image processing, Basics of Full color image processing, Color formations, Smoothing & Sharpening, Noise in color images, Color image compress e Compression amentals, Image compression models, Some basic compression methods: Huffr metic coding, Run length coding, JPEG, MPEG. UNIT-III bhological Image Processing duction, Dilation & Erosion, Opening & Closing operations, Some basic methods: thms.	05 Hours or sion 04 Hours man coding, 10 Hours orphological								
Minim Color transf Image Funda Arithm Morp Introd algori Image	num Mean Square (Wiener) filtering Fundamentals models, Pseudocolor Image processing, Basics of Full color image processing, Color formations, Smoothing & Sharpening, Noise in color images, Color image compress e Compression amentals, Image compression models, Some basic compression methods: Huffr metic coding, Run length coding, JPEG, MPEG. UNIT-III bhological Image Processing duction, Dilation & Erosion, Opening & Closing operations, Some basic methods: thms. e Segmentation: Fundamentals, Point, Line & edge detection, Thresholding, Re	05 Hours or sion 04 Hours man coding, 10 Hours orphological egion-based								
Minim Color transf Image Funda Arithn Morp Introd algori Image segme	num Mean Square (Wiener) filtering Fundamentals models, Pseudocolor Image processing, Basics of Full color image processing, Color formations, Smoothing & Sharpening, Noise in color images, Color image compress e Compression amentals, Image compression models, Some basic compression methods: Huffr metic coding, Run length coding, JPEG, MPEG. UNIT-III bhological Image Processing duction, Dilation & Erosion, Opening & Closing operations, Some basic methods: e Segmentation: Fundamentals, Point, Line & edge detection, Thresholding, Re entation.	05 Hours or sion 04 Hours man coding, 10 Hours orphological egion-based								
Minim Color transf Image Funda Arithm Introd algori Image segme Cours	num Mean Square (Wiener) filtering Fundamentals models, Pseudocolor Image processing, Basics of Full color image processing, Color cormations, Smoothing & Sharpening, Noise in color images, Color image compress e Compression amentals, Image compression models, Some basic compression methods: Huffr metic coding, Run length coding, JPEG, MPEG. UNIT-III bhological Image Processing duction, Dilation & Erosion, Opening & Closing operations, Some basic methods: e Segmentation: Fundamentals, Point, Line & edge detection, Thresholding, Re entation. se Outcomes: At the end of the course student will be able to	05 Hours or sion 04 Hours man coding, 10 Hours orphological egion-based								
Minim Color transf Image Funda Arithm Introd algori Image segme Cours 1.	num Mean Square (Wiener) filtering Fundamentals models, Pseudocolor Image processing, Basics of Full color image processing, Color formations, Smoothing & Sharpening, Noise in color images, Color image compress e Compression amentals, Image compression models, Some basic compression methods: Huffr metic coding, Run length coding, JPEG, MPEG. UNIT-III whological Image Processing duction, Dilation & Erosion, Opening & Closing operations, Some basic methods: e Segmentation: Fundamentals, Point, Line & edge detection, Thresholding, Reentation. se Outcomes: At the end of the course student will be able to Apply the image fundamentals and mathematical transforms for improving resoluting.	05 Hours or sion 04 Hours man coding, 10 Hours orphological egion-based								
Minim Color transf Image Funda Arithm Morp Introd algori Image segme Cours 1. 2.	num Mean Square (Wiener) filtering Fundamentals models, Pseudocolor Image processing, Basics of Full color image processing, Color formations, Smoothing & Sharpening, Noise in color images, Color image compress e Compression amentals, Image compression models, Some basic compression methods: Huffr netic coding, Run length coding, JPEG, MPEG. UNIT-III bhological Image Processing duction, Dilation & Erosion, Opening & Closing operations, Some basic methods: thms. e Segmentation: Fundamentals, Point, Line & edge detection, Thresholding, Reentation. se Outcomes: At the end of the course student will be able to Apply the image fundamentals and mathematical transforms for improving resolutions Apply spatial & frequency domain techniques to enhance the image .	05 Hours or sion 04 Hours man coding, 10 Hours orphological egion-based ution of								
Minim Color transf Image Funda Arithn Introd algori Image segme Cours 1. 2.	num Mean Square (Wiener) filtering Fundamentals models, Pseudocolor Image processing, Basics of Full color image processing, Color formations, Smoothing & Sharpening, Noise in color images, Color image compress e Compression amentals, Image compression models, Some basic compression methods: Huffr metic coding, Run length coding, JPEG, MPEG. UNIT-III bhological Image Processing duction, Dilation & Erosion, Opening & Closing operations, Some basic methods: thms. e Segmentation: Fundamentals, Point, Line & edge detection, Thresholding, Re entation. se Outcomes: At the end of the course student will be able to Apply the image fundamentals and mathematical transforms for improving resolutionage. Apply spatial & frequency domain techniques to enhance the image . Explain the image restoration technique in presence & absence of noise and expl	05 Hours or sion 04 Hours man coding, 10 Hours orphological egion-based ution of ain noise								
Minim Color transf Funda Arithm Morp Introd algori Image segme Cours 1. 2. 3.	num Mean Square (Wiener) filtering Fundamentals models, Pseudocolor Image processing, Basics of Full color image processing, Color formations, Smoothing & Sharpening, Noise in color images, Color image compress e Compression amentals, Image compression models, Some basic compression methods: Huffr netic coding, Run length coding, JPEG, MPEG. UNIT-III bhological Image Processing duction, Dilation & Erosion, Opening & Closing operations, Some basic methods. e Segmentation: Fundamentals, Point, Line & edge detection, Thresholding, Re entation. se Outcomes: At the end of the course student will be able to Apply the image fundamentals and mathematical transforms for improving resolutionage. Apply spatial & frequency domain techniques to enhance the image . Explain the image restoration technique in presence & absence of noise and expl models: Gaussian, Raleigh, exponential, impulse, gamma and impulse	05 Hours or sion 04 Hours man coding, 10 Hours orphological egion-based ution of ain noise								
Minim Color transf Image Funda Arithm Introd algori Image segme Cours 1. 2. 3.	num Mean Square (Wiener) filtering Fundamentals models, Pseudocolor Image processing, Basics of Full color image processing, Colo formations, Smoothing & Sharpening, Noise in color images, Color image compress e Compression amentals, Image compression models, Some basic compression methods: Huffr netic coding, Run length coding, JPEG, MPEG. UNIT-III bhological Image Processing duction, Dilation & Erosion, Opening & Closing operations, Some basic methods. e Segmentation: Fundamentals, Point, Line & edge detection, Thresholding, Re entation. e Segmentation: Fundamentals, Point, Line & edge detection, Thresholding, Re entation. e Outcomes: At the end of the course student will be able to Apply the image fundamentals and mathematical transforms for improving resoluting. Apply spatial & frequency domain techniques to enhance the image . Explain the image restoration technique in presence & absence of noise and expl models: Gaussian, Raleigh, exponential, impulse, gamma and impulse Explain the image restoration technique in presence & absence of noise and expl	05 Hours or sion 04 Hours man coding, 10 Hours orphological egion-based ution of ain noise ain noise								
Minim Color transf Image Funda Arithm Morp Introd algori Image segme Cours 1. 2. 3. 4.	hum Mean Square (Wiener) filtering Fundamentals models, Pseudocolor Image processing, Basics of Full color image processing, Color formations, Smoothing & Sharpening, Noise in color images, Color image compress e Compression amentals, Image compression models, Some basic compression methods: Huffr netic coding, Run length coding, JPEG, MPEG. UNIT-III bhological Image Processing duction, Dilation & Erosion, Opening & Closing operations, Some basic methods: thms. e Segmentation: Fundamentals, Point, Line & edge detection, Thresholding, Re- entation. se Outcomes: At the end of the course student will be able to Apply the image fundamentals and mathematical transforms for improving resolu- image. Apply spatial & frequency domain techniques to enhance the image . Explain the image restoration technique in presence & absence of noise and expl models: Gaussian, Raleigh, exponential, impulse, gamma and impulse Explain the image restoration technique in presence & absence of noise and expl models: Gaussian, Raleigh, exponential, impulse, gamma and impulse	05 Hours or sion 04 Hours man coding, 10 Hours orphological egion-based ution of ain noise ain noise								
Minim Color transfi Image Funda Arithm Introd algori Image segme Cours 1. 2. 3. 4.	hum Mean Square (Wiener) filtering Fundamentals models, Pseudocolor Image processing, Basics of Full color image processing, Color formations, Smoothing & Sharpening, Noise in color images, Color image compress e Compression amentals, Image compression models, Some basic compression methods: Huffr netic coding, Run length coding, JPEG, MPEG. UNIT-III hological Image Processing duction, Dilation & Erosion, Opening & Closing operations, Some basic methods. e Segmentation: Fundamentals, Point, Line & edge detection, Thresholding, Re entation. se Outcomes: At the end of the course student will be able to Apply the image fundamentals and mathematical transforms for improving resolutimage. Apply spatial & frequency domain techniques to enhance the image . Explain the image restoration technique in presence & absence of noise and expl models: Gaussian, Raleigh, exponential, impulse, gamma and impulse Explain the image restoration technique in presence & absence of noise and expl models: Gaussian, Raleigh, exponential, impulse, gamma and impulse Apply morphological operations and segmentation techniques for detection regioned and the segmentation technique in presence absence of noise and expl models: Gaussian, Raleigh, exponential, impulse, gamma and impulse	05 Hours or sion 04 Hours man coding, 10 Hours orphological egion-based ution of ain noise ain noise on of								
Minim Color transf Image Funda Arithm Morp Introd algori Image segme Cours 1. 2. 3. 4. 5.	num Mean Square (Wiener) filtering Fundamentals models, Pseudocolor Image processing, Basics of Full color image processing, Color formations, Smoothing & Sharpening, Noise in color images, Color image compress e Compression amentals, Image compression models, Some basic compression methods: Huffr metic coding, Run length coding, JPEG, MPEG. UNIT-III bological Image Processing duction, Dilation & Erosion, Opening & Closing operations, Some basic methods: thms. e Segmentation: Fundamentals, Point, Line & edge detection, Thresholding, Re entation. se Outcomes: At the end of the course student will be able to Apply the image fundamentals and mathematical transforms for improving resolutimage. Apply spatial & frequency domain techniques to enhance the image . Explain the image restoration technique in presence & absence of noise and expl models: Gaussian, Raleigh, exponential, impulse, gamma and impulse Explain the image restoration technique in presence & absence of noise and expl models: Gaussian, Raleigh, exponential, impulse, gamma and impulse Apply morphological operations and segmentation techniques for detection regis interest.	05 Hours or sion 04 Hours man coding, 10 Hours orphological egion-based ution of ain noise ain noise on of								

Course Outcomes Mapping with Program Outcomes & PSO

-				1	1		1		r		r	1			1	
		Program Outcomes→	1	2	3	4	5	6	7	8	9	10	11	12	PS	O↓
	↓ C	ourse Outcomes													1	2
		EE3371-1.1	3	-	-	-	1	-	-	-	-	-	-	-	1	-
		EE3371-1.2	3	-	-	-	1	-	-	-	-	-	-	-	1	-
		EE3371-1.3	3	-	-	-	1	-	-	-	-	-	-	-	1	-
		EE3371-1.4	3	-	-	-	1	-	-	-	-	-	-	-	1	-
		EE3371-1.5	3	-	-	-	1	-	-	-	-	-	-	-	1	-
	1: Low 2: Medium 3: High															
TE)	КТВ	OOKS:														
	1.	R. C. Gonzalez and R. E Woo	ods,	"Dig	jital 1	lmag	je Pr	oces	ssing	ј", Р	ears	on ec	lucati	on		
		(Asia)/Prentice Hall of India,	2nc	d Edi	ition	, 200)4		-							
RE	FER	ENCE BOOKS:														
	1.	R. C. Gonzalez and R. E Woo	ods,	"Dig	jital 1	Imag	je Pr	oce	ssing	ј", Р	ears	on ec	lucati	ion		
		(Asia)/Prentice Hall of India,	2nc	d Edi	ition	, 200)4			-						
E-R	RESC	OURCES:														
	1.	https://nptel.ac.in/courses/	117	1051	L35											
	2.	https://nptel.ac.in/courses/	117	1050)79/‡	#										

Matrix Methods in Machine Learning													
Cou	Course Code:EE3372-1Course TypePCC												
Teac	hing Hours/Week (L: T: P: S)	3:0:0:0	Credits	03									
Tota	l Teaching Hours	40+0+0	CIE + SEE Marks	50+50									
Prer	equisite	MA2004-1											
Teaching Department: Electrical & Electronics Engineering													
Cours	se Objectives:												
_													
1.	To Understand machine learning and optimization theory	methods and alg	gorithms through matrix-v	ector methods									
 To Formulate a wide variety of machine learning problems as optimization models and solve them numerically. Understand practical implications of norm choice, regularization, and convexity. 													
3.	3. To Investigate an applied machine topic not explicitly covered in class and produce a research project that explains, analyzes, and discusses the topic.												
		UNIT-I											

Introduction and Overview 1	5 Hours											
Block matrices and norms, Linear dependence matrix and rank, Subspaces and linear equat	ions, least											
squares, Vector derivatives and PSD matrices, orthogonality and Gram Schmidt, LS classific	ation and											
cross validation.												
UNIT-II												
UNIT-II The singular value decomposition and iterative algorithms	5 Hours											
Matrix norms and SVD SVD geometry and PCA low rank approximation and pseu	doinverse											
accometry and sensitivity tradeoffs and regularizations examples. Iterative methods	nrovimal											
algorithm gradient methods stochaistic Gradient method												
algorithm, gradient methods, stochaistic Gradient method												
UNIT-III												
More machine learning 1	.0 Hours											
Max-Margin SVM and Kernels, Dual formulation, neural network on perceptron, convolut	ion neural											
networks, unsupervised learning and k-means, matrix problems and vectorization												
Course Outcomes: At the end of the course student will be able to												
1. Describe the application of matrix methods for machine learning												
2. Apply of vector derivatives for machine learning												
3. Describe the application of SVD, PCA for machine learning												
4. Explain the geometry, sensitivity and regularizations to machine learning												
5. Analyse the SVM, kernels, CNN and unsupervised learning methods												
Course Outcomes Mapping with Program Outcomes & PSO												
Program Outcomes > 1 2 3 4 5 6 7 8 9 10 11 12	DSO											
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	r30 ↓											
FF3372-11 3 2												
FF3372-1.2 2 2 2 2 2 2												
FF3372-1 3 2 2 1 2												
EE3372-1.4 2 3 1 2												
EE3372-1.5 3 2 1 2	_											
1: Low 2: Mediu	m 3: Hiah											

TEX	TBOOKS:
1.	Lars Eldén Matrix Methods in data minimin and pattern recognition,. SIAM, 2007.

Ability Enhancement Courses

	RESEA	RCH METHOD	OLOGY									
Cou	rse Code	HU1010-1	Course Type	AEC								
Teac	hing Hours/Week (L: T: P: S)	2:0:0:0	Credits	02								
Tota	l Teaching Hours	25+0+0	CIE + SEE Marks	50+50								
Prer	equisite											
	Teaching	Department:	Any Dept.									
Cours	e Objectives:											
1.	Explain the importance of research problem.	methodology,	Explain the steps in defini	ng the research								
2.	Explain methods of reviewing the li	terature and re	search design.									
3.	3. Discuss the methods of designing sampling survey. Discuss methods of scaling and measuring of the data.											
4.	Perform Hypothesis testing using the	he concept of n	nean and variance.									
5.	Discuss interpretation and report w	riting techniqu	es.									
		Unit-1		1								
				10 hours								
Resea Resea Proce	rch Methodology: Introduction, N rch, Research Approaches, Significan ss	Meaning of Re nce of Research	search, Objectives of Real, Research and Scientific N	search, Types of Aethod, Research								
Defin	ing the Research Problem: Research	h Problem, Sele	ecting the Problem	with a small for some time								
resear	rch problem	terature review	in research, Bringing cla	rity and focus to								
Resea	rch Design: Meaning of Research De	esign, Need for I	Research Design, Features	of a Good Design								
Unit-2												
				10 hours								
Desig sampl	I n of Sample Surveys: Design of Sar ing Errors,	npling: Introdu	ction, Sample Design, Sam	pling and Non-								
Data Secon	Collection: Introduction, Experiment idary, Data, Selection of Appropriate	al and Surveys, Method for Da	Collection of Primary Dat ta Collection, Case Study I	a, Collection of Vethod.								

Testing of Hypotheses: Hypothesis, Basic Concepts Concerning Testing of Hypotheses,

Unit-3

5 hours

Interpretation and Report Writing: Meaning of Interpretation, Technique of Interpretation, Precaution in Interpretation, Significance of Report Writing, Different Steps in Writing Report, Layout of the Research Report, Types of Reports, Oral Presentation, Mechanics of Writing a Research Report, Precautions for Writing Research Reports.

(Course Outcomes: At the end of the course student will be able to										
	1.	Explain the importance of research methodology, Explain the steps in defining the research problem.									
	2.	Explain methods of reviewing the literature and research design.									
	3.	Discuss the methods of designing sampling survey.									
	4.	Perform Hypothesis testing using the concept of mean and variance									
	5.	Discuss interpretation and report writing techniques.									

Course Outcomes Mapping with Program Outcomes & PSO														
Program Outcomes → 1 2 3 4 5 6 7 8 9 10 11 12 PSO ↓														
														-

↓ Cou	Irse Outcomes													1	2	3
	HU1010-1.1	3	2	-	-	-	-	-	-	-	3	-	-	-	-	1
	HU1010-1.2	3	2	-	-	I	-	-	-	-	3	-	-	-	-	1
	HU1010-1.3	3	2	-	-	-	-	-	-	-	3	-	-	-	-	1
	HU1010-1.4	3	2	-	-	-	-	-	-	-	3	-	-	-	-	1
	HU1010-1.5	3	2	-	-	-	-	-	-	-	3	-	-	-	-	1
	1: Low 2: Medium 3: High															
REFER	REFERENCE MATERIALS:															
1.	1. C.R. Kothari, Gaurav Garg, "Research Methodology: Methods and Techniques", New Age															
	International 4 th Edition, 2	2018	3													
2.	Ranjit Kumar, "Research N	Neth	nodc	ology	/ a st	ep-l	oy st	tep g	guide	e for	[.] begi	inner	s". (Fe	or th	e top	ic
	Reviewing the literature u	unde	er Ur	nit 2)	, SAG	GE P	ubli	catic	ons L	.td	3 rd Ec	dition	, 201	1		
3.	Research Methods: the co	onci	se kr	nowl	edge	e bas	se Ti	roch	im A	tom	ic Do	og Pu	blish	ing 2	005	
4.	Conducting Research Lite	eratu	ire R	evie	ws: F	rom	the	e Inte	ernet	t to l	Papei	r Fink	: A Sa	ige		
	Publications, 2009															
E Reso	ources															
1.	NPTEL course material re	lated	d to	opei	ratio	ns m	nana	igen	nent,	ope	eratio	ns re	searc	h an	d	
	entrepreneurship															

	ECAD			
Course Code	EE3651-1	Course Type	AEC	
Teaching Hours/Week (L: T: P: S)	1:0:2:0	Credits	02	

Total Teaching Hours	15+0+26	50+50		
Prerequisite	EE1001-1, EE	2001-1, EE2102-1		
Teaching Departme	nt: Electrical &	k Electronics Engineering		
Course Objectives:				
1. To discuss AUTOCAD software particular	ckage and sin	gle line diagram of substat	ion & associa	ated
components	2			
2. To study wiring diagram of a room/	house			
3. To study the design of panel diagram	m			
4. To discuss design and sectional view	v of transforme	rs, DC & AC machines		
5. To discuss design and procedure to	draw winding	diagrams for AC machines.		
	UNIT-I			
Introduction to CAD: Study of auto CAD	graphics packa	ige.	01 He	ours
Winding Diagrams:		<u> </u>		
Single line diagram			02 Ho	ours
Substation components and single line dia	agram of substa	ation		
Wiring Diagram	9		02 Ho	ours
Introduction to specifications of compone	nts for house v	viring diagram, design house	wiring diagra	m,
cerate Bill of Materials			5 5	
Panel Diagram			01 Ho	urs
Introduction to components of panel diag	ram and desigi	n of panel diagram		
	UNIT-II			
Transformers			03 Ho	ours
Introduction to design aspects of shell and	d core type trar	nsformers		
DC Machines			03 He	ours
Introduction to design of Yoke, poles, arm	ature and com	mutator of DC machine, Des	ign of stator a	nd
rotor of AC machines				
	UNIT-III			
AC machines			02 Ho	ours
Sectional view of AC machine- stator and	rotor			
Winding Diagram			02 Ho	ours
Introduction to AC lap and wave winding	diagram			
Sugge	ested List of Ex	(periments		
1. Study of AUTOCAD Packages		•		
2. Single line diagram of substation				
3. Design and draw house wiring diag	gram for a roor	n/ house		
4. Design and draw panel diagram		,		
5. Sectional view of single and three	phase core type	e transformers		
6. Sectional view of single and three	phase shell typ	e transformers		
7. Sectional Views of Yoke with Poles	, Armature and	Commutator dealt separate	lv	
8. Alternator – Sectional Views of Sta	tor and Rotor of	lealt separately.	<i>J</i>	
9. Developed winding diagram of AC	machine- lan	and wave winding		
		···· · ···· ·		
Course Outcomes: At the end of the cours	e student will b	e able to		

_																	
	1.	Develop a Single Line Diagram o symbols	of G	enera	ating	; Stat	ions	and	sub	stati	on u	sing t	he sta	andar	d		
	2.	Design and draw wiring diagram	and	pan	el dia	agrar	n usi	ing c	comr	nanc	ls fo	r a gi	ven s	pecifi	catio	ns	
	3.	Construct sectional views of core	e and	l she	ll typ	pes ti	ransi	form	iers i	asing	g the	desig	gn dat	a			
	4.	Construct sectional views of asse data or the sketches	embl	ed D	C ar	nd A	Сm	achi	ne ar	nd th	neir J	parts	using	the d	esign	L	
	5.	Develop armature winding diagra	am f	or A	Сm	achii	nes f	or th	ne gi	ven	spec	ificati	ons				
		Course Outcome	es M	lapp	ing	with	n Pro	ogra	m O	utc	ome	es & I	SO				
	Program Outcomes → 1 2 3 4 5 6 7 8 9 10 11 12 PSO ↓																
		↓ Course Outcomes													1	2	
		EE3651-1.1	2	3	-	-	3	-	-	-	-	-	-	2	-	-	
		EE3651-1.2	2	3	-	-	3	-	-	-	-	-	-	2	-	-	
		EE3651-1.3	2	3	-	-	3	-	-	-	-	-	-	2	-	-	
		EE3651-1.4	2	3	-	-	3	-	-	-	-	-	-	2	-	-	
		EE3651-1.5	2	3	-	-	3	-	-	-	-	-	-	2	-	-	
1: Low 2: Medium 3: Hig												High					
	REFE	RENCE MATERIALS:															
	1	A. K. Sawhney, "A course in Ele	ectri	cal N	/lach	ine o	desig	gn",	Dha	npat	: Rai	, 6th	Editic	on, 20	13		
	2	. K. L. Narang, "Electrical Engine	erin	g Dr	awir	ng", S	Saty	a Pra	akas	han,	201	4					

	HARDWARE SYSTEM DESIGN									
					1					
Cour	rse Code		EE2651	L- 1	Cou	rse T	уре			AEC
Teac	hing Hours/Week (L: T: P: S))	1:0:2:0		Crec	lits				02
Tota	l Teaching Hours		15+0+	26	CIE	+ SE	E Marl	ks		50+50
Prer	equisite		EE2101	L-1, EE2	601-1	L, EE	2003-1	L, EE31	06-1	
	Teaching Department: Electrical & Electronics Engineering									
Cours	Course Objectives:									
1.	To familiarize the student wit	th the d	lefining	specifica	ations	for a	applica	tion		
2.	 To use open-source software tool for the creation of electronic schematic diagrams and PCB artwork 									
3.	To understand the various st	ages of	design	validatio	on					
			UNI	Т-І						
Introd	duction to Hardware design								0	6 Hours
Block	diagram implementation, Un	derstar	nding te	chnical	speci	ficati	ons a	nd orde	ering	information
from o	datasheets. Library part creatio	n using	g Softwa	re tool	•				0	
			UNI	Γ-II						
Layou	ıt								06	Hours
Schen	natic diagram, generating Bill c	of Mate	rials, cre	ation o	f Netli	st				
Pad C	reation & footprint , Importing	g comp	onents t	o layou [.]	t and :	settir	ng con	straints		
	· · · · ·						0			
			UNIT	-III						
Routi	ng and verification								03	Hours
Learni	ing placement and Routing of	ogmoo	nents, G	erber ci	reation	n & \	/erifica	tion of	Gerb	er
		<u> </u>	, -							_
	Su	Jaaeste	ed List a	of Expe	rimen	ts				
		33			_					
1.	Selection of right compon	ents fo	r a defin	ed spec	ificati	on				
2	Learning to read informat	ion fror	n the da	tasheet		•				
3	Use open source tool for	block d	iagram (reation	•					
3. 4	Draw electronic circuit usi	na soft	ware too	nl						
5	Generate BoM and verify	Netlist								
5.	Ecotorint creation of each		anont							
	Constraints sotting and im	portin		nonte t		+				
/. 0	Placing of components in	the be	ard	Inchis L	o iayu	ut				
0. 0	Drawing layout to interest	nnoct c	ompone	ntc						
9. 1/	Constantion of Carbor file	mett	ompone	1115						
1	U. Generation of Gerber in co	f t	haal							
<u>ــــــــــــــــــــــــــــــــــــ</u>	1. Validation of Gerber in so	itware	1001							
6						4 -				
Cours	Se Outcomes: At the end of th	e cours	e studer		e able	το . ·				
1.	1. Define specifications and select components for a given design									
2.	2. Read datasneet for pin configuration and ordering information									
3.	Use software tool for drawing	g a Sch	ematic fo	or elect	ronic (circui	t			
4.	Perform netlist verification of	f a give	n circuit							
5.	Refer datasheet for layout co	onsidera	tions to	genera	te PCI	3				
Cours	e Outcomes Mapping with P	Program	n Outco	mes &	PSO					
	Prog ram Outcomes→	1 2	3 4	5 6	5 7	8	9 1	0 11	12	PSO↓

↓ Co	ourse Outcomes													1	2	
	EE2651-1.1	2	3	2	-	3	-	-	-	-	-	-	2	-	-	
	EE2651-1.2	2	3	-	-	3	-	-	-	-	-	-	2	-	-	
	EE2651-1.3	2	3	-	-	3	-	-	-	-	-	-	2	-	1	
	EE2651-1.4	2	3	-	-	3	-	-	-	-	-	-	2	2	-	
	EE2651-1.5	2	3	-	-	3	-	-	-	-	-	-	2	-	-	
		•		•							1: Lo	w 2:	Med	lium	3: Hi	gh
REFERE	NCE MATERIALS:															
1	KiCad EDA - Schematic	: Capti	ire 8	k PCI	B De	sian	Sof	twar	e							

2. Kraig Mitzner, "Complete PCB design using OrCAD capture and Layout", Elsevier, 2007.

Ø

Teachin Total Te	Lode	EE2652-1	Course Type	AEC
Total Te	g Hours/Week (L: T: P: S)	1:0:2:0	Credits	02
	eaching Hours	15+0+26	CIE + SEE Marks	50+50
Prereau	isite			
I	Teaching Departme	ent: Electrical &	Electronics Engineering	
Course C	bjectives:		jj	
<u> </u>	ssess the genesis and impact o	f IoT applications	, architectures in real worl	d.
2. Co	ompare different Application p	rotocols for IoT.		
3. Id	entify sensor technologies for	sensing real worl	d entities and understand	the role of IoT
in	various domains of Industry.			
		UNIT-I		
ntroduc	tion of IoT			06 Hours
ntroduc	tion of IoT, Genesis of IoT, IoT	and Digitization	, IoT Impact, Convergence	of IT and IoT, Io
hallenge	es, IoT Network Architecture	and Design, Dr	ivers Behind New Netwo	ork Architectures
Comparir	ng IoT Architectures, A Simplifi	ed IoT Architectu	ire, The Core IoT Function	al Stack, IoT Dat
√anagen	nent and Compute Stack.			
- T		UNIT-II		00 11
				U6 Hours
rotocol	Standardization for 101 – Effor		SN Protocols – SCADA and	
ssues w	ith IoT Standardization – Un	ified Data Stand	dards – Protocols – IEEE	:802.15.4–BACNe
rotocol-	- Modbus – KNX – Zigbee– Net	work layer – APS	layer – Security	
		LINITT TT		
	ical sonvers and cloud offerin	UNIT-III		03 Hours
oT phys	ical servers and cloud offerin	UNIT-III Igs		03 Hours
oT phys ntroduct	ical servers and cloud offerin ion to cloud storage models a	UNIT-III Igs and communicati	on APIs, WAMP – AutoBa	03 Hours hn for IoT, Xivel
oT phys ntroduct cloud for	ical servers and cloud offerin ion to cloud storage models a IoT	UNIT-III Igs and communicati	on APIs, WAMP – AutoBa	03 Hours hn for IoT, Xivel
oT phys ntroduct cloud for	ical servers and cloud offerin ion to cloud storage models a IoT	UNIT-III and communicati	on APIs, WAMP – AutoBa	03 Hours Ihn for IoT, Xivel
oT phys ntroduct loud for	ical servers and cloud offerin ion to cloud storage models a IoT Sugg	UNIT-III Igs and communicati ested List of Exp	on APIs, WAMP – AutoBa Periments	03 Hours hn for IoT, Xivel
ti <mark>oT phys</mark> ntroduct cloud for	ical servers and cloud offerin ion to cloud storage models a IoT Sugg	UNIT-III and communicati ested List of Exp	on APIs, WAMP – AutoBa eriments	03 Hours
to T phys ntroduct cloud for 1.	ical servers and cloud offerin ion to cloud storage models a IoT Sugge Design a Digital AC Voltmete electrical circuits using micros	UNIT-III Igs and communicati ested List of Exp er and Ammeter controller and dis	on APIs, WAMP – AutoBa eriments to measure the voltage a	03 Hours hn for IoT, Xivel
ntroduct	ical servers and cloud offerin ion to cloud storage models a IoT Sugge Design a Digital AC Voltmete electrical circuits using microo	UNIT-III and communicati ested List of Exp er and Ammeter controller and dis ray in electrical of	on APIs, WAMP – AutoBa eriments to measure the voltage a play the values in LCD disp incuit using microcontrolle	03 Hours hn for IoT, Xivel and current in Au play.
introduct cloud for 1.	ical servers and cloud offerin ion to cloud storage models a IoT Design a Digital AC Voltmete electrical circuits using microo Measure the power and ener values in LCD display	UNIT-III Igs and communicati ested List of Exp er and Ammeter controller and dis igy in electrical c	on APIs, WAMP – AutoBa eriments to measure the voltage a play the values in LCD disj ircuit using microcontrolle	03 Hours hn for IoT, Xivel and current in Au play. er and display the
toT phys ntroduct cloud for 1. 2.	ical servers and cloud offerin ion to cloud storage models a IoT Sugge Design a Digital AC Voltmete electrical circuits using microo Measure the power and ener values in LCD display	UNIT-III gs and communicati ested List of Exp er and Ammeter controller and dis gy in electrical c	on APIs, WAMP – AutoBa eriments to measure the voltage a play the values in LCD disp ircuit using microcontrolle	03 Hours The for IoT, Xivel and current in Adolay. Fer and display the
1. 2. 3.	ical servers and cloud offerin ion to cloud storage models a IoT Design a Digital AC Voltmete electrical circuits using microo Measure the power and ener values in LCD display Interfacing temperature and h the lcd display	UNIT-III and communicati ested List of Exp er and Ammeter controller and dis rgy in electrical c numidity sensor v	on APIs, WAMP – AutoBa periments to measure the voltage a play the values in LCD disp ircuit using microcontroller with microcontroller and d	03 Hours hn for IoT, Xivel and current in Au play. er and display the isplay the same i
oT phys ntroduct cloud for 1. 2. 3. 4.	ical servers and cloud offerin ion to cloud storage models a IoT Sugge Design a Digital AC Voltmete electrical circuits using microo Measure the power and ener values in LCD display Interfacing temperature and h the lcd display Interfacing of microcontroller	UNIT-III gs and communicati ested List of Exp er and Ammeter controller and dis gy in electrical communication numidity sensor von to Zigbee modu	on APIs, WAMP – AutoBa eriments to measure the voltage a play the values in LCD disp ircuit using microcontroller with microcontroller and d	03 Hours The for IoT, Xivel and current in Au play. er and display the isplay the same i
oT phys ntroduct :loud for 1. 2. 3. 4. 5.	ical servers and cloud offerin ion to cloud storage models a IoT Design a Digital AC Voltmete electrical circuits using microo Measure the power and ener values in LCD display Interfacing temperature and h the lcd display Interfacing of microcontroller Interfacing of microcontroller	UNIT-III and communicati ested List of Exp er and Ammeter controller and dis rgy in electrical c numidity sensor v to Zigbee modu to Bluetooth mo	on APIs, WAMP – AutoBa eriments to measure the voltage a play the values in LCD disp ircuit using microcontroller with microcontroller and d le dule	03 Hours hn for IoT, Xivel and current in Au play. er and display the isplay the same i
oT phys ntroduct :loud for 1. 2. 3. 4. 5. 6.	ical servers and cloud offerin ion to cloud storage models a IoT Sugge Design a Digital AC Voltmete electrical circuits using microo Measure the power and ener values in LCD display Interfacing temperature and h the lcd display Interfacing of microcontroller Interfacing of microcontroller Interfacing of microcontroller	UNIT-III Igs and communicati ested List of Exp er and Ammeter controller and dis rgy in electrical c numidity sensor v to Zigbee modu to Bluetooth mo to GSM module	on APIs, WAMP – AutoBa eriments to measure the voltage a play the values in LCD disp ircuit using microcontroller with microcontroller and d le dule	03 Hours The for IoT, Xivel and current in Au play. er and display the isplay the same i
oT phys ntroduct :loud for 1. 2. 3. 4. 5. 6. 7.	ical servers and cloud offerin ion to cloud storage models a IoT Sugge Design a Digital AC Voltmete electrical circuits using microo Measure the power and ener values in LCD display Interfacing temperature and h the lcd display Interfacing of microcontroller Interfacing of microcontroller Interfacing of microcontroller Interfacing of sensors to Rasp	UNIT-III gs and communicati ested List of Exp er and Ammeter controller and dis rgy in electrical c numidity sensor v to Zigbee modu to Bluetooth mo to GSM module oberry Pi	on APIs, WAMP – AutoBa eriments to measure the voltage a play the values in LCD disp ircuit using microcontroller with microcontroller and d le dule	03 Hours hn for IoT, Xivel and current in Ad blay. er and display the isplay the same i
oT phys ntroduct cloud for 1. 2. 3. 4. 5. 6. 7. 8.	ical servers and cloud offerin ion to cloud storage models a IoT Sugge Design a Digital AC Voltmete electrical circuits using microo Measure the power and ener values in LCD display Interfacing temperature and h the lcd display Interfacing of microcontroller Interfacing of microcontroller Interfacing of microcontroller Interfacing of sensors to Rasp Setup a cloud platform to log	UNIT-III and communicati ested List of Exp er and Ammeter controller and dis gy in electrical c numidity sensor v to Zigbee modu to Bluetooth mo to GSM module berry Pi the data	on APIs, WAMP – AutoBa eriments to measure the voltage a play the values in LCD disp ircuit using microcontrolle with microcontroller and d le dule	03 Hours In for IoT, Xivel and current in Adolay. Fr and display the same i
oT phys ntroduct cloud for 1. 2. 3. 4. 5. 6. 7. 8. 9.	ical servers and cloud offerin ion to cloud storage models a IoT Sugge Design a Digital AC Voltmete electrical circuits using microo Measure the power and ener values in LCD display Interfacing temperature and h the lcd display Interfacing of microcontroller Interfacing of microcontroller Interfacing of microcontroller Interfacing of sensors to Rasp Setup a cloud platform to log Log Data using Raspberry Pi a	UNIT-III gs and communicati ested List of Exp er and Ammeter controller and dis rgy in electrical c numidity sensor v to Zigbee modu to Bluetooth mo to GSM module berry Pi the data and upload to the	on APIs, WAMP – AutoBa eriments to measure the voltage a play the values in LCD disp ircuit using microcontroller with microcontroller and d le dule e cloud platform	03 Hours hn for IoT, Xivel and current in Ad play. er and display the isplay the same i
oT phys ntroduct cloud for 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.	ical servers and cloud offerin ion to cloud storage models a IoT Sugge Design a Digital AC Voltmete electrical circuits using microo Measure the power and ener values in LCD display Interfacing temperature and h the lcd display Interfacing of microcontroller Interfacing of microcontroller Interfacing of microcontroller Interfacing of sensors to Rasp Setup a cloud platform to log Log Data using Raspberry Pi a Design an IOT based system	UNIT-III and communicati ested List of Exp er and Ammeter controller and dis gy in electrical controller and dis gy in electrical controller numidity sensor vontroller to Zigbee modu to Bluetooth module berry Pi the data and upload to the	on APIs, WAMP – AutoBa eriments to measure the voltage a play the values in LCD disp ircuit using microcontroller with microcontroller and d le dule e cloud platform	03 Hours hn for IoT, Xivel and current in Ad play. er and display the isplay the same i
oT phys ntroduct cloud for 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. Course C	ical servers and cloud offerin ion to cloud storage models a IoT Sugge Design a Digital AC Voltmete electrical circuits using microo Measure the power and ener values in LCD display Interfacing temperature and h the lcd display Interfacing of microcontroller Interfacing of microcontroller Interfacing of microcontroller Interfacing of sensors to Rasp Setup a cloud platform to log Log Data using Raspberry Pi a Design an IOT based system Dutcomes: At the end of the co	UNIT-III gs and communicati ested List of Exp er and Ammeter controller and dis rgy in electrical c numidity sensor v to Zigbee modu to Bluetooth mo to GSM module berry Pi the data and upload to the purse student will	on APIs, WAMP – AutoBa eriments to measure the voltage a play the values in LCD disp ircuit using microcontroller with microcontroller and d le dule e cloud platform be able to	03 Hours Ihn for IoT, Xivel and current in Adolay. er and display the isplay the same i

2.	Describe the challenges posed by IoT networks leading to new architectural models.
3.	Appraise the role of IoT protocols for efficient network communication.
4.	Identify the protocol to be used based on the application
5.	Illustrate different sensor technologies for sensing real world entities and identify the
	applications of IoT in Industry.

Course Outcomes Mapping with Program Outcomes & PSO

Program Outcomes→	1	2	3	4	5	6	7	8	9	10	11	12	PS	O↓
↓ Course Outcomes													1	2
EE2652-1.1	2	3	-	-	-	-	-	-	-	-	-	-	-	-
-EE2652-1.2	2	3	-	-	-	-	-	-	-	-	-	-	-	-
EE2652-1.3	2	3	-	-	-	-	-	-	-	-	-	-	-	-
EE2652-1.4	2	3	-	-	-	-	-	-	-	-	-	-	-	-
EE2652-1.5	2	3	-	-	-	-	-	-	-	-	-	-	-	2
										1: Lo	w 2:	Med	ium	3: H

TEXTBO	OKS:
1.	David Hanes, Gonzalo Salgueiro, Patrick Grossetete, Robert Barton, Jerome Henry, "IoT
	Fundamentals: Networking Technologies, Protocols, and Use Cases for the Internet of
	Things", 1st Edition, Pearson Education (Cisco Press Indian Reprint). (ISBN: 978-
	9386873743)
2.	Srinivasa K G, "Internet of Things", CENGAGE Leaning India, 2017
REFEREN	ICE BOOKS:
1.	Vijay Madisetti and Arshdeep Bahga, "Internet of Things (A Hands-on-Approach)", 1 st
	Edition, VPT, 2014. (ISBN: 978-8173719547)
2.	Raj Kamal, "Internet of Things: Architecture and Design Principles", 1 st Edition,
	McGraw Hill Education, 2017. (ISBN: 978-9352605224)

РҮТНО	ON PROGRAMM	ING ESSENTIALS		
Course Code	EE2653-1	Course Type	AEC	
Teaching Hours/Week (L: T: P: S)	1:0:2:0	Credits	02	
Total Teaching Hours	15+0+26	CIE + SEE Marks	50+50	
Prerequisite				

	Teaching Department: Electrical & Electronics Engineering	
Course	Objectives:	
1.	To write a simple python program with emphasis on syntax and semantics	
2.	To write simple programs utilizing Lists, Tuples and Dictionaries.	
3.	To write simple program by choosing appropriate conditional operator.	
4.	To write simple program consisting of user defined functions.	
5.	To study the concept of object oriented programming in python.	
	UNIT-I	
The C	ontext of Software Development	01 Hours
Softw	are Development Tools Learning Programming with Python Writing a Python Program	n The
Pytho	n Interactive Shell	n, me
Data	Expressions Statements	02 Hours
Pytho	n interpreter and interactive mode: values and types: int_float_boolean_string_and liv	st: variables
expres	ssions statements tuple assignment precedence of operators comments; modules an	d functions
function	on definition and use flow of execution parameters and arguments	la faffetions,
Contr	of Elow Functions	02 Hours
Condi	tionals: Boolean values and operators, conditional (if) alternative (if-else), chained con-	ditional:
Iterati	on: state while for break continue pass: Fruitful functions: return values parameters	local and
aloba	l scone function composition recursion:	
gioba		
String		
String	s: string slices, immutability, string functions and methods, string module	02 110013
Lists	s. string sites, infinitiability, string functions and methods, string module	
Lists	s arrays list operations list slices list methods list loop mutability aliasing cloping list	te liet
naram	anays, list operations, list silves, list methods, list loop, mutability, allasing, cloning is	13, 1131
Tunle		01 Hours
Tuple	assignment tuple as return value. Built-in functions	of fields
Dictio	naries	01 Hours
Opera	ptions, built-in functions and methods: advanced list processing - list comprehension	01 Hours
Opera	ations, built in functions and methods, advanced list processing list comprehension	
Pytho	on Object Oriented Programming	04 Hours
Conce	ant of class, object and instances. Constructor, class attributes and destructors. Inherita	
overla	upping and overloading operators. Adding and retrieving dynamic attributes of classes	ice,
overia	pping and overloading operators, Adding and retrieving dynamic attributes of classes	
10	Suggested List of Experiments	
10.	Study of datatypes, operations, functions and methods related to datatypes.	
11.	write a program to find greatest common divisor or HCF of two numbers	
12.	write a program to find a factorial of number n using recursive function	
13.	Write a Python program to generate first ' n ' Fibonacci numbers	, ·
14.	Build a program called "GuessMyNumber". The computer will generate a rand	dom number
	between 1 and 10. The user types in a number and the computer replies "lower" if	t the random
	number is lower than the guess, "higher" if the random number is higher, and "correct	!" If the guess
4 -	is correct. The player can continue guessing until the guess is right.	
15.	vvrite a binary search function which searches an item in a sorted list. The function s	snould return
	the index of element to be searched in the list.	

16	Write a hubble cort function t	0.00	rta	aivo	n lict	Dri	0+ +h		iain		nd co	rtad l	icto			
10.	Write a pubble soft function t			give		. PII			igin		10 SO		ISIS.	fran	- +l	atuina
17.	write a program to remove a	i pur	ictua	ation	IS IIK	e !()-[]{,	};: ,\	,<>,	/,:,(₩,#,\$,	%^`X	<u>[</u> ~_~	tron	n the	string
10	provided by the user.										11	1		<u> </u>		
18.	write a python program tha	it ac	cept	s a	sent	enc	e an	nd Ca	alcul	ate	the	nump	ber o	t wo	ras,	aigits,
	uppercase letters and lowercase letters															
							<u>.</u>									
Course	e Outcomes: At the end of the o	cours	se st	uder	nt wi	ll be	able	e to								
1	Examine the Python syntax and se	mant	tics fo	or wr	iting	effe	ctive	Pyth	ion p	orogi	ram u	sing o	perat	ors,		
<u> </u>	functions for a given problem stat	emer	nt.													
2.	Use conditional and switch case st	atem	nents	to w	rite p	orog	ramn	ne in	Pytł	non	to tacl	kle an	y deci	ision-		
	making scenario.		<u> </u>	•.				<u> </u>								
3.	Utilize the methods of Strings and	Utilize the methods of Strings and Lists for write a programme for a given application.														
4.	Utilize the methods of Tuples and	Utilize the methods of Tuples and Dictionaries for write a programme for a given application.														
5.	Apply the knowledge OOPs to develop a Python programme using objects and classes.															
	Course Outcom	es N	lapp	ing	with	n Pro	ogra	m C)utc	ome	es & I	PSO				
	Program Outcomes→	1	2	3	4	5	6	7	8	9	10	11	12	PS	O↓	7
	↓ Course Outcomes													1	2	
	EE2653-1.1	2	3													
	EE2653-1.2	2	3			3							1		1	
	EE2653-1.3	2	3			3							1		1	1
	EE2653-1.4	2	3			3							1		1	1
	EE2653-1.5	2	3			3							1		1	-
			0							I	1.	low	2: N	lediu		Hiah
																<u></u>
REER	ENCE MATERIALS															
1	Gowrisbankar S. Veena A. "Inte	rodu	ction	n to	Dvth	on P	roar	amr	nina	·" 20	119 (rocc -	Taylo	r 8/ 1	rancis
	Group	Juu	cuoi		yui	JIII	iogi	ann	inny	, 20	, c		1033,	ayıc		iuncis
2	Kenneth A Lambort The Euro	ham	ontal	c of	D\/+h	on.	Firc+	Dro	arar	nc 7	011	Cona		Aaro	ina	
2.	Charles Diorbach "Introduction	20110		<u>3 01</u>	itor '	Scie		Licin	giai a Di	113, 2 /tho	.011, m" 1,	-+ Edi	tion		v Ing	tia Dut
5.	Charles Dierbach, "Introduction to Computer Science Using Python", 1st Edition, Wiley India Pvt															
	LIU. IODIN-TO: 2/0-0150001	+														

Vocational Education Courses

SOLDERING PRACTICE						
Course Code:	EE2551-1	Course Type	VEC			
Teaching Hours/Week (L:T: P: S)	0:0:2:0	Credits	01			
Total Teaching Hours	0+0+26	CIE + SEE Marks	50+50			
Prerequisite			· ·			

Teaching Department: Electrical & Electronics Engineering

Course Objectives:

1.	To understand basics of manual soldering
2.	To identify various types of components and method of soldering
3.	To setup soldering workstation and understand temperature-controlled soldering
4.	To verify soldered PCB by visual inspection and standard test procedures
5.	To understand the necessity of workplace safety

UNIT-I

06 Hours

Identify the role of a manual soldering and visual inspection operator. Categorise the electronic components and understand their characteristics. Distinguish between different types of capacitors. Illustrate the construction and application of AC, DC, Motor-capacitors. Define the concepts of electrostatic discharge, capacitance, power factor, leakage, current/voltage specifications, temperature sensitivity, polarity, etc. List different types of soldering techniques and the raw material specific to the technique. Demonstrate how to do soldering without any damage as per standard operating procedure. Identify various stages of component preparation for through-hole assembly. Identify the parameters of line inspection and inspection of the assembled board. Comply with IPC 610 and 5S standards for soldering.

UNIT-II

Manually Solder Components:

Introduction to Manual Soldering Technician:

Inspect the wound capacitors / metal caps / assembled board received for soldering. Interpret the job sheet for work specifications and instructions. Identify the tools and raw material required for soldering components / leads. Demonstrate how to set-up the work station with all needed tools, materials, iron temperature, program etc for the specified capacitors. Perform the steps of soldering following the safety guidelines. Perform visual inspection of the assembled board and components soldered as per IPC 610 standard. Identify the issues with soldering, if any, and repeat the soldering process. Achieve soldering and inspection of targeted number of assemblies as per the quality standards. Execute daily maintenance tasks. Identify the documents related to work such as work requirement, manuals, delivery standards, company policies and so on.

Workplace Safety:

UNIT-III

03 Hours

06 Hours

Identify the potential hazards and report them to authorized person. Implement proper steps to ensure a safe work place. Use safety gears while working. Apply electrical safety guidelines by using proper PPE and ESD measures as per the instructions received in the training. Use evacuation procedure and participate in fire drills. Use the safety equipment and protection devices such as Fire extinguisher and First aid equipment. Maintain proper posture while working. Participate in health sessions organized by the company like yoga, physiotherapy. Use proper equipment to handle heavy material. Comply with the daily safety instructions and the other recommended safety procedures for work before starting work, while working, after finishing work. Use proper techniques for disposal of hazardous chemicals, tools and materials by following prescribed environmental norms or as per company policy.

Note:	This course is a lab-based course
TEXTB	BOOKS:
1.	The Basic Soldering Guide Handbook: Learn to Solder Electronics Successfully, Winstanley, A.
	Antex (Electronics) Limited, 9781500531140, 2014 CreateSpace Independent Publishing
	Platform.
2.	Solders and Soldering: Materials, Design, Production, and Analysis for Reliable Bonding,
	Manko, H.H. 9780071344173, 2001, McGraw-Hill.

TROUBLESHOOTING ELECTRICAL APPLIANCES									
Course Code:	EE2552-1	Course Type	PCC						
Teaching Hours/Week (L:T: P: S)	0:0:2:0	Credits	03						
Total Teaching Hours	0+0+26	0+0+26 CIE + SEE Marks							
Prerequisite									
	•								

Teaching Department: Electrical & Electronics Engineering

Course Objectives:

1.	Understand working of electric	al testing and protection devices

- 2. Understand key elements of Home Appliances
- 3. To build basic power supply module
- 4. To understand working principle of power supply and stabilizer
- 5. Understand domestic wiring and layout

UNIT-I

Testing Equipment & Basic control equipment:

Line tester, electronic line tester, series test lamp for single phase, parallel test lamp for single phase, electromagnetic relay, MCB (Miniature Circuit Breaker), ELCB (Earth Leakage Circuit Breaker)

Working Principle of Home Appliances:

Working principle and troubleshooting of fluorescent and LED lamp, Iron box, fan and regulator, water pump and mixer grinder.

UNIT-II

Rectifier Circuits and Filters:

Bridge Rectifiers, Merits, Demerits. Reactance, Capacitor, Inductor, RC, RL, RLC and their types.Zenar and 78XX & 79XX regulator IC:04 Hours

Avalanche breakdown, Zener breakdown, Zener Characteristics. Block diagram, working and design of series /shunt regulation.

Power supply and Stabilizer:

Block diagram, line regulation, load regulation, series & shunt regulation. Block diagram, working principle, specification, maintenance, and troubleshooting.

UNIT-III

06 Hours

04 Hours

06 Hours

04 Hours

02 Hours

Workplace Discipline, Electrical shocks and procedure for separating person form contact with live wire, First Aid different methods of artificial respiration, Electric fire, Fire extinguishers. Introduction of wiring, selection of wiring, types of wiring, I.E. (Indian Electricity) rules of domestic

wiring, testing and installation of domestic wiring, Earthing formats for electrical connections.

Note: This course is a lab-based course

TEXTBOOKS:

Electrical Wiring:

1. Kleinert, Eric. Troubleshooting and Repairing Major Appliances, 2nd Ed.. United States: McGraw-Hill Education, 2007.

Humanities & Management Courses

	ESSEN	ICE OF INDIAN CUL	TURE						
Cou	rse Code:	HU1005-1	Course Type:	HEC					
Teac	ching Hours/Week (L: T: P: S):	1:0:0:0	Credits:	01					
Tota	l Teaching Hours:	15	CIE + SEE Marks:	50+50					
Teaching Department: Respective Department									
Cours	se Objectives:								
1.	1. To facilitate students with the concepts of Indian Culture and to make them understand the								
	roots of knowledge system.								
2.	To acquaint students with Indian Culture and inculcate an ability to analyze it.								

3. To apply various approaches for the enhancement of living ideals based on Indian traditional knowledge. **UNIT-I Introduction to Traditional Knowledge** 6 Hours Define traditional knowledge, nature and characteristics, scope and importance, kinds of traditional knowledge, Indigenous Knowledge and its characteristics, Traditional Knowledge vis-a-vis Indigenous Knowledge, Traditional Knowledge vis-a-vis Western Knowledge **UNIT-II** Significance of Traditional Knowledge 6 Hours Value of Traditional Knowledge in global economy, Role of Government in harnessing Traditional Knowledge, Traditional medicine system, Traditional Knowledge in agriculture. food and healthcare. **UNIT-III** Holistic Healthcare for Human Well-being **3 Hours** Definition of Ayurveda, Ayurveda for Life, Health and Well-being, Introduction to principles of Ayurvedic healing and Astanga Ayurveda. Course Outcomes: At the end of the course student will be able to Identify the concept of Traditional Knowledge and its importance. 1. 2. Explain the need for and importance of protecting Traditional Knowledge. Illustrate the various enactments related to Traditional Knowledge. 3. 4. Familiarize the importance of Holistic Healthcare. **Course Outcomes Mapping with Program Outcomes & PSO Program Outcomes**→ 1 2 3 4 5 6 7 8 9 10 11 12 **PSO** L Course Outcomes 1 2 HU1005-1.1 2 2 3 _ _ _ HU1005-1.2 3 2 3 _ _ _ _ _ _ _ _ _ _ 2 3 HU1005-1.3 _ _ _ _ _ _ _ _ 3 _ _ 2 HU1005-1.4 2 2 2 _ _ _ _ _ _ _ _ HU1005-1.5 2 2 2 1 _ _ _ 1: Low 2: Medium 3: High **REFERENCES:**

1.	Jha, A., "Traditional Knowledge System in India", Atlantic Publishers, 2002.
2.	Kapoor, K., & Danino, M., "Knowledge Traditions and Practices of India", 2012.
3.	Kapil Kapoor, Michel Danino, "Knowledge Traditions and Practices of India", Medknow
	Publications and Media.
4.	Jha, R.N., "Science of Consciousness Psychotherapy and Yoga Practices", Delhi: Vidyanidhi
	Prakashan, 2015.
5.	TEDx Talks. (2015, February 6). Unleashing the Power of Traditional Medicine Dr. Arvind
	Singh [Video file]. Retrieved from https://www.youtube.com/watch?v=LZP1StpYEPM

	INTRODUCTION TO IPR									
Cou	rse Code:	HU1006-1	Course Type:	HSMC						
Tea	ching Hours/Week (L: T: P: S):	1:0:0:0	Credits:	01						
Tota	al Teaching Hours:	15	CIE + SEE Marks:	50+50						
	Teaching Department: Respective Department									
Cour	se Objectives:									
1.	Enhancing the learning system thro	ough innovation	and creative thinking skills f	or effective						
	business process.									
2.	Acquaint with special challenges of	starting new ver	ntures.							
3.	Facilitate Entrepreneurial skills in rec	cognizing oppor	tunities for competitive adva	ntages.						
4.	Provide insights of financial aspects	in planning and	executing a business plan.							
5.	Ascertain the role of IPR to protect	innovations and	intangible assets.							
	UNIT-I									
Intell	Intellectual Property Rights (IPR) 6 Hours									
Intro	ntroduction to IPR: Business Perspective, IPR in India – Genesis and Development, International									
Conte	ext, Concept of IP Management, Uses	in marketing								

UNIT-II						
Types of Intellectual Property	6 Hours					
Patent - Procedure, Licensing and Assignment, Infringement and Penalty, Trademark,	Example of					
Trademarks - Domain name, Geographical Indications, Copyright, Industrial Designs, Clas	s Discussion					
- Major Court Cases regarding violation of Patents						
UNIT-III						
Basic Tenets of Information Technology Act, 2000	3 Hours					

IT Act – Introduction, E-Commerce and Legal Provisions, E- Governance, Digital signature and Electronic Signature, Cybercrimes

Course Outcomes: At the end of the course student will be able to

1.	Comprehend Innovation, its process and sources.
2.	Apply the process of building an innovative organization.
3.	Recognize the characteristics of different types of Entrepreneurships
4.	Formulate a business plan based on a business idea in Technology.
5.	Interpret basic tenets of Information Technology Act, 2000.

Course Outcomes Mapping with Program Outcomes & PSO

Program Outcomes→	1	2	3	4	5	6	7	8	9	10	11	12	PS	O ↓
↓ Course Outcomes													1	2
HU1006-1.1	-	-	-	-	-	-	-	-	-	2	-	3	-	-
HU1006-1.2	-	-	-	-	-	-	-	-	-	3	-	3	-	-
HU1006-1.3	-	-	-	-	-	-	-	-	-	3	-	3	-	-
HU1006-1.4	-	-	-	-	-	-	-	-	2	2	-	2	-	-
HU1006-1.5	-	-	-	-	-	-	-	-	1	2	-	2	-	-

1: Low 2: Medium 3: High

REFERENCES:									
1.	Tidd, J., & Bessant, J., "Managing Innovation: Integrating Technological, Market and								
	Organizational Change", Wiley, 2021.								
2.	Case Study Materials: To be distributed for Class Discussion								
3.	Reddy, G. B., "Intellectual Property Rights and the Law", Gogia Law Agency, 2012.								
4.	Wadehra, B. L., "Law relating to Intellectual Property", Universal Law Publishing Co., 2011.								
5.	Narayanan, P., "IPR", Eastern Law House Private Ltd, 2017.								

Page | 342

	SOCIAL CON	NECT AND RES	PONSIBILITY							
Cou	Course Code: HU1007-1 Course Type: AEC									
Tea	Teaching Hours/Week (L: T: P: S):1:0:0:0Credits:									
Tota	Total Teaching Hours:15CIE + SEE Marks:5									
	Teaching Depar	rtment: Respect	ive Department							
Cour	se Objectives:									
1.	Understand Rural Society									
2.	Acquire the knowledge about Rura	l Economy								
3.	Know the working of rural administration									
4.	4. Familiarize the different rural schemes of Governance									
		UNIT-I								
Appr	eciation of Rural Society			3 Hours						
Rural	Society, Caste and Gender relations,	Rural values, Na	ture and Resources, Rural infr	astructure.						
Unde	erstanding Rural Economy & Liveli	nood		3 Hours						
Agric	ulture, Farming, Landownership, Wat	er Management,	Animal Husbandry, Non-Farr	n Livelihoods						
And A	Artisans, Rural Entrepreneurs.									
		UNIT-II		- 1						
Rura	Institutions			3 Hours						
Tradi	tional Rural Organizations, Self-help	Groups, Pancha	ayat Raj Institutions - Gram	Sabha, Gram						
Panch	Panchayat, Standing Committees									

Rι	ıral I	Development Programmes													3	Hou	ŕS
Hi	istory of Rural Development in India, Current National Programmes - Sarva Shiksha Abhiyaan, Beti																
Ba	Bachao – Beti Padhao, Ayushmaan Bharath, Swachh Bharath, PM Awaas Yojana, Skill India,																
De	ecent	tralised Planning, NRLM, MNI	REG	A										-			
					U	NIT-	III										
Сс	orpo	rate Social Responsibility (C	CSR)												3 H	lours	;
Gl	obal	Guidelines on CSR, Growing	Imp	orta	nce	of C	SR, C	CSR i	in In	dia							
Сс	Course Outcomes: At the end of the course student will be able to																
1	•	Comprehend Rural Society a	nd i	ts Ec	cono	my											
2		Identify the working of Rural	Adı	mini	strat	ion a	and	diffe	erent	rura	al sc	heme	es				
3		Grasp the working of Corpor	rate	Soci	al Re	espo	nsib	ility									
Co	ourse	Outcomes Mapping with I	Proc	Iran	ו Ou	tcor	nes	& P	SO								
		Program Outcomes→	1	2	3	4	5	6	7	8	9	10	11	12	PS	O↓	
	↓ C	Course Outcomes													1	2	
		HU1007-1.1	-	-	-	-	-	-	-	-	-	-	2	3	-	-	
		HU1007-1.2	-	-	-	-	-	-	-	-	-	-	2	3	-	-	
		HU1007-1.3	-	-	-	-	-	-	-	-	-	-	2	3	-	-	
		1: Low 2: Medium 3: High															
	¥																
RE	FER	ENCES:															
	1.	UGC., "Unnat Bharat Abhiya	n", 2	2020													
	2.	Agarwal, S.K., "Corporate Sc	cial	Res	pons	ibilit	y in	Indi	a", S	AGE	Puk	olicat	ion, 2	2008.			
	3.	Unnat Bharat Abhiyan. (n.d.)). Un	nat	Bhai	at A	bhiy	an E	Brocl	nure	. Ret	trieve	d fro	m			

https://unnatbharatabhiyan.gov.in/app/webroot/files/brochure.pdf

		LIFE SK	ILLS FOR ENGI	NEERS				
	Cour	se Code:	HU1008-1	Course Type:	AEC			
	Teac	hing Hours/Week (L: T: P: S):	1:0:0:0	Credits:	01			
	Tota	l Teaching Hours:	15	CIE + SEE Marks:	50+50			
		Teaching Depart	tment: Respecti	ve Department				
	Cours	e Objectives:						
1. Understand Time Management, Managing Information Overload, Coping with Peer pressure								
	2.	Familiarize the Science behind Perso	onal Health Man	agement and Addictions				
	3.	Appreciate the importance of cultiv discarding bad habits and holding c	vating good hob difficult conversa	bies, need for forming good tions during crises	habits and			
	4.	Comprehend the importance of Collaboration and Team Work	Creative Thinkir	ig, Continuous and Lifelong	g Learning,			
	5.	Equip them to excel in real work env	vironment proac	tively				
			UNIT-I					
	Introd	luction to Life Skills			3 Hours			
	Meani Prolife Time	ing and Importance of Life Skills, Cor eration of Electronic Gadgets and har Management	mpetitive Job m mful online cont	arket, Fast paced changes in ent.	Technology,			
	Introduction to Time Management Impulsive Behaviour vis-a-vis goal Directive Behaviour, Time log							

Introduction to Time Management, Impulsive Behaviour vis-a-vis goal Directive Behaviour, Time log, Information Overload and coping with Information & Communication Technology (ICT) Revolution; Proliferation of Electronic Media; Exponential growth in online content; Impact of Information Overload on human brain

Science behind Personal Health Management

3 Hours

Ignorance in Society on health issues, World Health Organization (WHO) - Definition of Health, Human Evolution, Importance of physical work for human body & mind, Dangers of sedentary lifestyle, Germ diseases versus Lifestyle diseases, Integrating physical exercise into daily life

Science behind Addictions

Addiction - Meaning, Neurology and Hormonal basics of Addictive Behaviour, How addictions are formed; Harmful effects of addictions on Physical and Mental Health, Recognizing addictions in oneself, Coming out of addictions

UNIT-II																
Need	for cultivating good hobbie	es												3 F	lours	5
Need	for Hobbies in maintaining W	'ork-	Life	Bala	nce;	hov	v ho	bbie	s he	lp in	i mair	ntaini	ng g	ood	physi	cal
and n	nental health, Various Hobbies	5														
Habit	s															
Differ	ence between hobbies & habi	ts, C	ultiv	ating	g go	od h	abit	s & 0	disca	ardin	ng bao	d hab	oits: R	lole c	of hab	oits
for a	successful life, How habits fo	rm;	Anal	lyzin	g or	ne's	own	hab	oits;	Reco	ogniz	ing u	seles	is &	harm	ful
habits	habits, Cultivating & Sustaining useful habits															
Peer	pressure and How to cope w	ith i	it											3	Hour	rs
Huma	n being as a Social Animal, Pl	hysio	al P	ain 8	۶ So	cial	Pair	i; Aw	/arei	ness	of Ha	armfu	ul Soc	cial P	ressu	ıre,
Role	of Prefrontal Cortex in Judgen	nent	and	l Dec	cisio	n Ma	akin	g, wl	hy te	ena	gers	are v	ulner	able	to pe	eer
press	ure, strategies to overcome ha	rmfu	ul pe	er p	ress	ure			5		5				•	
Stres	s Management															
Stress	, Types of Stress, Fight & F	ligh	t Re	espor	nse	of⊦	łum	ans;	Har	mfu	l effe	ects o	of ch	ronic	stre	ess;
Symptoms of Poor Coping Skills of Stress, Stress & Psychiatric problems, Easy coping strategies for																
stress	1 5					,					, ,	, I	5		5	
UNIT-III																
Conti	nuous & Lifelong Learning													3 F	lours	
Accelerated change in Technology Landscape, Shorter Life Cycles of Technologies, Need for																
Continuous Learning of other skills																
Team Working Skills & Collaboration																
Team Work – Meaning, Skills and Relevance, Importance of Collaboration to succeed in one's own																
career. How to be a good team member																
Course Outcomes: At the end of the course student will be able to																
1.	Apply the concept of Time	Mai	nage	emer	nt, co	ope	with	n Inf	orm	atior	n Ove	erload	d and	d wit	hstan	d
	harmful peer pressure					•										
2.	Comprehend the need to sta	ay av	way	from	ado	dictio	ons l	by re	ealizi	ng t	he bi	ologi	cal b	asis l	behin	d
	these concepts	,	,					5		5		5				
3.	Develop good hobbies to maintain ideal work-life balance															
4.	Develop the aptitude for finding creative solutions to problems and realize the importance															
	of continuous and lifelong learning															
5.	Demonstrate positive and progressive abilities															
Course Outcomes Mapping with Program Outcomes & PSO																
Program Outcomes→			2	3	4	5	6	7	8	9	10	11	12	PS	.	
	Course Outcomes										-			1	2	
¥	HU1008-1.1	-	-	-	-	-	-	-	-	-	2	1	3	-	<u> </u> _	

3

3

2

2

-

-

2

1

2

1

1

1

3

3

2

2

1: Low 2: Medium 3: High

_

-

-

-

_

-

_

_

HU1008-1.2

HU1008-1.3

HU1008-1.4

HU1008-1.5

_

-

_

_

-

-

-

_

_

-

-

- -

_

_

_

- | - | - | -

_

-

- -

-

_

-

_

- -

-

_

REFER	REFERENCES:							
1.	Lieberman, D.E., "The Story of the Human Body", Pantheon Books, 2013.							
2.	Ratey, J.J., "Spark. Little Brown Spark", 2013.							
3.	De Bono, E., "Creative Thinking", Penguin UK, 2016.							
4.	Pachter, B., "The Power of Positive Confrontation", Da Capo Lifelong Books, 1999.							
5.	Duhigg, C., "The Power of Habit", Random House Trade Paperbacks, 2012.							
6.	Sharma, S., & Mishra, B., "Communication Skills for Engineers and Scientists", PHI							
	Learning, 2009.							
7.	Tracy, B., "Time Management", AMACOM, 2014.							

		INDIAN	I KNOWLEDGE S	YSTEMS							
Course Code:			HU1009-1	Course Type:	HEC						
Teaching Hours/Week (L: T: P: S):			1:0:0:0	Credits:	01						
Total Teaching Hours:			15	CIE + SEE Marks:	50+50						
		Teaching Depa	rtment: Respect	ive Department							
	Cours	e Objectives:									
	1.	Enhance knowledge about the History of Ancient India and Rich Culture of the country									
	2.	Gain an introduction to ancient Indian Engineering Technology and Architecture									
	3.	Familiarize Indian indigenous wisdom in Modern scientific paradigm									
	4.	Understanding the Scientific Value of the Traditional Knowledge of our country									
	5. Comprehend and compare the Ancient and Current Knowledge Systems										
			UNIT-I								
	Indiar	n History			6 Hours						
	Histor	v - Land Environment and people	in Ancient India	Ancient Education System	Taksaćilā and						

History - Land, Environment, and people in Ancient India; Ancient Education System, Takşaśilā and Nālandā University, Hunting to Agriculture; Introduction to Vedas and Upanishads; Great Indian Epics; Indian Festivals

UNIT-II								
Engineering, Technology, and Architecture 6 Hours								
Pre-Harappan and Sindhu Valley Civilization, Laboratory and Apparatus, Juices, Dyes, Paints and								
Cements, Glass and Pottery, Metallurgy, Engineering Science and Technology in the Vedic Age and								
Post-Vedic Records, Iron Pillar of Delhi, Rakhigarhi, Mehrgarh, Sindhu Valley	UNIT-II 6 Hours h, Laboratory and Apparatus, Juices, Dyes, Paints and ineering Science and Technology in the Vedic Age and khigarhi, Mehrgarh, Sindhu Valley Civilization, Marine UNIT-III 3 Hours ty, Sage Agastya's Model of Battery, Velocity of Light, Modern Concepts, History and Culture of Astronomy, Concepts of Zero and Pi, Number System, Pythagoras							
Technology								
UNIT-III								
Science, Astronomy, and Mathematics 3 Hours								
Concept of Matter, Life and Universe, Gravity, Sage Agastya's Model of Battery, Velocity of Light,								
Vimāna: Aeronautics, Vedic Cosmology and Modern Concepts, History and Culture of Astronomy,								
Sun, Earth, Moon, Eclipses, Rotation of Earth, Concepts of Zero and Pi, Number System, Pythagoras								
Theorem and Vedic Mathematics.								
Course Outcomes: At the end of the course student will be able to								
1. Understand the relevance of studying history								

Comprehend the origin of Vedas and epics

2.

- **3.** Realize the scientific value of the Traditional Knowledge of India
- 4. Converting the Bhāratīya wisdom into the applied aspect of the modern scientific paradigm
- 5. Preserve and disseminate Indian Knowledge Systems in Research and Societal applications

Course Outcomes Mapping with Program Outcomes & PSO

Program Outcomes→	1	2	3	4	5	6	7	8	9	10	11	12	PS	O↓
↓ Course Outcomes													1	2
HU1009-1.1	-	-	-	-	-	-	-	-	-	-	2	3	-	-
HU1009-1.2	-	-	-	-	-	-	-	-	-	-	3	3	-	-
HU1009-1.3	-	-	-	-	-	-	-	-	-	-	2	3	-	-
HU1009-1.4	-	-	-	-	-	-	-	-	-	-	2	2	-	-
HU1009-1.5	-	-	-	-	-	-	-	-	-	-	2	2	-	-

1: Low 2: Medium 3: High

REFERENCES:

- **1.** Tripati, R.S., "History of Ancient India", Motilal Banarsidass, 1942.
- **2.** Mahajan, V.D.. "Ancient India", S. Chand and Company, 1985.
- 3. Ramasubramanian, K., & Srinivas, M.D., "Development of Calculus in India", 2010.
- **4.** Ramasubramanian, K., Srinivas, M.D., & Sriram, M.S., "The Traditional Indian Planetary Model and its Revision by Nilakantha Somayaji", 2011.
- **5.** Srinivas, M.D., "Proofs in Indian Mathematics", Hindustan Book Agency, 2005.
- **6.** Srinivas, M.D., "The Algorithmic Approach of Indian Mathematics", 2015.
- **7.** Srinivas, M.D. "Indian Tradition of Science: An Introductory Overview", 2016.
- **8.** Rahika, M., & Balasubramanian, A.V., "Ayurvedic Principles of Food and Nutrition", Part 1. Lok Swasthya Parampara Samvardhan Samithi, 1990.

	ENHANG	CING SEL	F-COI	ИРЕТІ	ENCE				
Cour	se Code:	HU200	1-1	Co	ourse 1	Гуре			НЅМС
Teac	hing Hours/Week (L: T: P: S)	2:0:0:0		Cr	edits	71			02
Tota	I Teaching Hours	25+0+	0+0	CI	E + SE	E Mar	ĸs		50+50
Prer	equisite			·					
	Teaching	Departn	nent:	Huma	nities				
Cours	e Objectives:								
1.	Introspect and learn about oneself								
2.	Develop professional writing skills.								
3.	Acquaint with the various social be	ehaviour a	nd et	iquett	e.				
4.	Apply the techniques of fundamer	ntal comm	iunica	tion s	kills.				
5.	Develop necessary techniques for	formal pr	esenta	ations.	•				
		UNI	T-I						
Perso	nality Traits								09 Hours
Types	& Kinds of personality, Ways to Iden	ntify Self (SWO	Anal	ysis, Jo	hari W	indow),	, Cono	cepts of Self
Manag	gement and Self-Motivation								
Effect	ive Communication Skills								
One-v	vay and Two-way Communication, I	nterperso	nal &	Socia	l Skills				
		UNI	Γ-II						1
Socia	Behaviour and Cultural Etiquette)							09 Hours
Time I	Management, Personal Grooming, N	/laking Sn	nall Ta	lk, Cu	stoms	& Mar	nners		
Profe	ssional Presentation Techniques								
Forma	I Presentation, Sensitivity towards n	nulti-cultu	Iral w	orkspa	aces				
		UNI	-III						1
Job-R	elated Communication								08 Hours
Resun	ne & Cover Letter, Formal E-mails, F	raming Re	eques	ts, Gre	eetings	, Saluta	ations,	Close	
Cours	e Outcomes: At the end of the cou	rse stude	nt will	be ab	ole to				
1.	Understand the importance of hur	nan cond	uct.						
2.	Demonstrate knowledge of theory	and com	peten	ce in o	office of	commu	inicatio	n.	
3.	Develop and assess various types	of commu	inicati	on.					
4.	Be Familiar with the current practic	ces of soc	ial be	naviou	Jr.				
5.	Prepare and deliver presentation a	ppropriat	e for	the wo	orkplad	ce.			
Cours	e Outcomes Mapping with Progra	am Outco	mes	ይ PSC	כ				
	Program Outcomes \rightarrow 1	2 3 4	5	6 7	7 8	9 1	0 11	12	PSO

(N)

	↓C	ourse Outcomes													1	2	
		HU2001-1.1	-	1	-	-	-	2	2	-	3	-	-	-	-	-	
		HU2001-1.2	I	-	-	-	-	-	-	3	2	1	-	1	-	-	
		HU2001-1.3	I	-	2	-	-	2	2	2	-	I	-	2	-	-	
		HU2001-1.4	-	3	-	-	-	-	-	-	2	3	2	-	-	-	
		HU2001-1.5	2	2	-	1	-	-	-	-	2	-	-	-	-	-	
												1: Lo	w 2:	Med	lium	3: Hi	gh
RE	REFERENCE BOOKS:																
	1.	R R Gaur, R Sangal, G P Bagaria, "Human Values and Professional Ethics", Excel Books, New															
		Delhi, 2010.															
	2.	Ronald B Adler and Jeanne	Ma	rqua	rdt I	Elmh	orst	, "Co	omn	nuni	catin	ig at	Worl	< – P	rincip	oles a	nd
		Practices for Business and the	he P	rofe	ssior	ns", 6	5th E	ditio	on, N	∕lcGr	aw I	Hill C	olleg	e.			
	3.	Stephen R. Covey, "The 7 Ha	abits	s of I	High	ly Ef	fecti	ve P	eop	le", S	Simo	n & 9	Schus	ster, 1	1994.		
	4.	Sarvesh Gulati, "Corporate grooming and Etiquette", Rupa Publications India Pvt. Ltd., 2010.															
	5.	Fred. Luthans, "Organizational Behaviour", McGraw Hill International.															
	6.	Tom Rath, "Strengths Finder 2.0", Gallup Press, 2007.															
	7.	M Ashraf Rizvi, "Effective Technical Communication", Tata McGraw- Hill, 2005.															

8. Stephen P. Robbins, "Organizational Behaviour", Prentice Hall.

9. Dale Carnegie, "How to Win Friends and Influence People", Gallery Books, 2016.

	UNIVERSAL HUMAN VALUES											
Cour	se Code:	HU1004-1	Course Type	HSMC								
Teac	hing Hours/Week (L: T: P: S)	1:0:0:0	Credits	01								
Tota	l Teaching Hours	15+0+0+0	CIE + SEE Marks	50+50								
Prer	equisite											
	Teaching I	Department: H	lumanities									
Cours	e Objectives:											
1.	Enable students appreciate values,	skills and beha	viour with an appropriat	e understanding								
	of 'Self' to attain sustained happine	ss and prosperi	ty with right aspirations of	of life.								
2.	Develop a holistic perspective amor	ng the students	towards physical needs a	and prosperity of								
	life.											
3.	Develop a holistic approach and u	nderstand the	importance of co-exister	nce and living in								
4	harmony ensuring mutually fulfilling	g interaction wi	th the society and nature									
4.	Strengthening of self-reflection.											
5.	Development of commitment and c	courage to act.										
	UNIT-I											
Nood	Need, Basic Guidelines, Content and Process for Value Education 06 Hours											
Solf_F	Self-Exploration; 'Natural Acceptance' and Experiential Validation; Continuous Happiness and											
Prosperity; Right understanding, Relationship and Physical Facility: Understanding Happiness and												
Prosperity - living in harmony at various levels.												
riospenty - living in narmony at various levels.												
		UNIT-II										
Unde	rstanding Harmony in the Human	Being, Family a	and Society	06 Hours								
Under	standing human being as a co-existe	ence of the sent	ient 'I' and the material 'E	Body; the needs of								
Self ('I	') and 'Body'; the Body as an instrum	ent; Holistic pe	rspective of Physical nee	ds and Prosperity;								
Visual	izing a universal harmonious order ir	n society- Undiv	vided Society, Universal C	Order- from family								
to wo	rld family.											
What	- avietones as Convistones Implies	UNIT-III	ava Halistis Hudavstan									
of Ha	e existence as coexistence: Implica	tions of the ab	ove Holistic Understand	aing 05 Hours								
Under	standing the harmony in the Nat	ture and Existe	ence: Existence as Co-e	existence. Holistic								
percei	ption of harmony at all levels of exis	stence: Natural	acceptance of human va	alues, Professional								
Ethics	,		·	,								
Course Outcomes: At the end of the course student will be able to												
1.	1. Have a better self-exploration and understanding with a capacity to identify the priorities of											
	life.											
2.	Generate Sustainable solution to pr	oblems with fo	cus on human values and	l value-based								
	living.											
3.	Have an understanding of the Holis	tic perspective	of Physical needs									
4.	Understand and practice living in ha	armony, co-exis	stence and natural accept	ance								
5.	Exhibit Professional Ethics in the wo	orkplace										

Со	Course Outcomes Mapping with Program Outcomes & PSO																
		Program Outcomes $ ightarrow$	1	2	3	4	5	6	7	8	9	10	11	12	PS	O↓	ĺ
	↓ C	ourse Outcomes													1	2	
		HU1004-1.1	-	-	-	-	-	-	-	3	-	-	2	2	-	-	
		HU1004-1.2	-	-	-	-	-	-	-	2	-	-	2	2	-	-	
		HU1004-1.3	-	-	2	-	-	-	1	2	-	-	2	2	-	-	
		HU1004-1.4	-	-	-	-	-	-	-	1	-	-	-	-	-	-	
		HU1004-1.5	-	-	1	-	-	-	-	3	-	-	2	2	-	-	
												1: Lo	w 2:	Med	ium	3: Hi	gh
TE	XTB	OOKS:															
	1.	R R Gaur, R Sangal, G P Bag	aria,	"Hu	mar	Val	ues	and	Prof	essi	onal	Ethic	s", E>	cel B	ooks	, New	V
	Delhi, 2010																
RE	FERENCE BOOKS:																
	1.	A Nagaraj, "Jeevan Vidya: El	k Pa	richa	ya",	Jeev	∕an \	/idya	a Pra	kasł	nan,	Ama	rkant	ak, 19	999		
	2.	A.N. Tripathi, "Human Value	es", 1	New	Age	Intl.	Pub	lish	ers, l	New	Del	hi, 20	04				
	3.	The Story of Stuff (Book).															
	4.	Mohandas Karamchand Gar	ndhi	, "Th	e Sto	ory d	of M	y Ex	perir	nent	ts wi	th Tr	uth"				
	5.	E. F Schumacher, "Small is B	eau	tiful"	1												
	6.	Cecile Andrews, "Slow is Bea	autif	ul"													
	7.	J C Kumarappa, "Economy c	of Pe	erma	nend	:e"											
	8.	8. Pandit Sunderlal, "Bharat Mein Angreji Raj"															
	9.	Dharampal, "Rediscovering	Indi	a"													
	10.). Mohandas Karamchand Gandhi, "Indian Home Rule"															
	11.	Maulana Abdul Kalam Azad, "India Wins Freedom"															
	12.	. Romain Rolland, "Vivekananda"															
	13.	Romain Rolland, "Gandhi"															

	ಆಡಳಿತ ಕನ್ನಡ (K	annada for Ad	ministration)							
Cour	rse Code	HU1003-1	Course Type	MNC						
Teac	hing Hours/Week (L:T:P:S)	1:0:0:0	Credits	0						
Tota	I Teaching Hours	15+0+0+0	CIE + SEE Marks	50+0						
Prer	equisite Taashing Day		Donowtwoont							
Cours	e Obiectives:	partment: Any	Department							
1.	ಪದವಿ ವಿದ್ಯಾರ್ಥಿಗಳಾಗಿರುವುದರಿಂದ ಸಾಂಸ್ಕ್ರ	ತಿಕ ಕನ್ನಡದ ಜೊತೆಗ	ೆ ಕ್ರಿಯಾತ್ಮ _. ಕ ಕನ್ನಡವನ್ನು, ಕನ್ನಡ ಸಾಕಿ	ಎತ್ಯ, ಸಂಸ್ಕೃತಿ						
	ಮತ್ತು ನಾಡು ನುಡಿಯ ಪರಿಚಯ ಮಾಡಿಕೊಡು	ವುದು.		0 9						
2.	ವಿದ್ಯಾರ್ಥಿಗಳಲ್ಲಿ ಕನ್ನಡ ಭಾಷೆಯ ವ್ಯಾಕರಣ	ದ ಬಗ್ಗೆ ಅರಿವು ಮ	ೂಡಿಸುವುದು ಮತ್ತು ಕನ್ನಡ ಭಾಷಾ	ರಚನೆಯಲ್ಲಿನ						
	ನಿಯಮಗಳನ್ನು ಪರಿಚೆಯಿಸುವುದು.									
3.	3. ಕನ್ನಡ ಭಾಷಾ ಬರೆಹದಲ್ಲಿ ಕಂಡುಬರುವ ದೋಷಗಳು ಹಾಗು ಅವುಗಳನಿವಾರಣೆ.									
4.	4. ಸಾಮಾನ್ಯ ಅರ್ಜಿಗಳು, ಸರ್ಕಾರಿ ಮತ್ತು ಅರೆಸರ್ಕಾರಿ ಪತ್ರ ವ್ಯವಹಾರದ ಬಗ್ಗೆ ಅರಿವು ಮೂಡಿಡಿಸುವುದು.									
5.	5. ಕನ್ನಡ ಭಾಷಾಭ್ಯಾಸ, ಸಾಮಾನ್ಯ ಕನ್ನಡ ಹಾಗೂ ಆಡಳಿತ ಕನ್ನಡ ದಪದಗಳ ಪರಿಚಯ ಮಾಡಿ ಕೊಡುವುಧು.									
		UNIT - I								
ಲೇಖನ	ಗಳು									
1. ಕನಾ	. ಕರ್ನಾಟಕ ಸಂಸ್ಕೃತಿ: ಹಂಪನಾಗರಾಜಯ್ಯ									
2. ಕನಾ	2. ಕರ್ನಾಟಕದ ಏಕೀಕರಣ: ಒಂದು ಅಪೂರ್ವಚರಿತ್ರೆ - ಜಿ. ವೆಂಕಟಸುಬ್ಬಯ್ಯ									
3. ಆಡ್	ಳಿತ ಭಾಷೆಯಾಗಿ ಕನ್ನಡ – ವಿತಾವಿಯ ಆಡಳಿತ ಕ	ಕನ್ನಡ ಪುಸ್ತಕದಿಂದ ಆ	ತಯ್ದ ಲೇಖನ							
ಕಾವ್ಯಭ	ಾಗ (ಆಧುನಿಕಪೂರ್ವ)									
1. ವಚನ	ನಗಳು: ಬಸವಣ್ಣ, ಅಕ್ಕಮಹಾದೇವಿ, ಅಲ್ಲಮಪ್ರಭು	, ಆಯ್ದಕ್ಕಿಮಾರಯ್ಯ,	ಜೇಡರದಾಸಿಮಯ್ಯ, ಆಯ್ದಕ್ಕಿ ಲಕ್ಕ ಮ್ಮ	06 Hours						
2. ಕೀತ	೯ನೆಗಳು: ಅದರಿಂದೇನು ಫಲ ಇದರಿಂದೇನು ಫಲ) - ಪುರಂದರದಾಸ		nours						
3. ತಲ್ಲಃ	ಣಿಸದಿರು ಕಂಡ್ಯ ತಾಳುಮನವೆ - ಕನಕದಾಸ									
4. ತತ್ವ	ಪದಗಳು: ಸಾವಿರ ಕೊಡಗಳಸುಟ್ಟು - ಶಿಶುನಾಳಕ	ಪಂಥಷರೀಫ								
5. ಶಿವಂ	ಬೋಗಿ: ಬಾಲಲೀಲಾ ಮಹಾಂತ ಶಿವಯೋಗಿ									
6. ಜನ	ಪದಗೀತೆ: ಬೀಸುವಪದ, ಬಡವರಿಗೆ ಸಾವ ಕೊಡಬ	ತೇಡ								
ಕಾನೆಯ	ಾಗ (ಆಗುತಿಕ)	UNII – II								
ರಾಹ್ಯಭ 1 ಮಂ	ಕುತ್ತಿನು ವಕ್ಷದ ಡಿ.ವಿ.ಜಿ									
	ದ್ದು ಹಾಗತ್ರಾಜ. ದ ರಾ ಬೇಂದೆ.									
2. യയ 3. ಹೊ	ಹೊಸಬಾಳಿನ ಗೀತೆ: ಕುವೆಂಪು									
3. කීරු 4. ಹೆಂ	ತತಿಯ ಕಾಗದ ಕೆ ಎಸ್ ನರಪಿಂಹಪಾಮಿ									
5. ಮಬಿ) ನಿಂದ ಮಬ್ಬಿಗೆ: ಜಿ. ಎಸ್. ಶಿವರುದ.ಪ			06						
6. ಆಮ	್ಷ್ಟ್ರ್ಯ್ನ್ನ್ನ್ನ್ನ್ನ್ನ್ನ್ನ್ನ್ನ್ನ್ನ್ನ್ನ್ನ್ನ್ನ			Hours						
7. ಚೋ	 :ಮನ ಮಕ್ಕಳ ಹಾಡು: ಸಿದ್ದಲಿಂಗಯ್ಯ									
මාංෂ,	ಕ ವ್ಯಕ್ತಿಪರಿಚಯ, ಕಥೆ ಮತ್ತು ಪ್ರವಾಸ ಕಥನ									
 1. ಡಾ.	ಸ ರ್ಎಂ ವಿಶ್ವೇಶ್ವರಯ್ಯ – ವ್ಯಕ್ತಿ ಮತ್ತು ಐತಿಹ್ಯ: ಎ	ು ಎನ್ಮೂರ್ತಿ ರಾವ್								
2. ಯುಗ	ಗಾದಿ: ವಸುಧೇಂದ್ರ	-								

3. ಮೆಗಾನೆ ಎಂಬ ಗಿರಿಜನ ಪರ್ವತ: ಹಿ. ಚಿ. ಬೋರಲಿಂಗಯ್ಯ

2	
UNIT – III	
ವಿಜ್ಞಾನ ಮತ್ತು ತಂತ್ರಜ್ಞಾನ	
1. ಕರಕುಶಲ ಕಲೆಗಳು ಮತ್ತು ಪರಂಪರೆಯ ವಿಜ್ಞಾನ: ಕರೀಗೌಡ ಬೀಚನಹಳ್ಳಿ	
2. 'ಕ' ಮತ್ತು 'ಬ' ಬರಹ ತಂತ್ರಾಂಶಗಳು ಮತ್ತು ಕನ್ನಡ ಚೈಪಿಂಗ್	03
3. ಕನ್ನಡ: ಕಂಪ್ಯೂಟರ್ಶಬ್ದಕೋಶ	Hours
4. ತಾಂತ್ರಿಕ ಪದಕೋಶ: ತಾಂತ್ರಿಕ ಹಾಗೂ ಪಾರಿಭಾಷಿಕ ಕನ್ನಡ ಪದಗಳು	
Course Outcomes: At the end of the course student will be able to	

1.	ಪದವಿ ವಿದ್ಯಾರ್ಥಿಗಳಾಗಿರುವುದರಿಂದ ಸಾಂಸ್ಕ್ರತಿಕ ಕನ್ನಡದ ಜೊತೆಗೆ ಕ್ರಿಯಾತ್ಮಕ ಕನ್ನಡವನ್ನು, ಕನ್ನಡಸಾಹಿತ್ಯ, ಸಂಸ್ಕ್ರತಿ
	ಮತ್ತು ನಾಡುನುಡಿಯ ಪರಿಚಯ ಮಾಡಿಕೊಡುವುದು.
2.	ವಿದ್ಯಾರ್ಥಿಗಳಲ್ಲಿ ಕನ್ನಡಭಾಷೆಯ ವ್ಯಾಕರಣದ ಬಗ್ಗೆ ಅರಿವು ಮೂಡಿಸುವುದು ಮತ್ತು ಕನ್ನಡ ಭಾಷಾ ರಚನೆಯಲ್ಲಿನ
	ನಿಯಮಗಳನ್ನು ಪರಿಚಯಿಸುವುದು.
3.	ಕನ್ನಡ ಭಾಷಾ ಬರೆಹದಲ್ಲಿ ಕಂಡುಬರುವ ದೋಷಗಳು ಹಾಗು ಅವುಗಳ ನಿವಾರಣೆ.
4.	ಸಾಮಾನ್ಯ ಅರ್ಜಿಗಳು, ಸರ್ಕಾರಿ ಮತ್ತು ಅರೆ ಸರ್ಕಾರಿ ಪತ್ರ ವ್ಯವಹಾರದ ಬಗ್ಗೆ ಅರಿವು ಮೂಡಿಸುವುದು.
5.	ಕನ್ನಡ ಭಾಷಾಭ್ಯಾಸ, ಸಾಮಾನ್ಯ ಕನ್ನಡ ಹಾಗೂ ಆಡಳಿತ ಕನ್ನಡದ ಪದಗಳ ಪರಿಚಯ ಮಾಡಿಕೊಡುವುಧು.

Course Outcomes Mapping with Program Outcomes & PSO

Brogram Outcomos	1	С	С	Λ	5	6	7	0	٥	10	11	12	DC	
Program Outcomes→	1	2	С	4	5	0	/	0	9	10	11	12	P3	U↓
↓ Course Outcomes													1	2
HU1003-1.1	-	-	I	I	-	-	-	3	-	-	1	1	-	-
HU1003-1.2	-	-	I	I	-	-	-	2	-	-	1	1	-	-
HU1003-1.3	-	-	2	-	-	-	1	2	-	-	1	1	-	-
HU1003-1.4	-	-	-	-	-	-	-	1	-	-	-	-	-	-
HU1003-1.5	-	-	1	-	-	-	-	3	-	_	1	1	-	-

1: Low 2: Medium 3: High

REFERENCE MATERIALS:

- 1. ಸಂಕ್ಷಿಪ್ತ ಕನ್ನಡನಿಗಂಟು (ಪರಿಷ್ಕ್ರತ), ಕನ್ನಡ ಸಾಹಿತ್ಯ ಪರಿಷತ್, ಬೆಂಗಳೂರು.
- 2. ಆಡಳಿತ ಪದಕೋಶ, ಕನ್ನಡ ಅಭಿವೃದ್ಧಿಪ್ರಾಧಿಕಾರ, ಬೆಂಗಳೂರು.
- 3. ಕಾನೂನು ಪದಕೋಶ (ಪರಿಷ್ಕ್ರತ) ಕನ್ನಡ- ಇಂಗ್ಲಿಷ್, ಕನ್ನಡ ಮತ್ತು ಸಂಸ್ಕೃತಿ ನಿರ್ದೇಶನಾಲಯ, ಬೆಂಗಳೂರು.
- 4. ಡಿ.ಎನ್. ಶಂಕರ್ಭಟ್, ಕನ್ನಡವಾಕ್ಯಗಳ ಒಳರಚನೆ, ೨೦೦೬, ಭಾಷಾಪ್ರಕಾಶನ, ಮೈಸೂರು.
- 5. | ಕನ್ನಡ ಭಾಷಿಕ (ಅವಿಸ್ತರ)- ಪ್ರಬಂಧ ಮತ್ತು ಆಡಳಿತ ಕನ್ನಡ, ಕರ್ನಾಟಕ ರಾಜ್ಯ ಮುಕ್ತ ವಿಶ್ವವಿದ್ಯಾಲಯ, ಮೈಸೂರು.
- 6. ಆಡಳಿತ ಕನ್ನಡ, ಎಚ್ಚೆಸ್ಕೆ, ಚೇತನ ಬುಕ್ಹೌಸ್, ಮೈಸೂರು.

Balake Kannada (Communication in Kannada)

Course Code	HU1003-1	Course Type	MNC					
Teaching Hours/Week (L: T: P: S)	1:0:0:0	Credits	0					
Total Teaching Hours	15+0+0+0	CIE + SEE Marks	50+0					
Prerequisite								
Teaching De	epartment: Any	Department						
Course Objectives:								
1. The course will enable the students language.	s to cognize Kan	nada and communicate in ba	sic Kannada					
	UNIT - I							
Basic Kannada Grammar								
Personal Pronouns, Possessive Forms, Inte	errogative words							
Possessive forms of nouns,	Dubitive quest	on and Relative nouns						
Qualitative, Quantitative an	d Colour Adjec	tives, Numerals						
Predictive Forms, Locative C	Case							
Dative Cases, and Numerals	5							
Ordinal numerals and Plura	l markers							
Defective / Negative Verbs and Colour Adjectives								
Permission, Commands, encouraging and Urging words (Imperative								
words and sentences)								
Accusative Cases and Potential Forms used in General								
Communication								
Helping Verbs "iru and iralla	a", Correspondi	ng Future and Negation						
Verbs								
Comparative, Relationship,	Identification a	nd Negation Words						
Different types of forms of	Tense, Time an	d Verbs						
Formation of Past, Future a	nd Present Ten	se Sentences with Verb						
Forms								
Karnataka State and Genera	al Information a	bout the State						
Kannada Language and Lite	erature							
Do's and Don'ts in Learning	j a Language							
Kannada Language Script Part – 1	UNII – II		06 Hours					
	UNIT – III							
Kannada Vocabulary List & Kannada W	ords in Convers	ation	03 Hours					
Course Outcomes: At the end of the cou	rse student will k	be able to						
1. Understand the parts of speech of	Kannada							
2. Know the script in Kannada								
3. Able to Converse daily usages in Ka	annada							
4. Enrich Basic Kannada Vocabulary								
5. Have knowledge about Karnataka a	and its culture							

Course Outcomes Mapping with Program Outcomes & PSO

	Program Outcomes→	1	2	3	4	5	6	7	8	9	10	11	12	PS	O↓
↓ Cours	e Outcomes													1	2
	HU1003-1.1	-	-	-	-	-	-	-	3	-	-	1	1	1	-
	HU1003-1.2	-	-	-	-	-	-	-	2	-	-	1	1	-	-
	HU1003-1.3	-	-	2	-	-	-	1	2	-	-	1	1	-	-
	HU1003-1.4	-	-	-	-	-	-	-	1	-	-	-	-	-	-
	HU1003-1.5	-	-	1	-	-	-	-	3	-	-	1	1	-	-
										1:	Low	2: M	ediu	m 3:	High
REFEREN	CE MATERIALS:														
1.	S N Raju, "English –Kannac	la Ra	pide	x Dio	tior	ary	of S	poke	en W	/ord	s", Be	ngalu	uru		
2.	D K Bharadwaj "English	Kann	ada	Star	ndar	d D	ictic	nary	/", S	ank	eshw	ar Pr	inter	s Pvi	: Ltd,
	Bengaluru														
3.	ಮಾತಾಡುವ ಕನ್ನಡ, ಕನ್ನಡ ಸಾಹಿತ	ತ್ಯ ಪರಿ)ಷತ್	, ಬೆಂಗ	ಗಳೂ	ರು (೨	000	ષ્ટ).							
4.	ಸಂಕ್ಷಿಪ್ತ ಕನ್ನಡನಿಗಂಟು (ಪರಿಷ್ಕ್ರತ)	ಸಂಕ್ಷಿಪ್ತ ಕನ್ನಡನಿಗಂಟು (ಪರಿಷ್ಕೃತ), ಕನ್ನಡ ಸಾಹಿತ್ಯ ಪರಿಷತ್, ಬೆಂಗಳೂರು.													
5.	ಆಡಳಿತ ಪದಕೋಶ, ಕನ್ನಡ ಅಭಿವೃದ್ಧಿಪ್ರಾಧಿಕಾರ, ಬೆಂಗಳೂರು.														
6.	ಕನ್ನಡ ಭಾಷಾಕೈಪಿಡಿ, ಸಂಗಮೇಶ್ಸವ ದತ್ತಿಮಠ, ರೂಪರಶ್ಮಿ ಪ್ರಕಾಶನ, ಗುಲ್ಬರ್ಗ, ೧೯೯೫.														
7.	ಡಿ.ಎನ್. ಶಂಕರ್ಭಟ್, ಕನ್ನಡ ವಾಕ್ಯಗಳ ಒಳ ರಚನೆ, ೨೦೦೬, ಭಾಷಾ ಪ್ರಕಾಶನ, ಮೈಸೂರು.														
8.	ಕಾನೂನು ಪದಕೋಶ (ಪರಿಷ್ಕೃತ) ಕನ್ನಡ- ಇಂಗ್ಲಿಷ್, ಕನ್ನಡ ಮತ್ತು ಸಂಸ್ಕೃತಿ ನಿರ್ದೇಶನಾಲಯ, ಬೆಂಗಳೂರು.														

MANAGEMENT & ENTREPRENEURSHIP

Cours	se Code:	MG1003-1	Course Type	нѕмс					
Teach	hing Hours/Week (I · T· P· S)	3.0.0.0	Credits	03					
Total	Teaching Hours	40	CIE + SEE Marks	50+50					
Prere									
	Teaching Departme	nt: Electrical &	Electronics Engineering	I					
Course	e Objectives:								
1.	Explain fundamentals managem	ent functions of	a manager. Also explain	olanning and					
	decision making processes.			<u> </u>					
2.	Explain the organizational struct	ure, staffing and	leadership process.						
3.	Explain understanding of Entrep	reneurships and	Entrepreneurship develo	pment process.					
4.	Illustrate Small Scale Industries,	various types of	supporting agencies and	financing					
	available for an entrepreneur.	51		5					
5.	Summarize the preparation of p	roject report, nee	ed significance of report.	Also to explain					
	about industrial ownership	5	5						
	UN	IT-I		15 Hours					
Manag	gement								
Introdu	uction - Meaning - nature and ch	aracteristics of N	lanagement, Scope and	Functional areas of					
manag	ement - Management as art or s	cience, art or pr	ofession - Management	& Administration -					
Roles	Roles of Management, Levels of Management, Development of Management Thought - early								
manag	jement approaches - Modem man	agement approa	ches.	-					
Planni	ng								
Nature	e, importance and purpose of pla	nning process o	bjectives - Types of plar	ns (meaning only) -					
Decisio	on making, Importance of planning	ı - steps in planni	ng & planning premises	- Hierarchy of plans.					
Organ	izing and Staffing								
Nature	e and purpose of organization, Prir	ciples of organiz	ation – Types of organiza	ation-					
Depart	mentation Committees-Centraliza	tion Vs Decentra	lization of authority and	responsibility -					
Span c	of control - MBO and MBE (Meanir	ig only) Nature a	nd importance of staffing	j-Process of					
Selecti	on & Recruitment (in brief).								
Direct	ing								
Meanii	ng and nature of directing Leaders	hip styles, Motiva	ation, Theories, Commun	ication - Meaning					
and im	portance - coordination, meaning	and importance	and Techniques of coord	lination.					
Contro	Diling	tiols of a sound a	antrol avetara Mathad						
weani	ng and steps in controlling - Essen	tials of a sound c	control system - Methods	s or establishing					
contro	r (in bhei).								
		T_II		15 Hours					
Entron				15 110013					
Meani	ng of Entrepreneur: Evolution of	of the Concent	Functions of an Entre	Phone Prevention Provide America Provide Ameri					
Entren	reneur Entrepreneur - an eme	raina Class Co	ncent of Entrepreneurs	hin - Evolution of					
Entrep	reneurship. Development of Ent	repreneurship: S	stages in entrepreneuria	al process: Role of					
entrep	reneurs in Economic Development	; Entrepreneursh	ip in India: Entrepreneurs	ship - its Barriers.					
Small	scale industries	,							
Definit	ion; Characteristics: Need and ratio	onale; Obiectives:	Scope; role of SSI in Ecor	omic Development.					
Advan	tages of SSI, Steps to start and SS	SI - Government	policy towards SSI: Diffe	erent Policies of SSI:					
Goverr	nment Support for SSI during 5 ve	ar plans. Impact	of Liberalization, Privatiz	ation, Globalization					
on SSI	Effect of WTO/GA TT Supporting	Agencies of Gove	ernment for SSI, Meaning	, Nature of support;					
Object	ives; Functions; Types of Help; And	<u>illary Indu</u> stry an	d Tiny Industry (Definitio	n Only).					

Institutional support

Different Schemes; TECKSOK; KIADB; KSSIDC; KSIMC; DIC Single Window Agency; SISI; NSIC; SIDBI; KSFC.

UNIT-III	10 Hours
Preparation of project	

Meaning of Project; Project Identification; Project Selection; Project Report; Need and Significance of Report; Contents; formulation; Guidelines by Planning Commission for Project report; Network Analysis; Errors of Project Report; Project Appraisal. Identification of. Business Opportunities: Market Feasibility Study; Technical Feasibility Study; Financial Feasibility Study & Social Feasibility Study.

Industrial ownership

Definition and meaning of Partnership, Characteristics of Partnership, Kinds of Partners, Partnership Agreement or Partnership Deed, Registration of Partnership Firm, Rights, Duties and Liabilities of Partners, Advantages and Disadvantages of Partnership, Sole proprietorship, Features, Scope Advantages and Disadvantages of Sole Proprietorship.

Course Outcomes: At the end of the course student will be able to

1.	Explain management functions of a manager. Also explain planning and decision making
	processes.
2.	Explain the organizational structure, staffing and leadership processes.
3.	Understanding of Entrepreneurships and Entrepreneurship development process.
4.	Illustrate Small Scale Industries, various types of supporting agencies and financing
	available for an entrepreneur.
5.	Summarize the preparation of project report, need significance of report. Also to explain
	about industrial ownership.

Course Outcomes Mapping with Program Outcomes & PSO

		-												
Program Outcomes→	1	2	3	4	5	6	7	8	9	10	11	12	PS	0 ↓
↓ Course Outcomes													1	2
MG1003-1.1	3	-	-	-	-	-	-	2	2	-	3	-	-	1
MG1003-1.2	3	-	-	-	-	-	-	2	2	-	3	-	-	2
MG1003-1.3	3	-	-	-	-	-	-	2	2	-	3	-	-	2
MG1003-1.4	3	-	-	-	-	-	-	2	2	-	3	-	-	2
MG1003-1.5	3	-	-	-	-	-	-	2	2	-	3	-	-	2

TEXTBOOKS:

1: Low 2: Medium 3: High

1.	P. C. Tripathi, P.N. Reddy, "Principles of Management", Tata McGraw Hill.
2.	Vasant Desai, "Dynamics of Entrepreneurial Development & Management", Himalaya
	Publishing House.
3.	Poornima. M. Charantimath, "Entrepreneurship Development", Small Business Enterprises –
	Pearson Education - 2006 (2 & 4).
REFEREN	CE BOOKS:
1.	Robers Lusier, "Management Fundamentals - Concepts, Application, Skill Development",
	Thomson.
2.	S. S. Khanka,"Entrepreneurship Development" - S. Chand & Co. New Delhi.
3.	Stephen Robbins, "Management", Pearson Education/PHI - 17thEdition, 2003.

		FJ	NA	NCIA	AL M	IANA	GEI	MEN	T							
Cou	rse Code:			N	IG10	02-1		Co	ours	е Ту	pe			н	ISMO	
Teac	ching Hours/Week (L: T: P:	S)		3:	:0:0:	0		Cr	edit	s				0	3	
Tota	al Teaching Hours			3	9			CI	E +	SEE	Mar	ks		5	0+50)
		Т	eacł	ning	Dep	artm	ent	t: Ai	ny							
Cours	se Objectives:			5	-				,							
1.	Develop basic financial m	ana	gem	ent	kno	wledg	e e	sser	ntial	to ı	make	a m	anag	erial	care	er in
	professional life.					5							5			
2.	Impart some of the cruc	ial a	and	basi	c sk	ills re	qui	red	to	wor	k in	the a	area (of bu	udge	ting,
	investment and financial d	ecis	ion	maki	ing.											
3.	Enable in making a right d	ecis	ions	ons	selec	tion o	of p	roje	ects	for i	nvest	ment				
4.	Understand the basics of f	inar	ice a	and t	inan	cial m	nark	ets,	pro	oject	t eval	uatio	n and	d sele	ection	า.
T :					UN	11-1										
Linan	value of Money		4 M	looni	ina	Intr	odu	Ictic			2222	Oh	iactiv	•	15 HO	ours
Mana	cial Management. Concepts	5 an 5 EV	α IVI / Λ · <i>C</i>	ieani `han	ing - aina	- Intro Role	of	Eina	n u ncia		ance	e, Obj	jectiv	es o		anciai
Time	Value of Money: Techniques	i, ∟v sano	л, с 1 Δ n	nang	ation	is of C	`om	nnoi	indi	na a	and D	iscoi	Inting	r		
THILE	value of money. reeninque	, and	u rip	price	UN	IT-II	.011	ipot	anai	ng c		15000		۶.		
Capit	al Budgeting and Working	Ca	pita	I	••••									-	15 H	ours
Capit	al Budgeting (Investment I	Evalu	uatio	on T	echr	niques	5): I	Paył	oack	Pe	riod	Meth	nod;	Prese	ent N	North
Meth	od; Annual Worth Method; F	Profi	tabi	lity i	ndex	meth	nod	; Est	tima	tion	of IR	R.				
Cost	of Capital: Sources of variou	is Ty	/pes	of C	Capit	al; Co	ost o	of D	ebe	ntur	e Ca	pital;	Cost	of P	refer	ential
Capit	al; Cost of Term Loans; Cost	of E	quit	y Ca	pital	•										
Work	ing Capital: Factors influenci	ng \	Norl	king	Сар	ital Re	equ	iren	nent	S.						
			-		UNI	Т-Ш •										
Inver	tory Management and Bre	еак	Evei	n An	alys	IS Asia a			a .a al	Car		500			9 HO	urs
in Tin	no (III) System	es o	T INV	ento	ory iv	ranag	em	ent	and	Cor	itroi -	- EOC	2, ABC	_ Ana	alysis	, Just-
Brook	r Even Analysis: Estimation of	f Rrc	ab-l	Fvon	Poi	nt and	l Va	مرياد	c							
DICak	LVEIT Analysis. Estimation of		-ak-1	LVEII	rui	it and	1 00	iiue.	5.							
Cours	se Outcomes: At the end of	the	cou	rse s	tude	ent wi	ll be	e ab	ole to	C						
1.	Describe the basic financia	al ma	anac	jeme	ent s	kills re	equ	ired	l for	а рі	rofes	siona	Ι.			
2.	Explain techniques and	арр	licat	ions	of	com	pou	ındi	ng	and	disc	count	ing a	and	calcu	ulate
	compounded/discounted	amc	ount	for t	the g	jiven j	oro	pos	al.				0			
3.	Evaluate the given investme	nent	opt	ion ł	ру са	pital	buc	dget	ting	tech	niqu	es.				
4.	Describe the basics of cos	t of	сар	ital a	and	workiı	ng d	capi	tal.	Dete	ermin	e the	e cost	of c	apita	l for
	the given investment optic	on.														
5.	Describe the basics of inve	ntor	y m	anag	geme	ent an	d ca	alcu	late	the	econ	omic	orde	r qua	antity	and
	reorder point for the given	con	ditio	ons.	Calc	ulate l	orea	akev	/en p	ooin	t for 1	the gi	iven r	nanu	ıfactu	iring
	setup.															
Cours	se Outcomes Mapping wit	h Pr	ogra	am (Duto	omes	&	PSC)	<u> </u>					1	1
	Program Outcomes→	1	2	3	4	5	6	7	8	9	10	11	12		PS	5 0 ↓
-	urse Outcomes													1	2	3
↓ Co		-														
	MG1002-1.1	3	-	-	-	-	-	-	-	1	1	-	1	-	-	-
_	MG1002-1.1 MG1002-1.2	3 1	- 3	-	-	-	-	-	-	1	1	-	1	-	-	-

	MG1002-1.4	2	3	-	-	-	-	-	-	1	1	-	1	-	-	-
	MG1002-1.5	1	3	-	-	-	-	-	-	1	1	-	1	-	-	-
	1: Low 2: Medium 3: H	ligh														
TEXTB	BOOKS:															
1.	M Y Khan, P K Jain , "Fi	nanc	cial I	Mana	agen	nent	: – T	ext,	Prol	olem	is &	Case	s",7th	n Edit	tion,	2015;
	McGraw Hill Education (Ir	ndia)	Pvt	. Ltd	, Nev	w De	elhi.									
2.	I M Pandey, "Financial Ma	nag	eme	nt", 1	11th	Edit	ion,	201	5; Vi	kas l	Publis	shing	Hou	se Pv	t. Ltd	. (UP)
	India.															
3.	James L. Riggs, David D.	Bed	lwor	th a	nd S	abal	hU.	Ran	Idha	wa,	"Engi	ineeri	ing E	cono	mics	", 4th
	Edition, Tata McGraw Hill	Edit	ion.													
REFER	ENCE BOOKS:															
1.	Prasanna Chandra, "Finan	cial	Mar	age	men	t", 6	th E	ditio	n, 20	004;	Tata	McG	raw F	Hill Pu	ublisł	ning
	Company Ltd, New Delhi.															
2.	S. D. Sharma, "Operation	Rese	earcl	ח″, K	Ceda	r Na	th R	am l	Nath	n Pul	olishe	ers, 20	015.			

		EMPL	ΟΥΑ	BIL	ITY S	SKIL	L DE	VEL	.OPI	MEN	Т				
(Cour	se Code:			UM	1003	8-1	(Coui	rse T	уре				MNC
٦	Геас	hing Hours/Week (L: T: P: S))		1:0:	0:0		(Cred	its					01
٦	ot a	I Teaching Hours			15+	00 +	00	(CIE +	⊦ SE	E Ma	arks			100
F	Prere	equisite													
		Teaching Depar	tme	nt:	Elect	rica	1&1	Elec	tron	ics l	Engi	neer	ing		
C	ours	e Objectives:													
	1.	To explain the students the r	nece	ssity	of c	leari	ing t	he a	aptitu	ude	tests	irres	spect	ive of	the
_		written test is for jobs or hig	her e	educ	atio	n.									
	2.	To assess the readiness of th	e sti	uder	nts to	o ap	bear	for	the a	aptit	ude	test	and a	issisti	ng them
		to better it if already ready, e	else	train	the	<u>m.</u>									
	3.	To evaluate the understandir	ng o	f the	e stu	dent	s in	ans	werir	ng q	uant	itativ	'e mu	ltiple	-choice
_	4	questions and guide them to	o imp	orov	e it.							• •	<u> </u>		
	4.	To evaluate the preparednes	s of	the	stud	ents	to a	nsw	/er th	ne ai	nalyt	ical a	and Ic	gical	questions.
	5.	To evaluate the quality of the	e stu	laen	ts w	tn re	egar	a to	thei	r pro	otess	siona	i iang	juage	e grammar,
			ions	SKIIIS	•										
					U	NIT.	.T								
0	uant	titative			U		•								06 Hours
N	umb	ers (Odd. even. H.C.F & L.C.I	M. S	ัดบล	re ro	oots	& c	ube	roo	ts. A	Avera	age.	Perce	entad	e). Ratios &
Pr	opo	rtions, Partnership, Time & wo	rk, P	ipes	& C	ister	n, Sr	beed	d, Pro	bleı	ms o	n tra	ins, P	roble	ms on boats
&	stre	ams, Allegation & Mixtures.	,	•			, I		,				,		
		2													
					U	NIT-	II								
Α	naly	tical/logical													05 Hours
Ν	ume	rical logic (next number in ser	ies, o	bbc	man	out), Co	ded	llang	guag	je, S <u>y</u>	/llogi	ism, [Direct	ion (N-E-W-
S)	, Sea	ating arrangement, Blood relat	tions	s, Sta	atem	ent	& Co	oncl	usio	n					
V	orbo	1			U	NI I	111								
	er Da acab	ulary (root words prefix suff	iv s	mor	wmc	ant	onv	mc)	On		ord c	uhsti	itutio	n Idi	om/nhrases
Se	onter	and a completion Active & Pass	ive v	noice	iyms ויח ב	, and ect :	and	ndi	rect	snee	nu s Arh	ubsti	lulio	n, iur	om/pinases,
50					, 01			man		spec					
С	ours	e Outcomes: At the end of th	ie co	urse	e stu	dent	will	be a	able	to					
	1.	Answer the quantitative mult	tiple	-chc	oice o	aues	tion	5.							
	2.	Analyse the analytical and lo	gica	l que	estio	ns.									
	3.	Improve the professional lan	gua	qe q	ram	mar,	voc	abu	lary a	and	com	muni	icatio	n skil	ls.
	4.	Clear the aptitude tests of ar	iy er	nplc	yer	or hi	ghei	. eq	ucati	iona	l ins	titutio	on.		
	5.	Advance in the chosen field	of in	tere	st by	/ app	bend	ing	apti	tude	skil	ls wit	h the	tech	nical skills.
С	ours	e Outcomes Mapping with F	Prog	ram	0u	tcon	nes a	<u> </u>	SO						
		Program Outcomes →	1	2	3	4	5	6	7	8	9	10	11	12	PSO↓
	Ţ	Course Outcomes													1 2

2

2

2

2

2

1

1

1

1

1

-

-

_

-

-

-

-

_

-

-

-

-

-

-

-

2

2

2

2

2

-

- | -

- -

- -

UM1003-1.1

UM1003-1.2

UM1003-1.3

UM1003-1.4

UM1003-1.5

3

3

3

3

3

3

3

3

3

3

-

-

2

2

2 -

-

-

_

-

- - -

- -

- - - - -

-

- -

-

(N

	1: Low 2: Medium 3: High
TEXTB	OOKS:
1.	R S Aggarwal, "Quantitative Aptitude for Competitive Examinations".
2.	R S Aggarwal, "A modern approach to verbal and non-verbal reasoning".
REFER	ENCE BOOKS:
1.	Bharath Patodi & Aditya Choudhary, "Verbal Ability & Comprehension".
2.	Shakuntala Devi, "Joy of numbers".
3.	Shakuntala Devi, "More puzzles to puzzle you".
E Bool	<s moocs="" nptel<="" th=""></s>
1.	https://www.indiabix.com
2.	https://www.faceprep.in

University Core Courses

	Internship-I		
Course Code	UC1001-1	CIE Marks	100
Teaching Hours/Week (L: T: P: S)	-	SEE Marks	-
Total Hours of Pedagogy	80-90 Hours (During I/II semesters)	Total Marks	100 (Evaluation in I/II/III Semester and grades earned shall be included in IV Semester grade card)
Credits	2	Exam Hours	

Course objective

1. This course is meant to provide students an opportunity to be involved in Inter/ Intra Institutional Activities viz; Training with higher Institutions; Soft skill training organized by Training and Placement Cell of the institution; contribution at incubation/ innovation /entrepreneurship cell of the institution; participation in conferences/ workshops/ competitions etc.; Learning at Departmental Lab/ Tinkering Lab/ Institutional workshop; Working for consultancy/ research projects within the institution and Participation in all the activities of Institute's Innovation Council.

Activities: Refer Appendix B - 3.4 for details

Course outcomes

- 1. Experience the working in Inter / Institutional activities
- 2. Work in teams and communicate efficiently both written and oral.
- 3. Develop the ability to do work in different activities, which will provide the necessary

understanding and contribute to the same and provide a foundation to undergo higher level training in subsequent internships.

Course Outcomes Mapping with Program Outcomes & PSO

Program Outcomes→	1	2	3	4	5	6	7	8	9	10	11	12		PSO.	Ļ
↓ Course Outcomes													1	2	3
UC2001-1.1	3	1	-	-	1	-	-	-	2	3	1	-	-	-	-
UC2001-1.2	3	1	-	-	1	-	-	-	2	3	1	-	-	-	-
UC2001-1.3	3	1	-	-	1	-	-	-	2	3	1	-	-	-	-
1	: Lo	w	2: N	/led	ium	3:	: Hig	gh							

				INT	ERN	ISH	IP-II								
Cour	se Code:			U	C20	01-1	L	Co	ours	е Ту	pe			U	CC
Теас	hing Hours/Week (L: T: P:	: S)		-				Cr	edit	s				08	3
Tota	l Teaching Hours			-				CI	E +	SEE	Marl	٢S		50)+50
Prere	equisite														
Cours	e Objectives:														
1.	This course is meant to p	rovi	de s	tude	ents	an a	iven	ue to	o un	ders	stand	the v	work	envir	onment,
	ethics and practices in an	indu	ustry	/org	aniz	atior	n an	d tak	ke up	o ass	signm	nents,	/jobs	in th	e future.
Cours	e Outcomes: At the end of	the	cou	rse s	stude	ent v	vill b	e ab	ole to	C					
1.	Analyse and Develop tech	nnica	al so	lutio	ns fo	or a	spec	cific	prob	lem	that	is ass	signeo	d to t	hem.
2.	Communicate ideas that	are	deve	lope	d th	roug	gh b	rains	storr	ning	, pre	senta	tion a	and p	repare a
	report.														
3.	Understand and inculcate	ind	ustry	, pra	ctice	es in	thei	r pro	ofess	iona	al car	eer.			
Cours	e Outcomes Mapping wit	h Pr	ogra	am (Duto	ome	es &	PSC)						
	Program Outcomes \rightarrow	1	2	3	4	5	6	7	8	9	10	11	12		PSO↓
	↓ Course Outcomes													1	2
	UC2001-1.1	3	2	-	-	1	1	-	-	2	3	1	-	1	1
	UC2001-1.2	3	2	-	-	1	1	-	I	2	3	1	-	1	1
	UC2001-1.3	3	2	-	-	1	1	-	-	2	3	1	-	1	1
											1:	Low	2: Me	ediur	n 3: High

	MAJOR PROJEC	Т	
Course Code:	UC3001-1 & UC3002-1	Course Type	UCC
Teaching Hours/Week (L: T: P: S)	09	Credits	10
Total Teaching Hours:52	-	CIE + SEE Marks	100+100
Prerequisite			
Course Objectives:			

1.	The student should	complete	a project	using th	e knowledge	gathered	from the	e courses
	successfully complete	ed.						

2. Conceptual development of a new idea in the field of Electrical and Electronics Engineering

Students will carry out a detailed project in Electronics either singly or in small groups to show case the extent of knowledge gained during the regular classes in the relevant and useful applications on the subject of electrical and electronic circuits, systems, using either or both hardware and software.

It is recommended that a group of 3-4 students be guided by one faculty member during this period.

Assessment Details (both CIE and SEE)

CIE procedure for project phase II is same as that of project phase I

Semester End Examination:

SEE procedure:

i)Single discipline: Contribution to the project and the performance of each group member shall be assessed individually in semester end examination (SEE) conducted at the department.

ii) Interdisciplinary: Contribution to the project and the performance of each group member shall be assessed individually in semester end examination (SEE) conducted separately at the departments to which the student/s belong to.

SCHEME OF EVALUATION: Project demonstration, Viva voce Total marks: 100 Marks

The distribution of marks shall be proportioned based on the type of the project and it is based on fulfilling the following requisites.

The evaluation of students is proposed to be done by internal faculty with active involvement of industrial personnel. The evaluation may be based on following criteria:

- Punctuality and Attendance "Interpersonal relations
- Sense of Responsibility
- Clarity of concepts, principles and procedures
- Self-expression/communication skills
- Report Writing Skills
- Creativity/conceiving new and unusual ideas
- Problem-solving skills

At the end of the project work course students are required to submit a working model of the equipment they have designed and developed or if it is a theoretical or experimental work, they are expected to study a detailed analysis and findings from their work.

(Cours	e Outcomes: At the end of	f the	cou	rse s	tude	ent v	vill k	be ab	ole t	0						
	1.	Design and model a system performance of the system	em n.	base	ed or	ו the	e reo	quire	eme	nts;	imp	lemer	nt, te	st an	d ana	alyse	the
	2. Record and document the work done.																
(Course Outcomes Mapping with Program Outcomes & PSO																
		Program Outcomes→	1	2	3	4	5	6	7	8	9	10	11	12		P	SO ↓
		↓ Course Outcomes													1	2	3
		UC3001-1/UC3002-1.1	3	2	2	3	3	2	2	2	3	1	3	3	3	3	3
		UC3001-1/UC3002-1.2	1	1	1	1	1	1	1	1	3	3	1	3	3	3	3

1: Low 2: Medium 3: High

Open Elective Courses

N)

LIST OF OPEN ELECTIVE COURSES

SI No.	Department	Course Codes	Open Elective Courses
1	BT	BT1501-1	Bio Fuel Engineering
2	BT	BT1502-1	Solid Waste Management
3	CS	CS2501-1	Fundamentals of AI and ML
4	CS	CS2502-1	Introduction to Data Structures
5	CV	CV2501-1	Disaster Management
6	CV	CV2502-1	Environmental Hygiene, Sanitation and Waste Management
7	CV	CV2503-1	Environmental Impact Assessment
8	CV	CV2504-1	Introduction to Geoinformatics
9	CY	CY2501-1	Corrosion Science (Only for CV and ME)
10	CY	CY2502-1	Natural Products Chemistry (Only For BT)
11	EC	EC1501-1	Artificial Neural Network Systems
12	FC	FC1502-1	Introduction to MATLAB Programming: A Hands-on Approach
			(only for CV and BT)
13	EC	EC1503-1	Robotics
14	EC	EC2501-1	Consumer Electronics
15	EC	EC2502-1	PCB Design and Fabrication
16	EC	EC2503-1	Space Technology and Applications
17	EE	EE2501-1	Battery Management System
18	EE	EE2502-1	Biomedical Instrumentation
19	EE	EE2503-1	Electric Vehicle Technology
20	EE	EE2504-1	Fundamentals of PLC and its applications
21	EE	EE2505-1	Motors and Motor Control Circuits
22	EE	EE2506-1	Non-Conventional Energy sources
23	HU	HU1501-1	Elements of Yoga
24	HU	HU1502-1	Intellectual Property Rights
25	HU	HU1503-1	Introduction to German Language
26	HU	HU1504-1	Introduction to Japanese Language
27	HU	HU1505-1	National Cadet Corps: Organization, Functions & Capabilities
28	HU	HU1506-1	Overview of Indian Culture
29	HU	HU1507-1	Philosophy
30	HU	HU1508-1	Principles of Physical Education
31	HU	HU1509-1	Indian Culture – Dance *
32	HU	HU1510-1	Indian Culture – Music *
33	HU	HU1511-1	Engineering Ethics *
34	HU	HU1512-1	Art of Communication and Interpersonal Skills*
35	HU	HU2501-1	Common sense and Critical Thinking
36	HU	HU2502-1	Linguistics & Language Technology

N)

Г

37	IS	IS2501-1	Introduction to Cyber Security (except EC, EE, AM, AD, CC, CS, IS)
38	IS	IS2502-1	Python Application Programming
39	IS	IS2503-1	Software Engineering Practices
40	IS	IS2504-1	Web technologies
41	MA	MA1501-1	Graph Theory (for BT, CV, EC, EE, ME and RI)
42	MA	MA1502-1	Number Theory
43	MA	MA3501-1	Linear Algebra (for BT, CV, EE, ME and RI)
44	ME	ME1501-1	Automotive Engineering
45	ME	ME1502-1	Industrial Pollution Control
46	ME	ME1503-1	Sustainable Development Goals
47	ME	ME1504-1	Technology Innovation
48	MG	MG1501-1	Human Resource Management
49	MG	MG1502-1	Management Accounting and Control Systems
50	MG	MG1503-1	Operations and Quality Management
51	MG	MG1504-1	Organizational Behaviour
52	MG	MG1505-1	Taxation for Engineers
53	MG	MG1506-1	Working Capital Management
54	PH	PH2501-1	Nanotechnology
55	PH	PH2502-1	Optoelectronic Devices (EC, EE, CSE, ISE, AM and CC branches)
56	RI	RI2501-1	Autonomous Mobile Robots
57	RI	RI2502-1	Medical Robotics (for all except AI)
58	RI	RI2503-1	PLC Control of Hydraulic and Pneumatic Circuits (for all except AI)

* For students admitted under Twinning Program

BIOFUEL ENGINEERING

Course Code:	BT1501-1	Course Type:	OEC
Teaching Hours/Week (L: T: P: S):	3:0:0:0	Credits:	03
Total Teaching Hours:	40	CIE + SEE Marks:	50+50

Teaching Department: Biotechnology

Course Objectives:

	1	To learn the fundamental concepts of biofuels, types of biofuels, their production
	⊥.	technologies.
I	-	

2. To learn the concepts of feedstock utilization and energy conversion technologies.

UNIT-I

Liquid Biofuels

Description and classification of Biofuels; Primary biomass: Plant Materials-Woody biomass, Lignocellulosic and agroindustrial by-products, starchy and sugary crops. Secondary biomass: Waste residues and co-products- wood residues, animal waste, municipal solid waste. Biomass production for fuel – algal cultures, yeasts (Lipid and carbohydrate).

Production of biodiesel: Sources of Oils – edible and non-edible; Esterification and Transesterification. Free fatty acids; saponification; Single step and two step biodiesel production. Catalysts for biodiesel production – homogeneous (alkali/acidic) and heterogeneous; Lipase mediated process. General procedure of biodiesel production and purification Quality Control Aspects: GC analysis of biodiesel, fuel property measurements, ASTM (D-6751) and Indian standards (IS15607). Algal Biodiesel production.

Production of Bioethanol: Bioethanol production using Sugar; Starch and Lignocellulosic feedstocks; Pretreatment of lignocellulosic feed stock

UNIT-II

Biohydrogen and Microbial Fuel Cells

Enzymes involved in H₂ Production; Photobiological H₂ Production: Biophotolysis and Photo fermentation; H₂ Production by Fermentation: Biochemical Pathway, Batch Fermentation, Factors affecting H₂ production, Carbon sources, Detection and Quantification of H₂. Reactors for biohydrogen production.

Microbial Fuel cells: Biochemical Basis; Fuel Cell Design: Anode & Cathode Compartment, Microbial Cultures, Redox Mediators, Exchange Membrane, Power Density; MFC Performance Methods: Substrate & Biomass Measurements, Basic Power Calculations, MFC Performance: Power Density, Single vs Two-Chamber Designs, Wastewater Treatment Effectiveness; Advances in MFC.

UNIT-III

Recovery of Biological Conversion Products

10 Hours

15 Hours

15 Hours

Bio gasification of municipal solid waste: Anaerobic processing; Types of digesters, Biogas plant in India.

Thermochemical processing: Planning an incineration facility, Incineration technologies: Mass burning system; Refuse derived fuel (RDF) system; modular incineration; Fluidized bed incineration; energy recovery; Fuel production through biomass incineration, Pyrolysis and gasification, hydrothermal processing.

Cours	e Outcomes: At the end of	the	cou	rse s	tude	nt w	ill be	e abl	e to					
1	Mark the significance of biofuels and raw materials and Identify suitable feedstock													
1.	for production of biofuels.									-				
2.	Illustrate the production o	f liqu	uid b	oiofu	els fr	rom	varic	ous f	eed s	stock	<s.< th=""><th></th><th></th><th></th></s.<>			
3.	Demonstrate production of	of bio	ohyd	roge	en us	sing	micr	obia	l sou	rces				
4	Extend the concepts of microbial fuel cells towards development of specific													
4.	application.													
F	Understand and apply the concepts of biochemical processing to harvest energy													
5.	' from waste products/streams.													
Course Outcomes Mapping with Program Outcomes														
	Program Outcomes123456789101112													
	↓ Course Outcomes													
	BT1501-1.1 - 2 1													-
	BT1501-1.2 - 2 1													
	BT1501-1.3 - 2 1													-
	BT1501-1.4	-	2	-	-	-	-	-	-	1	-	-	-	-
	BT1501-1.5	-	2	-	-	-	-	-	-	1	-	-	-	
1: Low	2: Medium 3: High													
REFER	RENCE BOOKS:													
1.	Drapcho, C. M., Nhuan, N. P	.and	dWa	lker,	Т.Н.,	"Bio	fuels	Eng	inee	ring	Proce	ss Tec	hnolo	gy", Mc
	Graw Hill Publishers, New	York	c, 200)8.										
2.	Jonathan R.M, Biofuels, "M	1eth	ods	and	Prot	ocol	s (M	etho	ds ir	n Mo	lecula	ar Bio	logy S	eries)",
	Humana Press, New York,	2009	9.											
3.	Olsson L. (Ed.), "Biotuels	(Adv	/ance	es in	i Bio	cher	nical	Eng	ginee	ering	J/Biote	echno	logy	Series",
	Springer-Verlag Publishers	<u>, Ве</u>	rlin,	2007	′. • •	D ¹				_			c a	<u> </u>
4.	Glazer, A. and Nikaido,	Н.,	"Mi	crob	ial	Biote	echn	olog	у –	Fur	ndame	entals	of A	Applied
	Microbiology", 2 Ed., Camb	orido	ge U	niver	sity	Pres	s, 20	07.		. 1. 1 .	<u> </u>	- 11 - 210		0 (
5.	Godfrey Boyle (Ed). "Rene	ewat	ble E	nerg	IY- P	'owe	r for	sus	taina	able	futur	e", 3"	⁴ Ed. (Jxford.
	ZUIZ.	1			ſ				ما: ا					
6.	Kamachandran, I. V.,	ivian	age	nent	ιOΤ	mu	nicip	als	solid	Wa	iste",	E	nviron	inental
	Engineering Series. Teri Pre	ess, 4	2010	•										

SOLID WASTE MANAGEMENT

Course Code:	BT1502-1	Course Type:	OEC	
Teaching Hours/Week (L: T: P: S):	3:0:0:0	Credits:	03	
Total Teaching Hours:	40	CIE + SEE Marks:	50+50	

Teaching Department: Biotechnology

Course Objectives:

To learn types of solid wastes, collection, treatment and disposal methods.
 To understand various processing techniques and regulations of treatment and disposal.

UNIT-IIntroduction to Solid Wastes and its Segregation & Transportation15 HoursSolid waste – Definition, Sources of waste, Classification of Solid waste, Characteristics of Solid
Waste (Physical, Chemical, Biological), Solid waste problems – impact on environment and health.
Concept of waste reduction, recycling and reuse.
Waste collection and segregation: Solid waste generation, Onsite handling and segregation of
wastes at source, Collection and storage of municipal solid wastes, Equipment used and manpower
required in collection, Collection systems and routes.

Transportation: Transfer stations: types, location, maintenance, Methods and means of transportation.

UNIT-II

Processing Techniques, Recovery of Resources and Waste Disposal

Processing Techniques: Unit operations for separations and processing, mechanical and thermal volume reduction, Incineration of solid wastes – process and types of incinerators (liquid injection, rotary kiln and fluid bed), Biological processing – composting, vermicomposting, biomethanation, fermentation, Drying and dewatering of wastes.

Recovery of Resources: Heat recovery in incineration process, energy recovery and conversion of products from biological processes.

Dumping of solid wastes, Landfills – Types, site selection, preliminary design, operation, case study, Advantages and disadvantages of landfills, Leachate and landfill gases: Collection and treatment, Landfill disposal for hazardous wastes, biomedical waste.

UNIT-III

Solid Waste Management Rules and Planning Issues

Legislative trends and impacts: Major legislations, Government agencies. Municipal Solid Waste Management Act (1999), Hazardous Wastes (Handling and Management) Rules, Biomedical Waste (Handling and Management) Rule (1998), e-Waste (Management and Handling) Rule 2011. Planning and developing a site for solid waste management, Site Remediation: Assessment and Inspection, Remedial techniques, Siting guidelines.

Course Outcomes: At the end of the course student will be able to

15 Hours

10 Hours

1.	Identify the sources, classification and characteristics of solid wastes
2.	Develop insight into the collection, transfer, and transport of solid waste.
3.	Apply waste processing techniques and recovery of resources from the waste.
4.	Select the alternatives of solid waste disposals and its impacts.
5.	Acquire knowledge about solid and hazardous waste management legislative rules.

Course Outcomes Mapping with Program Outcomes

<u> </u>													
Program Outcomes→	1	2	3	4	5	6	7	8	9	10	11	12	
↓ Course Outcomes													
BT1502-1.1	1	1	-	-	-	-	-	-	1	-	-	-	
BT1502-1.2	1	1	-	-	-	1	1	-	1	-	-	-	
BT1502-1.3	1	2	-	-	-	-	-	-	1	-	-	-	
BT1502-1.4	1	2	-	-	-	1	1	-	1	-	-	-	
BT1502-1.5	1	-	-	-	-	-	-	-	1	-	-	1	

1: Low 2: Medium 3: High

REFERENCE BOOKS:

lN,

1.	Tchobanaglous, G., Theisen, H. and Vigil, S. A. "Integrated Solid Waste Management",
	McGraw – Hill. 1993.
2.	Tchobanoglous, G., Thiesen, H., Ellasen, "Solid Waste Engineering Principles and
	Management", McGraw – Hill, 1997.
ſ	Landrefh, R. E. and Sundaresan, B. B. "Solid Waste Management in Developing
5.	Countries", Indian National Scientific Documentation Centre. New Delhi, 2000.

FUNDAMENTALS OF AI AND ML												
Cou	rse Code:	CS2501-1	Course Type:	OEC								
Tea	ching Hours/Week (L: T: P: S):	3:0:0:0	Credits:	03								
Tota	al Teaching Hours:	40+0+0	CIE + SEE Marks:	50								
Prei	requisite	CS1002-1										
	Teaching Department	: Computer So	cience & Engineering									
Cour	se Objectives:											
1.	Analyze the most fundamenta	al knowledge	to the students so that	they can								
	understand what the AI is.											
2. Gain a historical perspective of AI and its foundations												
3. Investigate applications of AI techniques in intelligent agents, expert systems,												
1	Experience AI development to	ner machine lea	Aming models.	tom chall								
4.	and/or data mining tool	JIS SUCII AS AII	Al language, expert sys	stern shen,								
5.	Explore the current scope, pot	tential, limitatio	ons, and implications of	intelligent								
	systems.		, 1	5								
		UNIT-I										
Intro	duction			15 Hours								
What	t is AI? Foundation of AI, Early H	istory of AI, Th	e Middle Ages and Dark	Ages of AI,								
Rena	issance, Future of AI.											
Intel	ligence of AI											
AI AI	n Impossible Task, Animal Intelli	igence, Brain S	Size And Performance, Se	ensing And								
Move	ement, Subjective Intelligence, Iq 1	Fests. Compara	tive Intelligence,									
Chap	ter No 1: Introduction and Intellig	gence (Page No	5 11-37)									
		UNIT-II										
Class	sical Artificial Intelligence			15 Hours								
Intro	duction, Expert Systems, Confli	ct Resolution,	Multiple Rules, Forward	l Chaining,								
Back	ward Chaining, Problems With Exp	oert Systems, F	uzzy Logic, Fuzzification, F	uzzy Rules,								
Defu	zzification, Fuzzy Expert System, P	roblem Solving	g. Chapter No 2: Classical A	AI (Page No								
38-45	5)											
-		UNIT-III		10.11								
Foun	Idations of Machine Learning		Leave in a Uniderstand Dat	10 Hours								
wnat	t is machine learning? Application	ns of Machine	learning, Understand Dat	a, Types of								
foocil	hille learning. Supervised, Onsuper	training versus	testing theory of generalized	or learning.								
and	variance learning curve	lianing versus	testing, theory of generaliz									
Cour	se Outcomes: At the end of the c	ourse student	will be able to									
1.	Explain the fundamental unders	standing of the	history of artificial intelli	gence (AI)								
	and its foundation	5	,	/								
2.	Interpret the basic principles	of AI in solut	ions that require probler	n solvina.								
	inference, perception, knowledg	e representatio	on, and learning.	·								
			, and rearring.									

3.	Describe the awarene AI techniques in inte	ess a ellige	nd a	fund	damo ts. e	enta xper	unc t sve	lersta	andii s. ar	ng of	f varic	ous ap Iral ne	plicati etworl	ons of
	other machine learni	ng n	node	els	, .	, per			<i>5</i> , a.	er				
4.	Identify and explain	the	pro	ficie	ncy	deve	lopi	ng a	pplic	atio	ns in	an 'A	I lang	juage',
	expert system shell, o	or da	ata n	ninin	g to	ol.								
5.	Explain the fundame	ntal	cond	cept	and	impo	ortar	nce o	f ma	chin	e lear	ning.		
Cour	se Outcomes Mappin	g w	ith F	Prog	ram	Out	com	es				1		
	Program	1	2	3	4	5	6	7	8	9	10	11	12	
	\downarrow Course													
	U Course U U U U U U U U U U U U U U U U U U U													
	Outcomes													
	CS2501-1.1 3 3													
	CS2501-1.3 3 3													
	CS2501-1.4 3 3 2													
	CS2501-1.5 3 3 2													
1: Lo	w 2: Medium 3: High													
1 EX I	BOOKS:	Hifici	alInt		0000	+ho	haci	cc"]	Tuno	cot in	Pom	ha hu		cot I td
1.	Reviii Walwick, Al			.emg Libra		f C	Dasi		Coto	set ii Jogi	ng in		licatio	sei Liu,
	Warwick K ISBN: 0	999 178-0	ar,)_/11	5-56	יוא ע אפס_	л С 3 (Ы	origi ak)	632	Calc	nogi	ng n	I FUD	iicatio	II Dala
DEEE		//0-()- 4 1.	J-J0	1 02-	5 (11	JK).							
<u>NEFE</u>	Stuart Russel and	Pet	er N	lorvi	a	″Arti	ficia	l Inte	ellia	ence	A M	10derr	ם Anr	vroach"
	Pearson 3 rd Edition	20	16		9'	,	neia	1 1110	eing	lice	,, ,,	louen	1 7 9 6	, ouen ,
2	Dan W Patterson	″In	trodi	ictio	n to	h Ar	tificia	al In	tellic	ienci	e and	l Exp	ort Sv	stems"
	Pearson, 1st edition	ייי 1 20	15.							,	0 0.110			,
3.	Elaine Rich, "Artific	ial In	tellio	genc	e", N	/Ic G	raw	Hill 3	rd E	ditio	n, 201	L7.		
E Boo	oks / MOOCs/ NPTEL		•	5							<u> </u>			
1.	Practical Artificial I	ntelli	geno	ce Pr	ogra	mm	ing \	With	Java	, Thi	rd Edi	ition ,l	Mark V	Watson
2.	Artificial Intelligence	:e -h	ttp:/	/ww	w.np	telvi	deos	s.in/2	2012,	/11/a	artific	ial-		
	intelligence.html													
3.	http://nptel.ac.in/c	ours	es/1	0610	507	7/								
4.	https://www.udem	y.cor	n/ar	tificia	al-in	tellic	enc	<u>e</u>						
5.	https://www.edx.or	g/cc	ourse	e/arti	ficia	l-inte	ellige	ence	-ai-c	olum	nbiax-	csmm	101×	(-4

INTRODUCTION TO DATA STRUCTURES

Course Code:	CS2502-1	Course Type:	OEC
Teaching Hours/Week (L:T:P:S):	3:0:0:0	Credits:	03
Total Teaching Hours:	40+0+0	CIE + SEE Marks:	50
Prerequisite	CS1001-1		

Teaching Department: Computer Science & Engineering

Course Objectives:

1.	Outline the concepts of data structures, types, operations, structures, pointers
2.	Implement linear data structures stacks, queues and usage of stacks in various
	applications.
3.	Implement the operations of singly linked lists
4.	Identify and differentiate different types of binary trees and binary search trees data
	structures
5.	Illustrate and classify threaded binary trees.

UNIT-I

Introduction

Data Structure, Classification (Primitive and non-primitive), data structure operations, Arrays, Pointers and structures, Dynamic Memory Allocation Functions,

Linear Data Structures – Stacks

Introduction and Definition, Representation of stack: Array and structure representation of stacks, Operations on stacks,

Applications of Stack

Conversion of Expressions, Evaluation of expressions, Recursion: Implementation, Simulating Recursion, examples on Recursion.

UNIT-II			
Linear Data Structures – Queues	15 Hours		
Introduction and Definition Representation of Queue: Array and Structure, rep	resentation		
of Queue, Various queue structures: ordinary queue, circular Queue			
Linear Data Structures - Linked Lists			
Definition and concepts singly linked List: Representation of link list in memory, Operations on singly Linked List, Circular Linked List, Doubly Linked List: Representation and Operations, Circular doubly Link list: Representation and Operations.			
UNIT-III			
Nonlinear Data Structures- Tree Data Structures	10 Hours		
Basic Terminologies, Binary Trees: Properties, Representation of Bi	nary Tree:		
Linear representation, Linked representation, Operations on Binary T			
Insertion, traversals. Introduction to Binary Search Tree			

Course Outcomes: At the end of the course student will be able to1.Acquire the fundamental knowledge of various types of data structures and

15 Hours

	pointers.													
2.	Apply the fundamental programming knowledge of data structures to design stack													
	and use them for sol	ving	prol	blem	IS.									
3.	Apply the fundame	ntal	pro	gran	nmin	g kı	nowl	edge	e of	data	a stru	ucture	s to	design
	queues and use then	n for	solv	ving	prob	lem	S.							
4.	Design various funct	ions	for i	mple	emer	ntati	on o	f lin	ked	ist.				
5.	Implement and app	ly tł	ne c	once	ept c	of bi	nary	tree	es ar	nd b	inary	searc	h tre	e data
	structure.													
Cours	se Outcomes Mappin	g w	ith F	Prog	ram	Out	com	es	1	1			1	1
	Program	1	2	3	4	5	6	7	8	9	10	11	12	
	Outcomes→													
	↓ Course													
	Outcomes													
	CS2502-1.1	-	-	-	-	-	-	-	-	-	-	-	-	
	CS2502-1.2	3	1	2	-	-	-	-	1	-	-	-	1	
	CS2502-1.3	3	2	2	-	-	-	-	1	-	-	-	1	
	CS2502-1.4	3	2	-	-	-	-	-	1	-	-	-	1	
	CS2502-1.5	-	-	-	-	-	-	-	-	-	-	-	-	j
1: Lov	w 2: Medium 3: High													
TEXT	BOOKS:													
1.	Aaron M. Tenenba	um, `	Yedi	dyah	l Lan	gsar	n& I	Nosł	ne J.	Auge	enstei	in, "Da	ata Str	uctures
	using C", Pearson E	duc	atior	η/PH	I, 200)9.								
2.	Ellis Horowitz and S	Sarta	j Sał	nni, "	Func	lame	ental	s of l	Data	Stru	cture	s in C'	', 2nd	edition,
	Universities Press, 2	2014	•											
REFE	RENCE BOOKS:													
1.	Seymour Lipschutz	z, "C	Data	Stru	ictur	es, S	Scha	um's	Ou	tline	s", Re	evised	1st	edition,
	McGraw Hill, 2014.													
E Boo	oks / MOOCs/ NPTEL													
1.	Data Structures Usi	ng (C, ISF	RD G	roup	, Tat	ta M	cGra	w Hi	II, 20	06.			
2.	Data Structures Usi	ing (C, Re	ema	Tha	reja,	2nd	edit	ion, (Oxfo	rd Un	niversi	ty Pre	SS,
	2014													
3.	Introduction to Dat	ta St	ructi	ures	by e	dx , I	URL:	<u>http</u>	s://v	ww.	<u>edx.o</u>	rg/co	<u>urse/</u>	
4.	Data structures by	Berk	ley, I	URL:	<u>http</u>	os://p	beop	le.ee	cs.b	erkel	<u>ey</u>			
5.	Advance Data Stru	cture	es by	' MIT	00	W , l	JRL:	http	s://w	ww.I	nooc	<u>lab.clu</u>	<u>/du</u>	
6.	Data Structure by H	larva	ard E	xten	sion	Sch	ool,	URL:	<u>http</u>)://w	ww.e>	<u>ctensi</u>	<u>on.hai</u>	<u>vard.</u>

DISAS	TER MANA	GEMENT	
Course Code:	CV2501-1	Course Type	OEC
Teaching Hours/Week (L:T:P:S)	3:0:0:0	Credits	03
Total Teaching Hours	40	CIE + SEE Marks	50+50

Pre	requisite C	CV1002-1	
	Teaching Depa	rtment: Civil Engineering	
Cour	rse Objectives:		
1.	Understand difference between D	Disaster, Hazard, Vulnerability, and Risk.	
2.	Know the Types, Trends, Causes,	Consequences and Control of Disasters	
3.	Apprehend Disaster Managemen	t Cycle and Framework.	
4.	Know the Disaster Management i	n India	
5.	Appreciate Applications of Science	e and Technology for Disaster Manager	ment.
		UNIT-I	
Unde	erstanding Disasters		04 Hours
Unde	erstanding the Concepts and definit	ions of Disaster, Hazard, Vulnerability, Ri	sk, Capacity
– Dis	aster and Development, and disast	er management.	
Туре	es, Trends, Causes, Consequences	and Control of Disasters	10 Hours
Geol	ogical Disasters (earthquakes, lar	ndslides, tsunami, mining); Hydro-Met	teorological
Disas	sters (floods, cyclones, lightning, t	hunder-storms, hail storms, avalanches	s, droughts,
cold	and heat waves) Biological Disasters	s (epidemics, pest attacks, forest fire); Te	chnological
Disas	sters (chemical, industrial, radiolog	gical, nuclear) and Manmade Disaster	rs (building
colla	pse, rural and urban fire, road and	rail accidents, nuclear, radiological, che	emicals and
biolo	ogical disasters) Global Disaster Trer	nds – Emerging Risks of Disasters – Clim	ate Change
and l	Urban Disasters		
		UNIT-II	
Disas	ster Management Cycle and Fram	nework	10 Hours
Disas	ster Management Cycle and Frame	work: Disaster Management Cycle – Par	adigm Shift
in D	isaster Management Pre-Disaster	- Risk Assessment and Analysis, Risl	k Mapping,
zona	tion and Micro zonation, Preventior	n and Mitigation of Disasters, Early Warn	ing System;
Prepa	aredness, Capacity Development; A	Awareness During Disaster – Evacuation	n – Disaster
Com	munication – Search and Rescue –	Emergency Operation Centre – Incident	t Command
Syste	em – Relief and Rehabilitation –	Post-disaster – Damage and Needs A	Assessment,
Resto	oration of Critical Infrastructure – Ea	arly Recovery – Reconstruction and Rede	evelopment;
	DR, Yokohama Strategy, Hyogo Frar	nework of Action.	
Disas	ster Management in India		06 Hours
Disas	ster Management in India: Disaste	er Profile of India – Mega Disasters o	t India and
Lesso	ons Learnt, Disaster Management	Act 2005 – Institutional and Financial	
Man	agement: Bala of Covernment (los	hent, National Guidelines and Plans (t and Inter
Gove	agement, Role of Government (loca	al, state and national), Non-Governmen	t and inter-
Gove	emmental Agencies.		
۸nnl	lications of Science and Technolo	av for Disaster Management	
Geo-	informatics in Disaster Manageme	unt (RS GIS GPS and RS) Disaster Com	
Syste	m (Farly Warning and Its Disse	mination) Land Use Planning and De	evelopment
Requ	ulations Disaster Safe Designs ar	nd Constructions Structural and Non	Structural
Mitic	ation of Disasters S&T Institutions	for Disaster Management in India	
Case	Studies		04 Hours
Study	y of Recent Disasters (at local, stat	te and national level), Preparation of D	visaster Risk
Mana	agement Plan of an Area or Sector,	Role of Engineers in Disaster Managem	ent

Cou	rse Outcomes: At the end	of t	he co	ours	e stu	dent	t will	be a	able	to				
1.	Explain Concepts, Types, Trends, Causes of Disasters													
2.	Describe Consequences	and	Cor	ntrol	of D	isast	ers							
3.	Explain Disaster Manage	emei	nt Cy	/cle a	and I	Fram	ewo	rk						
4.	Explain the lesson lear	nt f	rom	the	disa	aster	s in	Ind	ia ar	nd d	liscus	s the	finar	ncial
	mechanism, roles and re	espo	nsib	ilities	s of I	Non-	Gov	ernn	nent	and	Inter	Gove	rnme	ntal
	Agencies for Disaster ma	anag	geme	ent										
5.	Describe the Application	ons	of S	cien	ce a	nd ⁻	Tech	nolo	gy r	ecer	nt dis	asters	, role	e of
	engineers for Disaster	Ma	anag	eme	nt a	and	prep	bare	a r	еро	rt of	Disa	ster	Risk
	Management Plan.													
Cou	rse Outcomes Mapping v	vith	Pro	gran	n Ou	tcor	nes	T	r	r				
	Program Outcomes→	1	2	3	4	5	6	7	8	9	10	11	12	
	↓ Course Outcomes													_
	CV2501-1.1	-	-	-	-	-	3	2	-	-	-	1	2	_
	CV2501-1.2	-	-	-	-	-	3	2	-	-	-	1	2	_
	CV2501-1.3	-	-	-	-	-	3	2	-	-	-	1	2	_
	CV2501-1.4	-	-	-	-	-	3	2	_	-	-	1	2	
	CV2501-1.5	-	-	-	-	-	3	2	-	-	-	1	2	
1: L	ow 2: Medium 3: High													
TEX	TBOOKS:													
1	Noble, L. , "Introductio	n to	env	ironr	nent	al in	прас	t ass	essm	nent.	A Gu	ide to	Princ	iples
	and Practice", 2nd edit	tion,	Oxf	ord l	Jnive	ersity	/ Pre	ss, D	on N	∕lills,	Onta	rio, 2(010.	
2	Larry W. Canter, "Envi	ronn	nent	al In	npac	t Ass	essn	nent	", M	cGra	w Hill	Inc. S	Singa	pore,
	1996.													
REF														
]	. Morris and Therivel, "I	Metł '	nods	ot E	nvir	onm	enta	l Imp	oact	Asse	ssme	nt", 3	rd ed	ition.
	New York, NY: Routlec	lge,	2009).										<u> </u>
2	Hanna, K. S., "Environ	men	tal i	mpa	ct as	sess	men	t", P	racti	ce a	nd Pa	rticip	ation.	2nd
	edition. Oxford, Univer	rsity	Pres	s, Do	on №	lills,	Unta	irio,	2009).				
F RC	boks / MOUCS/ NPIEL		1 2 4 1	000	<i>א</i> ר									
L	http://nptel.ac.in/cour	ses/	1201		J4/		1.2.4	'		l.C				
2	. http://nptel.ac.in/cour	ses/	1201	.080	J4/m	lodu	le3/l	ectu	re3.p	odt				

EN	VIRONMENTAL HYGIENE, S	ANITATION	I AND WASTE MANA	GEMENT		
C οι	ırse Code:	CV2502-1	Course Type	OEC		
Теа	ching Hours/Week (L:T:P:S)	3:0:0:0	Credits	03		
Tot	al Teaching Hours	40	CIE + SEE Marks	50+50		
Pre	requisite	CV1002-1		-		
	Teaching Dep	artment: Civil	Engineering			
Cou	rse Objectives:					
1.	Creation of awareness among stand the consequent responsibili	tudent's health ties.	n issues and Swachh Bhara	ath mission		
2.	To understand the culture clean	liness, enginee	ering applications in creat	ion of ODF		
	(Open defecation free) concept	, Importance	of legal & cultural issues	related to		
	Environmental Hygiene.					
3.	To know the importance of san	itation, gende	r sensitive sanitation issue	es & use of		
	engineering technology in const	truction of toil	ets.			
4.	To know the importance of wast	e managemen	t system, wastewater audi	t and waste		
5	To study the role of student in	Swachh Bhar	ata Abbiyan colid and w	vasto wator		
5.	treatment process	Swachin Dhan	ata Abhiyan, sonu anu v	vaste water		
		UNIT-I		Γ		
Pros	pective: Environmental Hygiene	e (EH), Sanita	tion, Solid Waste and			
Was	tewater			06 Hours		
Intro	duction- Swachh Bharath Mission	(SBM)-Mission	Objectives-Duration- Co	mponents		
Envir	onmental Hygiene-Benefits-Sanit	ation-Waste l	Vianagement. Work oppo	ortunities in		
Envir	conmental Hygiene, Sanitation and	Waste Manac	iagement. Participatory i	Learning for		
Soci	ology of environmental hygiene	management	solid waste and waste			
wate	er and impacts			08 Hours		
Oper	n Defecation-Habits & attitude tow	vards waste-Go	als of SBA. Community Co	onsciousness		
and	Engagement on Sanitation Aspec	ts, Roles & Re	esponsibilities, Job Charts	, Frequency,		
Sche	dules and Timelines in Swachhata	Management,	Culture of Cleanliness (Sw	/achh Bharat		
Abhi	yan), Behaviour Change Communi	cation, Role of	Habits and Attitudes in En	ivironmental		
Hygi	ene Management, Waste and Was	tewater Dispo	sal; Change Management.			
T	aturatura for Constation	UNII-II		00 Цанта		
	nament-Preparation of tailate	-Toilot Turc	c Evaluation of Const	uction and		
Mair	tenance of Community Public I	nstitutional an	d Individual Sanitation Ir	ofrastructure		
Toilets-Proportion and Number of toilets. Gender Sensitive Sanitation Facilities Ramps for						
Differently Abled, Types – Indian and Western. Faecal Sludge treatment - Single / Twin pit.						
Eco S	San, Septic Tank and Formal Sewer	age.				
Solic	l Waste Management			08 Hours		

Swachh Survekshan- Solid Waste management- Steps- Waste Audit-Classification Methods of Solid Waste Disposal and Management-Composting-Different types of composting- Waste Minimization-Waste Management. **UNIT-III** Waste & Wastewater Audit 06 Hours Waste Audit - Environmental Impact Assessment, Waste Characterization, Quantity Determination, Primary Collection Methods, Secondary Transportation. Wastewater Audit-Water Budget, Types of Wastewater, Survey of Distribution Network and Feasibility of Various Wastewater Treatment Methods. Swachh Bharath Mission and Inclusivity 04 Hours Swacch Bharath Mission in rural & Urban Context-Gender Issues in sanitation. Role of women in Sanitation. **Course Outcomes:** At the end of the course student will be able to Creation of awareness among student's health issues and Swachh Bharath mission 1. and the consequent responsibilities. To understand the culture cleanliness, engineering applications in creation of ODF 2. (Open defecation free) concept, Importance of legal & cultural issues related to Environmental Hygiene. To know the importance of sanitation, gender sensitive sanitation issues & use of 3. engineering technology in construction of toilets. To know the importance of waste management system, wastewater audit and waste 4. water treatment process. To study the role of student in Swachh Bharata Abhiyan, solid and waste water 5. treatment process. **Course Outcomes Mapping with Program Outcomes** Program 3 5 8 9 1 2 4 6 7 10 11 12 **Outcomes**→ **Course** Outcomes CV2502-1.1 1 1 _ 2 3 2 _ _ _ _ _ _ 2 3 2 CV2502-1.2 1 1 _ _ _ _ _ _ _ CV2502-1.3 1 2 3 2 1 _ _ _ _ _ _ _ 2 3 2 CV2502-1.4 1 1 _ _ _ _ 3 _ _ CV2502-1.5 3 2 3 2 1 1 _ _ _ _ 3 _ 1: Low 2: Medium 3: High **TEXTBOOKS:** Joanne E. Drinan and Frank Spellman, "Water and Wastewater Treatment: A Guide 1. for the Non-engineering Professional". M. S. Bhatt and Asheref Illiyan, "Solid Waste Management: An Indian Perspective". 2. Jagbir Singh, "Solid Waste Management: Present and Future Challenges". 3.

M. S. Bhatt, "Solid Waste Management: An Indian Perspective".

Ø

4.

5.	T. V. Ramachandra, "Management of Municipal Solid Waste".
6.	Syed R. Qasim, "Wastewater Treatment Plants: Planning, Design and Operation".
REFE	RENCE BOOKS:
1.	Swachhbharatmission.gov.in/
2.	https://www.india.gov.in//swachh-bharat-mission-gramin-portal
3.	https://www.swachhsurvekshan2018.org/
4.	https://zerowasteeurope,eu/
5.	www.zerowasteindia.in/
E Boo	oks / MOOCs/ NPTEL
1.	http://www.un.org/waterforlifedecade/pdf/award_south_africa_eng_for_web.pdf
2.	http://www.sulabhinternational.org
3.	http://swachhbharatmission.gov.in/sbmcms/writereaddata/images/pdf/Guidelines
	/Complete-set-guidelines.pdf

ENVIRONMENTAL IMPACT ASSESSMENT

Course Code:	CV2503-1	Course Type	OEC
Teaching Hours/Week (L:T:P:S)	3:0:0:0	Credits	03
Total Teaching Hours	40	CIE + SEE Marks	50+50
Prereguisite	CV1002-1	•	

Teaching Department: Civil Engineering

Course Objectives:

Evolution of EIA

1.	Identify the need to assess and evaluate the impact of projects on environment.
2.	Explain major principles of environmental impact assessment.
3.	Understand the different steps within environmental impact assessment.
4.	Appreciate the importance of EIA for sustainable development and a healthy
	environment.

UNIT-I

16 Hours Concepts of EIA, EIA methodologies (Adhoc, Network Analysis, Checklists, Map overlays, Matrix method), Screening and scoping, Rapid EIA and Comprehensive EIA, General Framework for Environmental Impact Assessment, EIA Specialized areas like environmental

health impact assessment, Environmental risk analysis.

UNIT-II

14 Hours

Baseline data study, Prediction, and assessment of impacts on physical, biological, and socio-economic environment, Legislative and environmental clearance procedures in India, Public participation, Resettlement, and rehabilitation.

UNIT-III

10 Hours Fault free analysis, Consequence Analysis, Introduction to Environmental Management Systems, Environmental management plan-Post project monitoring Environmental Audit: Cost Benefit Analysis, Life cycle Assessment. Case studies on project, regional and sectoral EIA.

Course Outcomes: At the end of the course student will be able to

1.	Understand phenomena of impacts and know the impact quantification of various
	projects in the environment.
ſ	Linion with and list the importance of stakeholders in the FIA are seen

Liaise with and list the importance of stakeholders in the EIA process.

Know the role of public in EIA studies. 3.

Overview and assess risks posing threats to the environment. 4.

Assess different case studies/examples of EIA in practice. 5.

Course Outcomes Mapping with Program Outcomes

	Program	1	2	3	4	5	6	7	8	9	10	11	12	
	Outcomes→													
	↓ Course													
	Outcomes													
	CV2503-1.1	1	1	-	-	-	2	3	2	-	-	-	-	
	CV2503-1.2	1	1	-	-	-	2	3	2	-	-	-	-	
	CV2503-1.3	1	1	-	-	-	2	3	2	-	-	-	-	
	CV2503-1.4	1	1	-	I	-	2	З	2	I	3	-	I	
	CV2503-1.5	1	1	-	З	-	2	З	2	I	I	-	3	
1: Low 2: Medium 3: High														
TEXTBOOKS:														
1.	Noble, L., "Introducti	on t	o en	viror	nmer	ntal i	mpa	ct as	sess	men	t. A G	uide t	o Prir	nciples
	and Practice", 2nd edition, Oxford University Press, Don Mills, Ontario, 2010.													
2.	Larry W. Canter, "En	viror	nmei	ntal 1	lmpa	ict A	sses	smer	nt", I	ИсGı	aw H	ill Inc	Sing	apore,
	1996.													
REFERENCE BOOKS:														
1.	Morris and Therivel, "Methods of Environmental Impact Assessment", 3rd edition.													
	New York, NY: Rout	edge	e, 20	09.										
2.	Hanna, K. S., "Enviro	nme	ental	imp	act	asse	ssme	ent. I	Pract	ice a	and P	articip	oation	". 2nd
	edition. Oxford, Univ	/ersit	y Pr	ess, l	Don	Mills	s, On	taric	, 20)9.				
E Books / MOOCs/ NPTEL														
1.	http://nptel.ac.in/courses/120108004/													
2.	http://nptel.ac.in/com	urses	5/12(0108	004/	moc	lule3	/lect	ture	3.pdf				

INTRODUCTION TO GEOINFORMATICS

	-		
Course Code:	CV2504-1	Course Type	OEC
Teaching Hours/Week (L:T: P:S)	3:0:0:0	Credits	03
Total Teaching Hours	40	CIE + SEE Marks	50+50
Prerequisite	CV1001-1, 0		·

Teaching Department: Civil Engineering

Course Objectives:

1.	Explain	the	basic	principles	of	Geoinformatics	comprising	Remote	sensing,
	Photog	ramm	netry, G	PS, GNSS 8	ι GIS	S			

- 2. Explain the stages and techniques of photogrammetry, aerial photo interpretation, visual & digital image processing, enhancement and interpretation.
- **3.** Explain and Appraise GIS its components, data structures, process and operation, Map and its projections, components, preparation and overlays
- **4.** Explain the GIS functionality and Appraise the significance of GEOINFORMATICS (Photogrammetry, RS, GPS, GNSS & GIS) in real world applications.

UNIT-I

16 Hours

Remote sensing and its Principles: Physics of remote sensing, EM spectrum, Blackbody concept, atmospheric windows, spectral response of common earth features.

Platforms & Sensors: Ground based, Air borne and Space borne platforms, Active and Passive Sensors, Photographic sensors, scanners, radiometers, RADAR and thermal infrared, hyper spectral remote sensing, Indian satellites and sensors: capabilities, data products **Photogrammetry**: Basic principles of Aerial photography and Photogrammetry, Flight

procedures, Aerial Photo Interpretation and Analysis techniques.

Satellite Image Interpretation and Analysis techniques: Visual & Digital Image interpretation, Interpretation elements, False Colour Composites (FCC).

UNIT-II

15 Hours

Digital Image Processing and Analysis: Digital image formats, pre-processing and processing (DIP), image restoration/enhancement procedures, information extraction, pattern recognition concepts, post processing procedures.

Geographic Information System -concept and spatial models: Fundamentals of GIS, spatial and non-spatial data, vector and raster GIS, GIS Hardware and software, georeferencing, digitization, thematic maps, Overlay Analysis, Operation of GIS, Co-ordinate systems and map projections, Map scale, data display and cartography.

UNIT-III

09 Hours

Geoinformatics and Virtual GIS: Modern Surveying and Geoinformatics, GPS & GNSS, GIS Functionality: Introduction, data acquisition, preliminary data processing, data storage and retrieval, spatial search and analysis, graphics and interaction, Virtual GIS and Real world applications.

Cours	se Outcomes: At the en	d of	fthe	COLL	rce c	tude	nt w	ill he	ahl	e to				
1 Define and explain the principles of Remote Sensing and list various types of														
-	L. Define and explain the principles of Remote Sensing and list various types of platforms sensors & resolutions in RS with a special reference to Indian satellites													
	and data products													
2	Explain Photogrammetry, its basic principles elements of photogrammetry its basic principles.													
Ζ.	Explain Photogrammetry, its basic principles, elements of photo interpretation,													
2	Visual & Digital Image interpretation techniques													
3.	Explain different stag	jes	INVC	ivea	in 	Digi		.mag	je P	roce	ssing,	vari	ous i	mage
	ennancement technic	ues	, IIST	. and		assity	/ the	e ai	gitai	Ima	age to	ormat	s and	a the
	extracted information			ous p	urpc	ses.	-1 - 1 -	-1 -						
4.	Explain and Appraise C	- 215		com	pone	ents,	data	stru		es, p	oroces	s and	oper	ation,
-	Final and its projection	IS, CO	omb I:T	oner	πs, μ	prepa		on ar	10 U	veria	ays.			
5.	Explain the GIS function	ona	iity a	and	appr		the	sign		nce	OT GE			ATICS
	(Photogrammetry, RS,	GPS	s, GN	122 0		s) an	a vir	tuai	GIS	in re	ai wo	rid ap	plicat	ions.
C -						.		_						
Cours		WIT	n Pr	ogra	am C	μτο	ome	S 	_		10	11	10	1
	Program	T	2	3	4	5	6	/	8	9	10		12	
	↓ Course													
	Outcomes													
	CV2504-1.1	2	2	-	-	-	2	-	-	-	-	-	-	-
	CV2504-1.2	2	2	-	-	-	2	1	-	-	-	-	-	-
	CV2504-1.3	2	2	-	-	-	2	1	-	-	-	-	-	-
	CV2504-1.4 2 2 2 1													
	CV2504-1.5	2	2	-	-	-	2	1	-	-	-	-	-]
1: Lo	w 2: Medium 3: High													
IEXI	BOOKS:			c	_		<u> </u>	•		~			T (
1.	Anji Reddy, M, "Te	xtB 	OOK	OT	кет	ote	Sens	ing	and	Geo	ograp	nical	Infori	nation
	Systems", Fourth Edi	tion	, B2	Publ	icati	on, F	iyde IC	raba	d, 20)12.	<u> </u>		•.	
2.	Bhatta, Basudeva, "R	emo	ote S	ensi	ng a	nd G	IS", 4	2nd (editi	on, C	Jxford	d Univ	ersity	Press,
•	N. Deini, 2011.							14/						T
3.	Interpretations" 7th	er, ا	K.VV	and	רח יאו ה	pina	11, J. nd c	۷۷., ممد	No.	10115 ירח י	le sei	ising	and	mage
DEEE		eui	tion,	JOH		iey a	nu s	UIIS,	INEW	/ Dei	TII, 20	15.		
	Anii Poddy Mand L	lari (Shan	kar	V "F	Jinit	al Im	200	Droc	occir	a" B	C Dub	Цvd	2006
<u> </u>	Bernhardson Tor "C		nran	hic I	nforr	natio	יז מר מר	aye	ne"	2rd	<u>гу</u> , в Ед М	S FUD Vilov	., riyu India	<u>, 2000.</u> Delhi
۷.	2002	1906	Jiahi		mon	natit	כ וו	ystel	, cii	JIU	LU., V	viiey	mula,	Denn,
2	Canada Centre for	Rem	note	Sen	sina	Fun	Idam	enta	ماد م	f Ro	mote	Senc	ina-T	utorial
Э.	2011	NCII	ole	Jen	sing,	i ui	an		15 0	i ite	mote	36113	ing-n	
Δ	Chang Kang-tsung	"In	trod	uctio	n to	Ger	าตาวา	ohic	Info	rmat	ion S	vstam	ns" /	th Fd
т.	Tata McGraw Hill Pu	hlich	nina	Com	n ic	v Lim	nited	Nev	л Пс м Пс	lhi 1	2008	ysten	, , , , , , , , , , , , , , , , , , ,	ui Lu.,
5	Korte, George B "Th	e GI	S Bo	ok"	<u>. Ран.</u> Опм	, <u>-</u> .ord	Pres	, s. Th	DC	on L	earnir	na Inc	USA	2001
6	Kumar, S., "Basics of	Rei	mote	e ser	sina	and		", Ta	xmi	Puh	licatio	ons (P) <u>L</u> td	Delhi
	2008.				y			, 20					,,	2 0111

7.	Longler, Paul A., Goodchild, Michael F., Maguire, David J., Rhind. David W.,
	"Geographic Information Systems and Science", John Wiley & Sons Ltd., ESRI Press,
	2004.
8.	Sabins, F. L., "Remote Sensing: Principles and Interpretation" 3rd edn. WH Freeman
	and Company, New York, 1997.
E Bool	<s moocs="" nptel<="" th=""></s>
1.	https://www.youtube.com/user/edusat2004
2.	https://eclass.iirs.gov.in/login

CORROSION SCIENCE											
C οι	arse Code:	CY2501-1	Course Type	OEC							
Теа	ching Hours/Week (L:T:P: S)	3:0:0:0	Credits	03							
Tot	al Teaching Hours	40	CIE + SEE Marks	50+50							
Pre	requisite	CY1001-1									
Teaching Department: Chemistry											
Course Objectives:											
1.	To provide fundamental unders	standing aspec	cts of electrochemistry an	d material							
	science related to corrosion. To	understand the	e types of corrosion attack	ing on the							
	metal and its preventions.										
2.	To impart knowledge on corros	ion science and	d its applications to the e	ngineering							
	materials.										
3.	To identify practice for the preve	ention and rem	ediation of the corrosion.	To provide							
	methodologies for measuring th	ne corrosion pe	rformance of materials.								
F	Jomentals of Connector	UNIT-I									
Dofir	pition cost of corrosion Corros	ion Damago	and consequences Class	ification of							
corre	psion Electrochemical Aspects of	of corrosion F	electrochemical reaction	s Different							
Envir	onmental aspects, polarization	n and passi	vity, Corrosion Rate	Expression,							
Dete	rmination. Standard electrode p	ootential, EMF	and Galvanic series, P	otential-pH							
(Rou	baix Diagram).			I							
Forn	ns of Corrosion			08 Hours							
Galv	anic corrosion, Crevices corrosic	on, Filitorm co	orrosion, Pitting corrosio	n, Unitorm							
corre	sion Cavitation damage Stress c	orrosion Impi	noement attack Inlet tub	e corrosion							
Corr	osion fatique, Hydrogen blistering,	, Hydrogen em	brittlement.	e conosion,							
		, , , ,									
		UNIT-II		I							
Corr	osion at Elevated Temperature			08 Hours							
High	temperature materials, Metal oxid	les, Pilling bed	worth rule, oxide defect sti	ructure, Hot							
Corr	osion, Corrosion of mineral acids-c	orrosion of ste	ei, stainiess steel, Cu and I	07 Hours							
Weid	aht loss method. Tafel extrapolatio	n test, linear p	olarization test and AC imp	pedance							
method.											
UNIT-III											
Corr	osion Prevention Methods	<u> </u>		08 Hours							
Mate	erials Selections, Design, Change c	of the environm	nents: Atmospheric corrosi	ion, Control							
Prote	ective coatings			protection,							
	rse Outcomes: At the end of the c	ourse student	will be able to								

	Explain the fundamentals of difference in electrode notential across an interface in													
1.	Explain the fund	dam	ental	s of (diffe	rence	e in el	ectro	de pot	ential	across	an int	terface	in
	particular a met	al/ e	lectr	olyte	and	the r	elatio	onship	betw	een ra	tes of	electro	chemi	cal
	reactions and th	ne po	oten	tial d	rop a	acros	s inte	rfaces						
2.	Analyze the cau	ses a	and r	nech	anisr	ns of	varic	ous typ	es of	corros	ion inc	luding	unifor	m,
	galvanic, crevic	e, p	ittin	a, int	er c	iranu	lar a	nd va	rious	mode	s of e	enviror	nmenta	llv
	cracking Acqui	re kr	nowl	edae	of i	, nflue	nce o	fama	aterial	s com	positic	n. the	effect	of
	an electrolytes	com	nosi	tion	on tl	he co	orrosi	on of	metal	s and	micro	structi	ire on	its
	corrosion performance.													
2	Identify the materials that will exhibit adequate corrosion resistance in a particular													
5.	environment and remedial action that will reduce corrosion to a acceptable level													
	Explain the concents of different measuring techniques of corrosion													
	Explain the concepts of different measuring techniques of corrosion.													
Course Outcomes Manning with Program Outcomes														
COL	Course Outcomes Mapping with Program Outcomes													
	Program	Program 1 2 3 4 5 6 7 8 9 10 11 12												
	Outcomes→	_												I
	↓ Course													I
	Outcomes													I
	CY2501-1.1	3	3	3	-	-	1	1	-	-	-	-	-	
	CY2501-1.2	3	3	3	-	-	1	1	-	-	-	-	-	
	CV2F01 1 2	2	2	2			1	1						l
	CT2501-1.5	5	5	5	-	-	L L	1	-	-	-	-	-	l
1: L	ow 2: Medium 3:	Hig	h											
TE)	TBOOKS:													
1	L Mars G Fontan	a, "C	orro	sion	Engiı	neeri	ng", 3	rd Edit	tion, T	ata M	cgraw-	Hill Ed	lition.	
REF	ERENCE BOOKS:													
1	L Chamberlian a	nd K	. Tre	ethwa	ıy, "C	Corro	sion"	, Long	man	scienti	fic and	d techr	nical, Jo	ohn

Wiley and Sons.

	NATURAL	PRODUCTS	CHEMISTRY		
Course	Code:	CY2502-1	Course Type	OEC	
Teachi	ng Hours/Week (L:T:P: S)	3:0:0:0	Credits	03	
Total T	eaching Hours	40	CIE + SEE Marks	50+50	
Prereq	uisite	CY1001-1			
	Teaching	Department:	Chemistry		
Course Ob	jectives:				
1. Iden	tify the structure of terpenoids	and their bios	ynthesis. Elucidate the	structure of	
2 Und	erstand the chemistry underly	no steroids an	d sex hormones. Get int		
z. Unu	different types of prostaglandi	ng steroius and	eony and chemistry her	vind natural	
dves			cory and chemistry ber		
3. Gair	n knowledge on general meth	ods of structu	ral determination of s	ome of the	
imp	ortant alkaloids.				
		UNIT-I			
Terpenoid	s & Carotenoids			08 Hours	
Introductio	on and classification, isoprene	rules, general	methods of determina	tion of structure	of
terpenoids	. Structure elucidation of the	following terp	enoids-geraniol, α-pin	ine, camphene ar	าป
Tarnesol. Bi	osynthesis of terpenoids.	oc Ctructural o	lucidation of Q caratan	2	
Porphyrin		es. Structural e	incluation of p-caroten	e. 07 Hours	
Introductic	n to porphyring structure and	degradation r	products of haemoglobi	in and chlorophyll	
Introductie					•
		UNIT-II			
Steroids				08 Hours	
Introductio	on, Dile's hydrogenation. Ch	emistry of cl	nolesterol, Blanc's rule	e, Barbier-Wielma	an
degradatio	n, Oppenuer oxidation. Consti	tution of bile a	cids.		
Sex hormo	nes: Chemistry of oestrone, pro	ogesterone, an	drosterone and testost	erone.	
Prostaglar	ndins & Natural Dyes	an and bial	anical vala of prost	08 Hours	
alucidation	on, nomenciature, classificati	on, and bioi	ogical role of prost	agladins. Structu	re
Introductic	white the one of colour met	and FGI 2α .	n chemical constitution	of alizarin	
introductio	in, whice theory of colour, met	nous of ayeing	g, enemical constitution		
		UNIT-III			
Alkaloids				09 Hours	
Definition,	Classification and isolation of	alkaloids. Gene	eral methods of structu	ral determination	of
alkaloids. E	Detailed study of structure eluc	idation of the f	ollowing alkaloids- pap	averine, cinchonir	ne
and nicotir	ne.				
Course Ou	tcomes: At the end of the cou	irse student wi	ll be able to		
alkaloids. L and nicotir	Detailed study of structure eluc ne.	idation of the f	ollowing alkaloids- pap	averine, cinchonir	ne

2	State the basic reactions governing steroids and sex hormones. Explain the biological role and structure of prostaglandins and state the methods employed for dveing.
3	Apply the general methods of structural determination to elucidate the structure of alkaloids like papaverine, cinchonine and nicotine.

Course Outcomes Mapping with Program Outcomes

		/										
Program	1	2	3	4	5	6	7	8	9	10	11	12
Outcomes→												
↓ Course												
Outcomes												
CY2502-1.1	3	3	-	-	-	1	1	-	-	-	-	-
CY2502-1.2	3	3	_	-	-	1	1	-	-	-	_	-
CY2502-1.3	3	3	-	-	-	1	1	-	-	-	-	-

1: Low 2: Medium 3: High

N)

TEXTBO	OKS:
1.	22. Agarwal, "Organic Chemistry of Natural Products", VolI & VolII, O.P. Goel
	Publishing House, 2014.
REFEREN	ICE BOOKS:
1.	K. Nakanishi, T. Goso, S. Ito, S. Natori and S. Nozoe, "Natural Products Chemistry", Vol. I
	& II, Academic Press, Ny, 1974.
2.	Gurudeep R. Chatwal, "Organic Chemistry of Natural Products", Vol. I & II, Himalaya
	Publishing House, 2013.
3.	G.A. Swal, "An Introduction to Alkaloids", Backwell Scientific Publications, 1967.
4.	Hand book of naturally occurring Compounds, Vol. II, terpenes, T.K. Davon, A.I. Scott,
	Academic Press, Ny, 1974.

ARTIFICIAL NEURAL NETWORK SYSTEMS											
Cou	irse Code:	EC1501-1	Course Type	OEC							
Теа	ching Hours/Week (L: T: P: S)	3:0:0:0	Credits	03							
Tota	al Teaching Hours	40+0+0+0	CIE + SEE Marks	50+50							
Teaching Department: Electronics & Communication Engineering											
Cour	se Objectives:										
1.	To learn basic building blocks o	f ANNs and its	terminology								
2. To understand the working of McCulloch-Pitts Neuron and different types of											
learning rules											
3.	To understand decision regions	, discriminant fu	unctions and training co	ncept							
4.	To understand the working of p	erceptron as cl	assifier								
5.	To understand the mathematic	cs behind diffe	rent types of single lay	yer feedback							
	networks										
		UNIT-I									
Intro	duction to Artificial Neural net	works		16 Hours							
Intro	duction, Basic building blocks: n	etwork archite	cture, setting the weigl	nts, activation							
funct	ions, ANN terminologies: weights,	, activation fund	tions, bias, threshold, M	cCulloch-Pitts							
Neur	on Model, Learning Rules										
		UNIT-II									
Sing	le Layer Perceptron Classifiers			15 Hours							
Class	ification Model, Features, and	Decision Regi	ons, Discriminant Fun	ctions, Linear							
Mach	nine and Minimum Distance Class	sification, Nonp	arametric Training Con	cept, Training							
and	Classification Using the Discrete	Perceptron: A	lgorithm and Example,	, Single-Layer							
Cont	inuous Perceptron Networks fo	r Linearly Sep	arable Classifications,	Multicategory							
Singl	e-Layer Perceptron Networks										
		UNIT-III									
Sing	le-Layer Feedback Networks			09 Hours							
Basic	Concepts of Dynamical Systems,	Mathematical F	oundations of Discrete-	Time Hopfield							
Netw	orks, Mathematical Foundation	s of Gradient-	Type Hopfield Netwo	rks. Transient							
Resp	onse of Continuous-Time Netwo	orks, Relaxation	Modeling in Single-La	yer Feedback							
Netw	vorks										
Cour	se Outcomes: At the end of the c	course student	will be able to								
1.	Describe the building blocks of	artificial neural	and terminologies								
2.	Describe the working of neural	network and lea	arning rules								
3.	Describe training of Single layer	r perceptron an	d classification using it.								
4.	Explain use of Single layer perce	eptron for linea	rly separable and multic	ategory							
	problems										
5.	Explain the mathematics behind	l different single	e-layer feedback netwo	rks							
Cour	se Outcomes Mapping with Pro	oram Outcom	es								

	Program	1	2	3	4	5	6	7	8	9	10	11	12	
	Outcomes→													
	↓ Course													
	Outcomes													
	EC1501-1.1	3	-	-	-	_	-	-	_	-	-	-	-	
	EC1501-1.2	3	-	-	-	-	-	-	-	-	-	-	-	
	EC1501-1.3	3	-	-	-	-	-	-	-	-	-	-	-	
	EC1501-1.4	3	-	-	-	_	-	-	_	-	-	-	-	
	EC1501-1.5	3	-	-	-	-	-	-	-	-	-	-	-	
1: Lov	1: Low 2: Medium 3: High													
TEXTE	BOOKS:													
1.	S. N. Sivanandam, S.	Sum	nathi	, S. N	I. De	epa,	"Int	rodu	ctio	n to l	Neura	l Netv	works	Using
	MATLAB 6.0", Tata N	1cGr	aw-F	Hill E	duca	tion	, 200	6						
2.	Jacek M. Zurada "In	trod	uctio	on to	o Art	tificia	al Ne	eural	Sys	tems	s", 1st	Editi	on, St	. Paul
	West Publishers-USA, 1992.													
3.	Michael A Neilsen,	″Neu	ıral	Netv	vork	s and	d De	ep l	earr	ning"	, Det	ermin	ation	Press,
	2015													

INTRODUCTION TO MATLAB PROGRAMMING: A HANDS-ON												
	APPROACH	T										
Course Code:	EC1502-1	Course Type	OEC									
Teaching Hours/Week (L: T: P: S)	2:0:2:0											
	27+0+26+0	CIE + SEE Marks	50+50									
reaching Department: Ei	fered to Civil &	BT	ing									
Course Objectives:												
1. To demonstrate basic understa	anding of MATLA	B programming										
2. To use and write functions		· • •										
3. To use MATLAB programming	for image proce	ssing										
U	nit-I		27 Hours									
Introduction to MATLAB: Starting MA	TLAB and familia	arization with its user int	erface, syntax									
and semantics, ways in which MATLA	B provides help,	create plots in MATLAB										
Matrices and Operators: defining ma	trices, manipulat	ion of matrices, extract	parts of them									
and combine them to form new mat	rices, use of ope	rators to add, subtract,	multiply, and									
divide matrices, and we will learn that	t there are severa	a different types of mult	iplication and									
division.	c how the onvirg	annant incida a functio	n is congrated									
from the outside via a well-defined	interface throw	ah which it communica	tos with that									
outside world define a function to al	low input to it w	nen it initiates its everut	tion									
Programmer's Toolbox: polymorphis	m and how MAT	AB exploits it to chang	e a function's									
behavior on the basis of the number	and type of its in	puts, random number g	enerator, how									
to get input from the keyboard, how	to print to the	Command Window, and	d how to plot									
graphs in a Figure window, how to fir	nd programming	errors with the help of t	he debugger,									
how to print to the Command Windo	w, and how to pl	ot graphs in a Figure wi	ndow, how to									
find programming errors with the he	p of the debugg	er.										
Selection Statement and Loops: how t	o use the if-state	ement, how to use relation	onal operators									
and logical operators, how to write	polymorphic fu	nctions and how to m	ake functions									
resistant to error, the for-loop and th	e while-loop, ho	w the break-statement	works, nested									
loops, logical indexing and implicit lo	ops.											
Data Types: character arrays and how	the characters in	them are encoded as nu	umbers, string									
and datetime datatype, how to prod	uce heterogenec	ous collections of data v	ia structs and									
cells.												
File Input/Output: reading and writin	g files, how to cr	eate, read from, and wr	rite into MAT-									
files, Excel files, text files, and binary	/ files, how to na	avigate among folders	with MAILAB									
commands.		number of selections										
image processing using MATLAB: pre	e-processing – co	Inversion of color image	bistogram									
image, decomposition of color Imaginate thresholding	yes to single co	ior component image,	nistogram of									
	at of Exmerimen	4a										

	List of Experiments
23. 1	Starting MATLAB and familiarization with its user interface, syntax and
	semantics, ways in which MATLAB provides help, create plots in MATLAB.

↓ Course Outcomes

24	. 2	Defining matric combine them multiply, and c different types	ces, tof divid ofm	mar orm le m nultip	nipul nev natrio olica	atio v m ces, tion	n of atric and <u>and</u>	ີ ma es, ເ we divi	trice use o will sion	es, o of o lea	extra opera arn 1	ct pa ators that t	rts of to ad here	f ther d, su are s	n and btract, several
25	5.3	creating reusal separated from communicates it when it initiat	ole the with es it	func out tha s ex	tion: tside t ou ⁻ ecut	s, ho via tside ion.	ow t a w e wo	the ell-c rld,	envi defin defir	ron Ied Ne a	men inte a fun	t insi rface ction	de a throu to all	func gh w ow in	tion is hich it put to
26	 24.2 Defining matrices, manipulation of matrices, extract parts of them and combine them to form new matrices, use of operators to add, subtract, multiply, and divide matrices, and we will learn that there are several different types of multiplication and division. 25.3 creating reusable functions, how the environment inside a function is separated from the outside via a well-defined interface through which it communicates with that outside world, define a function to allow input to it when it initiates its execution. 26.4 Polymorphism and how MATLAB exploits it to change a function's behavior on the basis of the number and type of its inputs, random number generator, how to get input from the keyboard, how to print to the Command Window 27.5 How to plot graphs in a Figure window, how to find programming errors with the help of the debugger, how to print to the Command Window, and how to plot graphs in a Figure window, how to find programming errors with the help of the debugger. 28.6 How to use the if-statement, how to use relational operators and logical operators, how to write polymorphic functions and how to make functions resistant to error. 29.7 The for-loop and the while-loop, how the break-statement works, nested loops, logical indexing and implicit loops. 30.8 Character arrays and how the characters in them are encoded as numbers, string and datetime datatype, how to produce heterogeneous collections of data via structs and cells. 31.9 Reading an image, saving, basic manipulation of images, arithmetic operations 33.11 Pre-processing – conversion of color image to gray scale image, decomposition of color images to single color component image. 34.12 Histogram processing. 35.13 Thresholding operation. 34.12 Histogram processing. 35.13 Thresholding operators. 34.14 Histogram susing loops and summarize data types 3														
27	.5	How to plot gra with the help of how to plot gra with the help of	aphs f the aphs f the	s in deb in a deb	a Fig ougg a Fig ougg	gure er, h jure jer.	win iow wine	dow to p dow	, hov rint t , hov	wto tot wto	o fin he Co o fin	d pro omma d pro	gram and W gram	ming /indo ming	errors w, and errors
28	3. 6	How to use the operators, how resistant to error	e if-s to v or.	state vrite	mer poly	nt, h /mo	ow t rphie	o us c fur	se re nctio	elati ns a	ional and l	oper now te	ators o mał	and ke fur	logical actions
29	0.7	The for-loop ar loops, logical in	nd th Idex	ne w ina a	hile and	-loo impl	p, ho icit l	ow t oop	he b s.	orea	ık-sta	ateme	ent wo	orks, I	nested
30	0.8	Character array string and date of data via strue	s an time cts a	d ho e da nd o	ow th tatyp cells.	ne ch pe, h	narao IOW	cters to p	in t rodu	her ice	n are hete	e encc eroger	neous	as nui colle	mbers, ections
31	.9	Reading and w files, Excel files, with MATLAB co	ritin tex omn	g fil t file nanc	es, h s, ar ds.	iow nd b	to c inary	reate / file	e, re es, ho	ad ow	from to n	ı, and avigat	write e am	e into ong f	MAT- olders
32	2.10	Reading an in operations	nage	e, sa	aving	g, b	asic	ma	nipu	lati	on	of im	ages,	aritl	nmetic
33	3. 11	Pre-processing decomposition	– of c	con olor	versi ima	ion ges	of to si	colc ngle	or ir e col	nag or c	ge t comp	o gra oonen	ay so t ima	ale i ge.	image,
34	.12	Histogram proc	essi	ng.											
35	5.13	Thresholding o	pera	tion	•										
Cours	se Outco	mes: At the end c	of th	e co	urse	stu	dent	will	be a	able	e to				
1.	Use mat	rices and operato	ors ir	n MA	ATLA	B pr	ogra	amm	ning						
2.	Use and	write functions; u	use I	MAT	LAB	tool	box								
3.	Use tool	box and selectior	n sta	tem	ent i	in M	ATL	АВ р	orogi	ram	nmin	g			
4.	Write M	ATLAB programs	usir	ig lo	ops	and	sum	nmai	rize (data	a typ	es			
5.	Summar	ize file input/out	put	me	thod	ls us	sing	MA	TLAE	3 со	omm	ands	and a	apply	pre-
	processi	ng and threshold	ing	opei	ratio	ns o	n im	nage	S						
Cours	se Outcor	mes Mapping wi	th F	Prog	ram	Out	tcon	nes	ī		T.	-1		1	1
		Program	1	2	3	4	5	6	7	8	9	10	11	12	
		Outcomes→													

		EC1502-1.1	1	-	-	-	3	-	-	-	-	-	-	-		
		EC1502-1.2	1	-	-	-	3	-	-	-	-	-	-	-		
		EC1502-1.3	1	-	-	-	3	-	-	-	-	-	-	-		
		EC1502-1.4	1	-	-	-	3	-	-	-	-	-	-	-		
		EC1502-1.5	1	-	-	-	3	-	-	-	-	-	-	-		
1: Lo	w 2: Mec	lium 3: High													-	
TEXTE	BOOKS:		terrere Atternere "NAstisk A Dresting Introduction to December 2													
	1.	Stormy Attawa	ormy Attaway, "Matlab: A Practical Introduction to Programming and													
		Problem Solvin	ormy Attaway, "Matlab: A Practical Introduction to Programming and roblem Solving", Second Edition, Butterworth-Heinemann, 2011													
	2.	Fitzpatrick and	tzpatrick and Ledeczi, "Computer Programming with MATLAB", eBook,													
		2013														
	3.	Rafael C. Gonza	alez,	Ricł	nard	E. V	Vood	ds ai	nd S	teve	n L.	Eddir	ns, Di	gital	Image	
		Processing usin	ig M	ATL	AB, f	irst	editi	on, l	Dorli	ing ł	Kind	ersley	' Pvt l	_td, 2	006.	
REFER	RENCE BO	DOKS:														
	1.	Duane C. Hanse	elma	n, B	ruce	L. Li	ittlef	ield,	"Ma	aster	ing	MATL	.AB",	first		
		edition, Pearso	n, 20)11												
E Boo	ks / MO	OCs/ NPTEL														
	1.	https://nptel.ac	.in/c	ours	ses/1	.03/	106/	' <u>103</u> '	1061	18/						
	2.	https://www.co	urse	ra.o	rg/le	earn/	'mat	lab								

	ROBOTICS		
Course Code:	EC1503-1	Course Type	OEC
Teaching Hours/Week (L: T: P: S)	3:0:0:0	Credits	03
Total Teaching Hours	40+0+0+0	CIE + SEE Marks	50+50

Teaching Department: Electronics & Communication Engineering

Cour	se Objectives:
1.	Understand Anatomy of a robot.
2.	Analyse the robot motion using translation and rotational matrix.
3.	Discuss Robot trajectory planning and robot control.
4.	Categorise the various sensors used in robotics
5.	Understand the robot programming.

UNIT-I

16 Hours

Definition, anatomy of robot, classification configurations, robot links and joints, robot specifications, resolution accuracy and repeatability, simple numerical problems, robot drive systems, hydraulic, pneumatic and electric drive systems, wrist and its motions, end effectors, types of end effectors, mechanical & Non-mechanical grippers, methods of constraining parts in grippers.

Motion analysis

Introduction

Direct kinematics and inverse kinematics, 3D homogeneous transformations, rotation, translation and displacement matrix, composite rotation matrix, rotation matrix about an arbitrary axis.

UNIT-II

15 Hours

Control and trajectory planning

Trajectory planning, definition, steps in trajectory planning, joint space techniques, use of a p-degree polynomial as interpolation function, cubic polynomial trajectories, linear function with parabolic blends, joint space verses, simple numerical problems on joint space trajectory planning.

Sensors

Classification, Types- Contact & Non-Contact sensors.

Machine Vision

Machine vision, functions of machine vision system, sensing and digitizing, imaging devices, analog to digital signal conversion, quantization and encoding, simple numerical problems, image storage, image processing and analysis, image data reduction, segmentation, feature extraction, object recognition, robotic machine vision applications, inspection, identification, visual surveying and navigation.

UNIT-III	
Programming	09 Hours
Introduction to robot programming, robot cell layout, work cell control	l and interlocks,
manual programming, lead through and walkthrough programming, off-lin	ne programming,
robot programming languages, examples	

Cour	Course Outcomes: At the end of the course student will be able to													
1.	Explain the working prin	ciple	e, va	rious	s per	form	ance	e par	ame	eters	of rot	oots a	nd	
	identify the types of rob	ots (emp	loye	d in i	ndus	stry.							
2.	Discuss the concept of c	lirec	t and	d inv	erse	kine	mat	ics. D	Deter	mine	e the j	positi	on an	d
	orientation of End-Effec	tor s	ubje	cted	to t	ransf	form	atio	ns. D	emo	onstrat	te the		
	applications of Denavit-	Hart	enbe	erg (DH)	meth	nod	for d	iffer	ent r	obot			
	configurations.			<u> </u>										
3.	Determine the technique	e of	traje	ector	y pla	nnin	g, co	ontro	ol scł	neme	es for	robot	joints	5
	and understand the type	es of	the	sens	sors	used	in r	obot	ics.				5	
4.	Apply engineering know	ledg	ge in	rob	ot vi	sual	surv	eying	g and	d nav	vigatio	on.		
5.	Analyze and formulate d	liffer	ent	type	s of	rob	ot c	ell la	ayou	ts ar	nd use	e moc	lern	
	tools to write robot pr	ogra	ams	for d	iffer	ent ta	asks	•						
Course Outcomes Mapping with Program Outcomes														
	Program Outcomes \rightarrow 123456789101112													
	↓ Course Outcomes													
	EC1503-1.1 3 2 2 1 1													
	EC1503-1.2 3 3 2 2 3 3 - 1													
	EC1503-1.3 3 2 2 2 3 3 - 1													
	EC1503-1.4 3 2 2 1 1													
	EC1503-1.5 3 3 3 2 2 1													
1: Low 2: Medium 3: High														
TEXTBOOKS:														
1.	R. K. Mittal and I. J. Nag	grath	n, "Ro	obot	ics a	nd C	ontr	ol", T	ata-	McG	iraw-H	Hill Pu	blicat	ions,
	2007.													
2.	Mikell P. Groover, Mito	hel	Weis	s, Ro	oger	N. N	agel	and	Nic	holas	s G. O	drey,	"Indus	strial
	Robotics", McGraw-Hi	ll Pu	blica	ition	s, Int	erna	tion	al Ec	litior	n, 200	30			
REFE	RENCE BOOKS:													
1.	Fu K. S., Gonzelez R. C.,	Lee	C. S.	. G., '	'Rob	otics	: Co	ntrol	, Ser	sing	, Visio	n, Int	elliger	າce,"
	, McGraw Hill Book Co	., Int	erna	tion	al ec	litior	n, 20	08.						
2.	. Yorem Koren, "Robot	ics	for	Engi	neer	s", N	ЛсGı	raw-	Hill	Publ	icatio	n, Int	ernati	onal
	edition, 1987.													
3.	Craig, J. J., "Introduction	n to) Koł	ootic	s: M	echa	nics	and	Con	trol"	, 3rd E	ditio	n, Pea	rson
	PrenticeHall Publicatio	ns, 2	2005		<u> </u>									
4.	Schilling R. J., "Funda	mer	ntals	of	Kobo	otics,	An	alysi	s an	d Co	ontrol	", Pre	entice	-Hall
-	Publications, Eastern E	con	omy	edit	ion, .	2007	. D	1.1.				•••	2007	
5.			<u>.</u>	K. IN	terna	ation				ns, ⊦i	rst Ed	Ition,	2007.	0
	James G. Keramas, RC		lecr		ogy i	-una	ame	entais	5, C	enga	ge Le		g, 199	9.
1.	Richard K. Barnhart, S	step	nen	В. I		nan,	00 10	ugia:	S IVI.		rsnaii ว	, Eric	Snap	pee,
•	Introduction to Unma	inne		rcrat	t Sys	tems	5, C		ress,	201	Ζ.			
<u> </u>	Dob "Dobotics Tacking		.s an				і, А	med	PUD	iisne	rs.			
9. E P-		nogy	y, V\	mey	mala	1.								
E BO	bttps://pptol.ac.ip/cour	reee	/117	1051	040									
L,	<u>nups.//nptei.ac.in/cou</u>	ises/	112	T027	.49									

	C	วทรเ	JME	ER E	LEC	TRO	ONI	CS					
Со	urse Code:		EC	250	1-1		Cour	se T	ype			OEC	
Те	aching Hours/Week (L: T: P	: S)	3:0	0:0:0		(Cred	its				03	
То	tal Teaching Hours		40	+0+	0+0	(CIE +	SEE	E Ma	rks		50+	50
Pre	erequisite		EC	:100	1-1								
	Teaching Departme	nt: El	ectro	onics	80	òm	mun	icat	ion I	Ingin	eerin	g	
Cou	rse Objectives:												
1.	To provide basic knowled	ge on	sour	nd ar	nd tra	ansc	ducer	S					
2.	To provide basic knowled	ge on	diffe	erent	disp	lay ı	units	and	cam	iera			
3.	To understand the record	ing pr	oces	s and	d sto	rage	e me	chan	ism				
4.	To provide basic knowled	ge on	com	mun	icati	on a	and b	road	lcast	ing			
5.	To understand the workin	g of v	ariou	us ele	ectro	nic g	gadg	ets					
				UNI	T-I							1	
Sou	nd & Vision											15	Hours
Sound: Definition and properties of sound, Transducers: Micro Phone – characteristics and types, and Loud Speakers – characteristics and types, Enclosures and baffles, mono-stereo,													
types, and Loud Speakers – characteristics and types, Enclosures and baffles, mono-stereo,													
audio amplifiers-characteristics, Synthesizers. Vision: Displays-LED, LCD, PLASMA, Camera: basic principle, CCTV, Camera													
VISI	on: Displays-LED, LCD, PLASN	/IA, Ca	mer	a: ba	sic p	rinc	iple,		v Ca	mera.			
Doc	UNIT-II Recording, Playback, Communication & Broadcasting Systems 15 Hours												
Poc	Recording, Playback, Communication & Broadcasting Systems 15 Hours Descerding, and Dlayback, Audia recording, methods magnetic recording, optical recording 15 Hours												
diai	tal recording oracing moth		unig	al di	unou ccc	s-111	ayne ardin		ecoi nd n	uniy, Iavba	optic	m pr	olully,
The	atre Sound HiFi system	Jus, c	puc		505-	Tect	Jium	y ai	iu p	layba	CK, 111	in pr	Jector,
Con	amunications And Broadcas	tina [.] I	Mod	ulatio	on. A	м	FM	PCM	1 Ra	idio t	ransm	nitters	Radio
rece	eivers - Tuned radio frequenc	v rece	eiver	and	Supe	erhe	tero	dvne	rece	eiver. I	Fiber	optics	Radio
and	TV broadcasting. Cellular co	mmur	nicati	ion: c	digita	l ce	llula	r pha	one,	establ	ishing	a ca	I.
	J							-					
			l	UNIT	-III								
Oth	er Electronic Systems											10	Hours
Fax	machine, Xerox machine, ele	ctroni	c Cal	culat	tor, N	licro	owav	ve ov	ens,	Wash	ing N	lachin	es, A/C
and	refrigeration, ATM, Auto El	ectror	nics,	Indu	stria	Ele	ectror	nics	and	Robo	tics, E	ectro	onics in
hea	th / Medicine.												
Cou	rse Outcomes: At the end o	f the c	cours	se stu	ıden	t wil	ll be	able	to				
1.	Recall basics of sound and	trans	duce	ers.									
2.	Understand the working p	princip	les c	of dis	play	unit	ts and	d CC	TV c	amera	Э.		
3.	CONSUMER ELECTRONICS Course Code: EC2501-1 Course Type OEC Teaching Hours/Week (L: T: P: S) 3:0:0:0 Credits 03 Total Teaching Hours 40+0+0.0 CIE + SEE Marks 50+50 Prerequisite EC1001-1 50+50 Teaching Department: Electronics & Communication Engineering Course Objectives: 03 1. To provide basic knowledge on sound and transducers 2. To provide basic knowledge on communication and broadcasting 3. To understand the recording process and storage mechanism 4. To provide basic knowledge on communication and broadcasting 5. To understand the working of various electronic gadgets UNIT-1 15 Hours Sound: Definition and properties of sound, Transducers: Micro Phone – characteristics and types, and Loud Speakers – characteristics, snthesizers. Vision: Displays-LED, LCD, PLASMA, Camera: basic principle, CCTV Camera. VIIT-II Recording, Playback: Audio recording methods-magnetic recording, optical recording, digital recording, ersing methods, optical discs- recording and playback, Film projector, Theatre Sound, HiFi system. Communications And Broadcasting: Modulation: AM, FM PCM, Radio transmitters, Radio receivers - Tuned radio frequency receiver an												
4.	Explain basics of commun	icatio	n and	d brc	adca	stin	ng						
5.	Recall basic working of co	mmor	nly u	sed e	elect	oni	c gao	dget	S				
Cou	rse Outcomes Mapping wit	th Pro	gra	<u>m Οι</u>	utco	nes	; _						
	Program 1	2	3	4	5	6	7	8	9	10	11	12	
	Outcomes→												
	↓ Course												
	Outcomes												

	EC2501-1.1	1	-	-	-	-	1	-	-	-	-	2	2	
	EC2501-1.2	1	-	-	-	-	1	1	-	-	I	2	2	
	EC2501-1.3	1	-	-	-	-	1	I	-	-	I	2	2	
	EC2501-1.4	1	-	-	-	-	1	1	-	-	1	2	2	
	EC2501-1.5	1	-	-	-	-	1	-	-	-	-	2	2	
1: Lov	v 2: Medium 3: High													
TEXTE	BOOKS:													
1.	Anand, "Consumer Ele	ctroi	nics"	, Kha	nna	pub	licati	ions,	201	1.				
2.	Bali S. P., "Consumer E	lectr	onic	s", Pe	earso	on Ec	duca	tion,	200	5.				
REFER	ENCE BOOK:													
1.	Gulati R. R. "Modern T	elevi	sion	Ena	inee	rina"	. Wil	ev E	astei	'n.				

PCB DESIGN AND FABRICATIONCourse CodeEC2502-1Course TypeOECTeaching Hours/Week (L: T: P: S)1:0:4:0Credits03Total Teaching Hours15+0+52+0CIE + SEE Marks50+50PrerequisiteEC1001-1EC1001-1								
Course Code	EC2502-1	Course Type	OEC					
Teaching Hours/Week (L: T: P: S)	1:0:4:0	Credits	03					
Total Teaching Hours	15+0+52+0	CIE + SEE Marks	50+50					
Prerequisite	EC1001-1							
Teaching Department: Ele	ectronics & Con	nmunication Engineer	ing					
Course Objectives								

1.	To enab	le students to	gair	n kno	owle	edge	of S	Schei	mati	c De	esign	tech	nique	s & F	РСВ
2.	To expos	se students to c	omp	lete	PCB	Des	ign 8	ያ ma	anufa	actur	ring	oroce	SS		
					l	Jnit-	I								
Circ	uit Schema	atic											05	5 Hou	Irs
Intro	duction to	Kicad schemat	ic de	esign	too	l, fea	ture	s, no	ode c	onn	ectic	ons, la	beling	g, crea	ating
new	componer	it.													
					U	Init-1	I								
PCB	Layout:		1.										05	b Hou	irs
Kica	duction to d, verificati	on of footprint,	crea	r, fea ting	foot	es, la tprin	yer s t for	a giv	ven d	s, ma comp	anua pone	nt.	auto	routir	ng in
					U	nit-I	II								
РСВ	Fabricatio	n											05	5 Hou	irs
Gene fabri print	erating and cation, pre ting, green	d verifying the paring PCB artv masking and th	PCE vork irou	Ge for o gh h	rber doub ole p	file, ble si blatir	pre de Po ng	parir CB, E	ng a Etchii	rtwo ng p	roce	or a s ss, tin	single platir	side 1g, leg	PCB gend
				l ist	of F	xne	rime	nts							
3	6. 1	Exploring the	Kica	d Scl	hem	atic a	and I	avou	it to	ol					
3	7.2	Developing a	sche	mati	ic cir	cuit	for n	nicro	ohq	ne p	ream	nplifie	r		
3	8.3	Designing a si	nale	side	e PCI	B lav	out f	or m	nicro	phor	ne pr	reamp	lifier		
3	9. 4	Developing a	sche	mati	ic cir	cuit	for a	mic	roco	ntro	ller c	levelo	pmen	it boa	rd
4	0.5	Designing a o board	doub	le s	ide	РСВ	layo	ut fo	or a	micı	rocoi	ntrolle	er dev	elopr	nent
4	1. 6	Choosing a ne	w se	ensoi	∙/dis	play	mod	lule a	and b	build	ling a	a sche	matic	circu	it for
		the user level	appl	icati	on	. ,					5				
4	2.7	Building a lay	out	usin	g sir	ngle	or d	oubl	e sic	le P	CB fo	or the	sens	or/dis	play
		module													
4	3.8	Preparing the	film	for t	he b	otto	m co	ppe	r, sol	der i	mask	and t	top sil	k (leg	end)
		to fabricate a	sing	le sic	de Po	CB us	sing	chen	nical	pro	cess				
4	4. 9	Preparing the	film	for	the	top	сор	per,	bott	om	copp	per, to	op sol	der n	nask,
		bottom solde	r m	ask	and	leg	end	to f	fabri	cate	dοι	ible s	side P	PCB u	ising
	F 10	chemical proc	ess				<u> </u>								
4	5.10	PCB routing, e	tchi	ng, c	uttir	ng ar	nd dr	rilling	g usii	ng C	NC r	nachi	ne		
-							- I-	•••		1.1					
Cou	rse Outcor	nes: At the end	ot t	ne co	ours	e stu	aent	: WIII	be a	ble		·I -			1
1.	Draw sch	nematic circuit a	ind c	reat		.в Iау	/out	tor s	ingle	eor	mult	llayer	РСВ		
2.	Fabricate	e single and dou	-9ldu	-iaye	r PC	В	4.0.0.1								
Cou			vith	Pro	gran	n Ou	tcon	nes	7	0	0	10	11	10	
	Program	Outcomes→	L	2	5	4	5	6	/	8	9	10		12	
	↓ Course	Outcomes	2												-
		EC2502-1.1	3	-	-	-	-	-	-	-	-	-	-	-	-
		EC2502-1.2	5	-	- 1	- 1	- 1	- 1	- 1	-	- 1	-	-	- 1	1

Ø

1: Low 2: Med	dium 3: High						
TEXTBOOKS:							
1.	Peter Dalmaris, "Kicad Like a Pro", Tech Exploration.						
REFERENCE BOOKS:							
1.	Peter Dalmaris, "Kicad Like a Pro", Tech Exploration.						
2.	David L. Jones, "PCB Design Tutorials", Alternate zone, 2004.						
E Books / MO	OCs/ NPTEL						
1.	www.alternatezone.com						

	SPACE TECHNOLOGY AND APPLICATIONS								
Course	Code:	EC2503-1	Course Type	OEC					
Teachin	g Hours/Week (L: T: P: S)	3:0:0:0	Credits	03					
Total Te	eaching Hours	40+0+0+0	CIE + SEE Marks	50+50					
Prerequ	iisite	EC1001-1							
	Teaching Department: Elec	ctronics & Con	nmunication Engine	ering					
Course C	bjectives:								
1. Ur	derstand the general laws go	verning satellite	e orbits and its param	neters.					
2. Dis	scuss effect of space environm	nent on satellite	e signal propagation.						
3. Illu	istrate various segments emp	loyed in satellit	e and ground station						
4. Ca	Iculate the uplink / downlink s	subsystem char	acteristics.						
5. kn	ow the effects on the EM wav	es in propagati	on through space.						
6. Ex	plain the satellite launch in the	e space and the	eir applications in rem	note sensing.					
7. Dis	scuss the different communica	ation systems u	sed for satellite acces	SS.					
8. Su	mmarise Advanced space syst	tems for mobile	e communication, VSA	AT, GPS.					
		UNIT-I							
Satellite	Technology			15 Hours					
and perig Space en systems, Satellite Commun	 Satellite communications: Introduction, Kepler's laws, definitions, orbital element, apogee and perigee heights, orbit perturbations, inclined orbits. Space environment: Earth's Atmosphere, Ionosphere and Meteorological effects on space systems, propagation of signal, Transmission losses in space environment. Satellite Technology: Space segment, Ground segment, Quality and Reliability, Satellite Communication systems. 								
	anlientions	UNIT-II		15 Hours					
Launch V	oplications Vehicles: Working stages F	UNIT-II	rotection Navigation	15 Hours					
Launch V control, F Space A Uplink Ar Remote Remote s	Oplications Vehicles: Working, stages, F Reliability, launching into oute Oplications: Digital DBS TV, I Intennas. Introduction, Radio a Sensing: Introduction to Rem Gensing.	UNIT-II uel, payload p r space and lau DBS-TV System nd Satellite Nav note Sensing, C	rotection, Navigatior nch bases. Types of la Design, Master Con vigation, Concepts and Applica	15 Hours n, guidance and aunch vehicles. trol Station and tions of satellite					
Launch V control, F Space A Uplink Ar Remote Remote s	Oplications Vehicles: Working, stages, F Reliability, launching into oute Oplications: Digital DBS TV, I Intennas. Introduction, Radio a Sensing: Introduction to Rem rensing.	UNIT-II uel, payload p r space and lau DBS-TV System nd Satellite Nav note Sensing, C	rotection, Navigatior nch bases. Types of la Design, Master Con vigation, Concepts and Applica	15 Hours n, guidance and aunch vehicles. trol Station and tions of satellite					
Launch V control, F Space A Uplink Ar Remote Remote s	Oplications Vehicles: Working, stages, F Reliability, launching into oute Oplications: Digital DBS TV, I Intennas. Introduction, Radio a Sensing: Introduction to Rem Sensing.	UNIT-II uel, payload p r space and lau DBS-TV System nd Satellite Nav note Sensing, C UNIT-III	rotection, Navigatior nch bases. Types of la Design, Master Con vigation, Concepts and Applica	15 Hours n, guidance and aunch vehicles. trol Station and tions of satellite					
Launch V control, F Space A Uplink Ar Remote Remote s	pplications Vehicles: Working, stages, F Reliability, launching into oute pplications: Digital DBS TV, I Intennas. Introduction, Radio a Sensing: Introduction to Rem sensing.	UNIT-II uel, payload p r space and lau DBS-TV System nd Satellite Nav note Sensing, C UNIT-III	rotection, Navigatior nch bases. Types of la Design, Master Con vigation, Concepts and Applica	15 Hours n, guidance and aunch vehicles. trol Station and tions of satellite 10 Hours					
Launch V control, F Space A Uplink Ar Remote S Advance Satellite FDMA, Sp Advance Global Pc	oplications Vehicles: Working, stages, F Reliability, launching into oute oplications: Digital DBS TV, I Intennas. Introduction, Radio a Sensing: Introduction to Rem rensing. d Space Systems Access: Introduction, Single Dade system. d space systems: Satellite mo Distribution of Satellite System (GP)	UNIT-II uel, payload p r space and lau DBS-TV System nd Satellite Nav note Sensing, C UNIT-III e Access, Pre-	rotection, Navigatior nch bases. Types of la Design, Master Con vigation, concepts and Applica sassigned FDMA, De	15 Hours n, guidance and aunch vehicles. trol Station and tions of satellite 10 Hours emand-Assigned communication.					
Launch V control, F Space A Uplink Ar Remote S Remote S Advance Satellite FDMA, S Advance Global Pc	oplications Vehicles: Working, stages, F Reliability, launching into oute oplications: Digital DBS TV, I otennas. Introduction, Radio a Sensing: Introduction, Radio to Rem densing: Introduction to Rem densing: Access: Introduction, Single States: ode systems. Satellite mo ositioning Satellite System (GP Outcomes: At the end of the comparison of the com	UNIT-II uel, payload p r space and lau DBS-TV System nd Satellite Nav note Sensing, C UNIT-III e Access, Pre- bile services, VS S).	rotection, Navigatior nch bases. Types of la Design, Master Con vigation, Concepts and Applica -assigned FDMA, De SAT, Radarsat, orbital	15 Hours n, guidance and aunch vehicles. trol Station and tions of satellite 10 Hours emand-Assigned communication.					
Launch V control, F Space A Uplink Ar Remote S Advance Satellite FDMA, Sp Advance Global Pc Course C	oplications Vehicles: Working, stages, F Reliability, launching into oute oplications: Digital DBS TV, I Intennas. Introduction, Radio a Sensing: Introduction, Radio to Rem Sensing: Introduction to Rem d Space Systems Access: Access: Introduction, Single bade system. d space systems: Satellite System (GP Outcomes: At the end of the c scuss the fundamental princip	UNIT-II uel, payload p r space and lau DBS-TV System nd Satellite National note Sensing, C UNIT-III e Access, Pre- obile services, VS S).	rotection, Navigation nch bases. Types of la Design, Master Con vigation, Concepts and Applica assigned FDMA, De SAT, Radarsat, orbital	15 Hours n, guidance and aunch vehicles. trol Station and tions of satellite 10 Hours emand-Assigned communication.					

3.	Explain various segme	nts	emp	loyed	d in s	satel	ite a	nd c	groui	nd st	ation			
4.	Discuss the satellite la	uncł	n me	char	nism	and	roll	of th	ose	satel	lite in	remo	ote	
	sensing.													
5.	Understand the differe	ent c	omr	nuni	catio	n sy	stem	ns us	ed fo	or sa	tellite	acces	s and	list
	the recent satellites th	at h	ave l	been	laur	nche	d for	· mo	bile o	comi	munic	cation	GPS.	
Course Outcomes Mapping with Program Outcomes														
	Program	1	2	3	4	5	6	7	8	9	10	11	12	
	Outcomes→													
	↓ Course													
	Outcomes													-
	EC2503-1.1	3	2	2	-	1	-	-	-	-	-	-	-	-
	EC2503-1.2	-	3	-	-	2	1	-	-	-	-	-	-	-
	EC2503-1.3	3	-	-	1	-	1	1	-	-	-	-	-	-
	EC2503-1.4	-	-	-	-	-	1	3	-	-	-	-	-	-
	EC2503-1.5	-	-	-	-	-	3	3	2	-	-	-	-]
1: Lo	w 2: Medium 3: High													
TEXTI	BOOKS:													
1.	Dennis Roddy, "Sate	llite	Com	nmur	nicat	ions"	', Mc	Grav	v Hil	1,19	96.			
2.	Timothy Pratt, "Sate	lite	Com -	mun	icati	ons"	, Wil	ey Ir	ndia	Ltd ,	2006.			
3.	K Ramamurthy, "Roc	cket	Prop	ulsic	on", I	νсΜ	illan	Pub	lishe	ers In	dia Lt	d, 201	L0.	
REFE			<u> </u>		<u> </u>		<u> </u>	•	,	•	•.•		T 1'	2002
1.	George Joseph, "Fur	ndan	nenta	als o	r Ker	note	Sen	sing	", Ur	liver	sities	press,	India	2003.
2.	B C Pande, "Remote	sen	sing	and	Арр	licati	ons"	, VIV		DOKS	pvt It	a, 200	19.	
3.	Meynart Roland, "Se	enso	rs sys	stem	s an	d ne	xt ge	enera	ation	sate	ellites	, SPIE		
Λ	Publication.	<u>.</u> Г	iner		+" TC	י סםי	10.00			- الما	ation			
4. E Paa		EU/	/iron	men	ι,15	KU I	anc	1 800	JK PI	סוומר	ation.			
E 600	https://pastal.ag.ip/ag		oc /1 (1110	6040	:								
L.	<u>nups://nptel.ac.in/co</u>	Jurse	52/T(JTTO	0040)								

Course		IANAGEMEN	NT SYSTEM							
	ode:	EE2501-1	Course Type	OEC						
Teaching	Hours/Week (L: T: P: S)	3:0:0:0	Credits	03						
Total Tea	aching Hours	40	CIE + SEE Marks	50+50						
Prerequi	site	EE1001-1								
	Teaching Department:	Electrical & El	ectronics Engineering							
Course Ol	ojectives:									
1 To	familiarize various concepts	of BMS								
2 To	understand functional blocl	ks of BMS								
3 To	study design steps of BMS									
4 To	introduce hardware implem	nentation of BM	1S							
		UNIT-I								
Battery Sy	/stem			08 Hours						
Introducti	on, Cells, Batteries, and Pack	s, Resistance, Li	i-Ion Cells, Formats, Che	emistry, Safety,						
Safe Opera	ating Area, Efficiency, Aging,	Modeling, Une	equal Voltages in Series	Strings, Li-Ion						
BMSs, BM	S Definition, Li-Ion BMS Fund	ctions, Custom	Versus Off-the-Shelf, L	i-Ion Batteries,						
SOC, DOD	, and Capacity, Balance and I	Balancing, SOH	l							
BMS Opti	ons	<u>.</u>		07 Hours						
Functiona	lity, CCCV Chargers, Reg	ulators, Meter	rs, Monitors, Balancer	rs, Protectors,						
Functional	ity Comparison, Technology,	Simple (Analo	g), Sophisticated (Digita	al), Technology						
Compariso	on, Topology, Centralized,	Modular N	Aaster-Slave, Distribut	ed, Topology						
Compariso	on			1 35						
·										
		UNIT-II								
BMS Func	tions									
Measurem	ent, Voltage, Temperatur	re, Current,	Bivis runctions U/ Hours							
Managem	Measurement, Voltage, Temperature, Current, Management, Protection, Thermal									
and Dept	Management, Balancing, Redistribution, Distributed Charging, Evaluation, State of Charge									
and Depth of Discharge, Capacity, Resistance, State of Health (SOH), External										
Communio	ent, Balancing, Redistribution th of Discharge, Capacity cations, Dedicated Analog W	n, Distributed (, Resistance, /ire, Dedicated	Management, Protect Charging, Evaluation, St State of Health (S Digital Wire, Data Link	07 Hours tion, Thermal tate of Charge OH), External t, Logging and						
Communio Telemetry,	ent, Balancing, Redistribution th of Discharge, Capacity cations, Dedicated Analog W Off-the-Shelf BMSs, Cell Ma	n, Distributed (, Resistance, /ire, Dedicated anufacturers' Bl	Management, Protect Charging, Evaluation, St State of Health (S Digital Wire, Data Link MSs, Comparison	07 Hours tion, Thermal tate of Charge OH), External t, Logging and						
Communio Telemetry, Custom B	ent, Balancing, Redistribution th of Discharge, Capacity cations, Dedicated Analog W Off-the-Shelf BMSs, Cell Ma MS Design	n, Distributed (/, Resistance, /ire, Dedicated anufacturers' Bl	Management, Protect Charging, Evaluation, St State of Health (S Digital Wire, Data Link MSs, Comparison	07 Hours tion, Thermal tate of Charge OH), External t, Logging and 08 Hours						
Communic Telemetry, Custom B Using BMS	ent, Balancing, Redistribution th of Discharge, Capacity cations, Dedicated Analog W Off-the-Shelf BMSs, Cell Ma MS Design S ASICs , BMS ASIC Compari	n, Distributed (, Resistance, /ire, Dedicated anufacturers' Bl ison, Analog Bl	Management, Protect Charging, Evaluation, St State of Health (S Digital Wire, Data Link MSs, Comparison MS Design, Analog Reg	07 Hours tion, Thermal tate of Charge OH), External t, Logging and 08 Hours Julator, Analog						
Communic Telemetry, Custom B Using BMS Monitor, A	ent, Balancing, Redistribution th of Discharge, Capacity cations, Dedicated Analog W Off-the-Shelf BMSs, Cell Ma MS Design S ASICs , BMS ASIC Compari Analog Balancer, Analog Pro	n, Distributed (, Resistance, /ire, Dedicated anufacturers' Bl ison, Analog Bl tector, Ready-	Management, Protect Charging, Evaluation, St State of Health (S Digital Wire, Data Link MSs, Comparison MS Design, Analog Reg Made, Digital BMS Des	07 Hours tion, Thermal tate of Charge OH), External t, Logging and 08 Hours Julator, Analog signs, ATMEL's						
Communic Telemetry, Custom B Using BMS Monitor, A BMS Proce	ent, Balancing, Redistribution th of Discharge, Capacity cations, Dedicated Analog W Off-the-Shelf BMSs, Cell Ma MS Design S ASICs , BMS ASIC Compari Analog Balancer, Analog Pro essor, Elithion's BMS Chip S	n, Distributed (, Resistance, /ire, Dedicated anufacturers' Bl ison, Analog Bl itector, Ready- et, National Se	Management, Protect Charging, Evaluation, State of Health (S Digital Wire, Data Link MSs, Comparison MS Design, Analog Reg Made, Digital BMS Dese emiconductors' Comple	07 Hours tion, Thermal tate of Charge OH), External t, Logging and 08 Hours Julator, Analog signs, ATMEL's ete BMS, Peter						
Communic Telemetry, Custom B Using BMS Monitor, A BMS Proce Perkin's C	ent, Balancing, Redistribution th of Discharge, Capacity cations, Dedicated Analog W Off-the-Shelf BMSs, Cell Ma MS Design S ASICs , BMS ASIC Compari Analog Balancer, Analog Pro essor, Elithion's BMS Chip S Open Source BMS, Texas In	n, Distributed (, Resistance, /ire, Dedicated anufacturers' BI ison, Analog BI tector, Ready- et, National Se nstruments' bo	Management, Protect Charging, Evaluation, State of Health (S Digital Wire, Data Link MSs, Comparison MS Design, Analog Reg Made, Digital BMS Dese emiconductors' Comple q29330/bq20z90, Texas	07 Hours tion, Thermal tate of Charge OH), External t, Logging and 08 Hours Julator, Analog signs, ATMEL's ete BMS, Peter s Instruments'						
Communic Telemetry, Custom B Using BMS Monitor, A BMS Proce Perkin's C bq78PL114	ent, Balancing, Redistribution th of Discharge, Capacity cations, Dedicated Analog W Off-the-Shelf BMSs, Cell Ma MS Design S ASICs , BMS ASIC Compari Analog Balancer, Analog Pro essor, Elithion's BMS Chip S Open Source BMS, Texas In 4/bq76PL102, Custom Dig	n, Distributed (y, Resistance, /ire, Dedicated anufacturers' Bl ison, Analog Bl itector, Ready- et, National Se nstruments' bo gital BMS D	Management, Protect Charging, Evaluation, State of Health (S Digital Wire, Data Link MSs, Comparison MS Design, Analog Reg Made, Digital BMS Des emiconductors' Complet (29330/bq20z90, Texas besign, Voltage and	07 Hours tion, Thermal tate of Charge OH), External t, Logging and 08 Hours ulator, Analog signs, ATMEL's ete BMS, Peter s Instruments' Temperature						
Communic Telemetry, Custom B Using BMS Monitor, A BMS Proce Perkin's C bq78PL114 Measurem	ent, Balancing, Redistribution th of Discharge, Capacity cations, Dedicated Analog W Off-the-Shelf BMSs, Cell Ma MS Design S ASICs , BMS ASIC Compari Analog Balancer, Analog Pro essor, Elithion's BMS Chip S Open Source BMS, Texas In 4/bq76PL102, Custom Dig ent, Current Measureme	n, Distributed (, Resistance, /ire, Dedicated anufacturers' Bl ison, Analog Bl tector, Ready- et, National Se nstruments' bo gital BMS D ent, Evaluation	Management, Protect Charging, Evaluation, State of Health (S Digital Wire, Data Link MSs, Comparison MS Design, Analog Reg Made, Digital BMS Des emiconductors' Comple q29330/bq20z90, Texas besign, Voltage and n, Communications,	07 Hours tion, Thermal tate of Charge OH), External t, Logging and 08 Hours Julator, Analog signs, ATMEL's ete BMS, Peter s Instruments' Temperature Optimization,						
Communic Telemetry, Custom B Using BMS Monitor, A BMS Proce Perkin's C bq78PL114 Measurem Switching,	ent, Balancing, Redistribution th of Discharge, Capacity cations, Dedicated Analog W Off-the-Shelf BMSs, Cell Ma MS Design S ASICs , BMS ASIC Compari Analog Balancer, Analog Pro essor, Elithion's BMS Chip S Open Source BMS, Texas In 4/bq76PL102, Custom Dig ent, Current Measureme Logging, Cell Interface, Non	n, Distributed (, Resistance, /ire, Dedicated anufacturers' Bl ison, Analog Bl ison, Analog Bl tector, Ready- et, National Se nstruments' bo gital BMS D ent, Evaluation -distributed, D	Management, Protect Charging, Evaluation, State of Health (S Digital Wire, Data Link MSs, Comparison MS Design, Analog Reg Made, Digital BMS Des emiconductors' Comple q29330/bq20z90, Texas besign, Voltage and n, Communications, istributed, Distributed C	07 Hours tion, Thermal tate of Charge OH), External t, Logging and 08 Hours ollator, Analog signs, ATMEL's ete BMS, Peter s Instruments' Temperature Optimization, Charging						
Communic Telemetry, Custom B Using BMS Monitor, <i>A</i> BMS Proce Perkin's C bq78PL114 Measurem Switching,	ent, Balancing, Redistribution th of Discharge, Capacity cations, Dedicated Analog W Off-the-Shelf BMSs, Cell Ma MS Design S ASICs , BMS ASIC Compari- Analog Balancer, Analog Pro essor, Elithion's BMS Chip S Open Source BMS, Texas In 4/bq76PL102, Custom Dig ent, Current Measureme Logging, Cell Interface, Non	n, Distributed (, Resistance, /ire, Dedicated anufacturers' Bl ison, Analog Bl itector, Ready- et, National Se nstruments' bo gital BMS D ent, Evaluation -distributed, D	Management, Protect Charging, Evaluation, State of Health (S Digital Wire, Data Link MSs, Comparison MS Design, Analog Reg Made, Digital BMS Des emiconductors' Comple q29330/bq20z90, Texas besign, Voltage and n, Communications, istributed, Distributed C	07 Hours tion, Thermal tate of Charge OH), External t, Logging and 08 Hours oulator, Analog signs, ATMEL's ete BMS, Peter s Instruments' Temperature Optimization, Charging						
Communic Telemetry, Custom B Using BMS Monitor, A BMS Proce Perkin's C bq78PL114 Measurem Switching,	ent, Balancing, Redistribution th of Discharge, Capacity cations, Dedicated Analog W Off-the-Shelf BMSs, Cell Ma MS Design S ASICs , BMS ASIC Compari- Analog Balancer, Analog Pro- essor, Elithion's BMS Chip S Open Source BMS, Texas In 4/bq76PL102, Custom Dig ent, Current Measureme Logging, Cell Interface, Non	n, Distributed (/, Resistance, /ire, Dedicated anufacturers' Bl ison, Analog Bl itector, Ready- et, National Se nstruments' bo gital BMS D ent, Evaluation -distributed, D UNIT-III	Management, Protect Charging, Evaluation, St State of Health (S Digital Wire, Data Link MSs, Comparison MS Design, Analog Reg Made, Digital BMS Des emiconductors' Comple q29330/bq20z90, Texas resign, Voltage and n, Communications, istributed, Distributed C	07 Hours tion, Thermal tate of Charge OH), External t, Logging and 08 Hours ulator, Analog signs, ATMEL's ete BMS, Peter s Instruments' Temperature Optimization, Charging						
Communic Telemetry, Custom B Using BMS Monitor, <i>A</i> BMS Proce Perkin's C bq78PL114 Measurem Switching,	ent, Balancing, Redistribution th of Discharge, Capacity cations, Dedicated Analog W Off-the-Shelf BMSs, Cell Ma MS Design S ASICs , BMS ASIC Compari- Analog Balancer, Analog Pro essor, Elithion's BMS Chip S Open Source BMS, Texas In 4/bq76PL102, Custom Dig ent, Current Measureme Logging, Cell Interface, Non	n, Distributed (, Resistance, /ire, Dedicated anufacturers' Bl ison, Analog Bl itector, Ready- et, National Se nstruments' bo gital BMS D ent, Evaluation -distributed, D UNIT-III	Management, Protect Charging, Evaluation, State of Health (S Digital Wire, Data Link MSs, Comparison MS Design, Analog Reg Made, Digital BMS Des emiconductors' Comple q29330/bq20z90, Texas besign, Voltage and n, Communications, istributed, Distributed C	07 Hours tion, Thermal tate of Charge OH), External t, Logging and 08 Hours oulator, Analog signs, ATMEL's ete BMS, Peter s Instruments' Temperature Optimization, Charging 10 Hours						
Communic Telemetry, Custom B Using BMS Monitor, A BMS Proce Perkin's C bq78PL114 Measurem Switching, Installing,	ent, Balancing, Redistribution th of Discharge, Capacity cations, Dedicated Analog W Off-the-Shelf BMSs, Cell Ma MS Design S ASICs , BMS ASIC Compari Analog Balancer, Analog Pro essor, Elithion's BMS Chip S Open Source BMS, Texas In 4/bq76PL102, Custom Dig ent, Current Measureme Logging, Cell Interface, Non a BMS Battery Pack Design, BMS (n, Distributed (, Resistance, /ire, Dedicated anufacturers' Bl ison, Analog Bl tector, Ready- et, National Se nstruments' bo gital BMS D ent, Evaluation -distributed, D UNIT-III Connections to	Management, Protect Charging, Evaluation, St State of Health (S Digital Wire, Data Link MSs, Comparison MS Design, Analog Reg Made, Digital BMS Dese miconductors' Comple q29330/bq20z90, Texas besign, Voltage and n, Communications, istributed, Distributed C	07 Hours tion, Thermal tate of Charge OH), External t, Logging and 08 Hours Julator, Analog signs, ATMEL's ete BMS, Peter s Instruments' Temperature Optimization, Charging 10 Hours ons to System,						
Communic Telemetry, Custom B Using BMS Monitor, <i>A</i> BMS Proce Perkin's C bq78PL114 Measurem Switching, Deploying Installing, Configurin	ent, Balancing, Redistribution th of Discharge, Capacity cations, Dedicated Analog W Off-the-Shelf BMSs, Cell Ma MS Design S ASICs , BMS ASIC Compari- Analog Balancer, Analog Pro- essor, Elithion's BMS Chip S Open Source BMS, Texas In 4/bq76PL102, Custom Dig ent, Current Measureme Logging, Cell Interface, Non g a BMS Battery Pack Design, BMS of g, Cell Configuration, Pac	n, Distributed (, Resistance, /ire, Dedicated anufacturers' Bl ison, Analog Bl itector, Ready- et, National Se nstruments' bo gital BMS D ent, Evaluation -distributed, D UNIT-III Connections to ck Configurati	Management, Protect Charging, Evaluation, St State of Health (S Digital Wire, Data Link MSs, Comparison MS Design, Analog Reg Made, Digital BMS Des emiconductors' Comple q29330/bq20z90, Texas besign, Voltage and n, Communications, istributed, Distributed C o Pack, BMS Connectio on, System Configura	07 Hours tion, Thermal tate of Charge OH), External c, Logging and 08 Hours Julator, Analog signs, ATMEL's ete BMS, Peter s Instruments' Temperature Optimization, Charging 10 Hours ons to System, ation, Testing,						
Communic Telemetry, Custom B Using BMS Monitor, A BMS Proce Perkin's C bq78PL114 Measurem Switching, Deploying Installing, Configurin Troubleshe	ent, Balancing, Redistribution th of Discharge, Capacity cations, Dedicated Analog W Off-the-Shelf BMSs, Cell Ma MS Design 5 ASICs , BMS ASIC Compari- Analog Balancer, Analog Pro- essor, Elithion's BMS Chip S Open Source BMS, Texas In 4/bq76PL102, Custom Dig ent, Current Measureme Logging, Cell Interface, Non g a BMS Battery Pack Design, BMS (opting, Grounding, Shielding	n, Distributed (, Resistance, /ire, Dedicated anufacturers' Bl ison, Analog Bl tector, Ready- et, National Se nstruments' bo gital BMS D ent, Evaluation -distributed, D UNIT-III Connections to k Configuration , Filtering, Wire	Management, Protect Charging, Evaluation, St State of Health (S Digital Wire, Data Link MSs, Comparison MS Design, Analog Reg Made, Digital BMS Dese emiconductors' Comple q29330/bq20z90, Texas besign, Voltage and n, Communications, istributed, Distributed C pack, BMS Connection on, System Configurate e Routing	07 Hours tion, Thermal tate of Charge OH), External t, Logging and 08 Hours Julator, Analog signs, ATMEL's ete BMS, Peter s Instruments' Temperature Optimization, Charging 10 Hours ons to System, ation, Testing,						

Cou	rse Outcomes: At the end of t	the	COLIR	ςο ς	tude	ont v	will	he a	hle	to				
Cou														
1	Identify process to impleme	ent E	BMS											
2	Describe various communic	atio	n pr	oto	col i	nvol	lved	in I	BMS					
3	Illustrate functionality of BMS													
4	Apply concepts of BMS using application specific IC													
5	Analyse the hardware implementation aspects of BMS													
Cou	rse Outcomes Mapping with	Pro	ogra	m C	Outo	om	es							7
	Program Outcomes→	1	2	3	4	5	6	7	8	9	10	11	12	
	↓ Course Outcomes													
	EE2501-1.1	1	3	-	-	-	-	-	-	-	-	-	-	
	EE2501-1.2	1	3	-	-	-	-	I	-	-	-	-	-	
	EE2501-1.3	1	2	3	-	-	-	I	-	-	-	-	-	
	EE2501-1.4	1	2	2	3	_	-	-	-	-	-	-	-	
	EE2501-1.5	1	3	-	-	-	-	-	-	-	-	-	-	
1: Lo	ow 2: Medium 3: High													
TEX	TBOOKS:													
1	Davide Andrea, "Battery Ma	anag	gem	ent S	Syst	ems	for	Lar	ge L	ithi	um-Io	n Batt	ery Pa	cks",
	ARTECH HOUSE 2010.													
REF	ERENCE BOOKS:													
1	Rui Xiong, "Battery Manage	eme	nt A	lgor	ithn	n fo	r Ele	ectri	c Ve	hicl	es", Sp	oringe	r 2019	•
2	Nicolae Tudoroiu, "Battery	/ M	anag	gem	ent	Sys	tem	s o	f Ele	ectri	c and	l Hybr	rid Ele	ctric
	Vehicles", MDPI 2021													

	BIOMEDICAL INSTRUMENTATION								
Cour	se Code:	EE2502-1	Course Type	OEC					
Teac	hing Hours/Week (L: T: P: S)	3:0:0:0	Credits	03					
Tota	Teaching Hours	40	CIE + SEE Marks	50+50					
Prere	equisite	EC1001-1							
	Teaching Department:	Electrical & El	ectronics Engineering						
Cours	e Objectives:								
1.	The course is designed to give	e the basic con	cepts of Instrumentation	n involved in					
	medical field and human phys	iology.							
2.	2. To introduce an fundamental of transducers as applicable to physiology								
3.	To explore the human body pa	arameter measu	rements setups						
4.	To make the students understa	and the basic co	oncepts of forensic tech	niques.					
5.	To give basic ideas about Elect	trophysiologica	l measurements, medica	al imaging					
		UNIT-I		T					
Physic	ology and transducers			08 Hours					
Cell ar	nd its structure, Resting and Actio	n Potential, Ne	rvous system: Functiona	lorganization					
of the	nervous system, Structure of r	nervous system	, neurons, synapse, trai	nsmitters and					
neural	communication, Cardiovascular	system, respir	atory system, Basic com	ponents of a					
biome	dical system, Transducers, selec	ction criteria, F	Piezo-electric, ultrasonic	: transducers,					
Tempe	erature measurements, Fiber opt	ic sensors.		1					
Electro	o – Physiological measurement	ts		09 Hours					
Electro	odes: Limb electrodes, floating e	electrodes, pre-	-gelled disposable elect	rodes, Micro,					
needle	e and surface electrodes, Ampli	ifiers: Preampli	fiers, differential amplif	iers, chopper					
	iers, Isolation amplifier. ECG, EE	G, EMG, ERG, L	ead systems and record	ing methods,					
Туріса	I waveforms. Electrical safety in n	nedical environ	ment: shock hazards, lea	kage current-					
Instrur	nents for checking safety param	eters of blomed	aical equipment.						
Nen									
Non-e	electrical parameter measurem	ents	lloart rata lloart cour						
function	irement of blood pressure, Ca	Desta Distary	mearl rale, mearl sour						
Plaad	Cas analyzers : pH of blood mo	Photo Plethys	lood pCO2 pO2 finger	tin ovimator					
	SP monouromonte	asurement of L	nood pcoz, poz, ninger	-up oximeter,					
ESR, G									
Padio	aranhic and fluoroscopic tochnic		moutor tomography M						
	MPI Illtrasonography Endosco	ny Thormogra	niputer tomography, Ma nby Different types of	hiotolomotry					
system	and nations monitoring	py, mennogra	pily, Different types of	biotelemetry					
systen									
Accist	ing and therapeutic equipmen	ts.		08 Hours					
Pacem	akers. Defibrillators. Ventilators	. Nerve and n	nuscle stimulators Diat	hermy Heart					
	Lung machine Audio meters Dialyzers Lithotrinsy								
Cours	Course Outcomes: At the end of the course student will be able to								
1	Understand the physiology of	biomedical syst	tem						

2	Measure biome	dical	and	ohysi	iolog	ical i	nforn	natio	n					
3	Discuss the appli	catio	n of	Elect	ronic	s in c	diagr	nostic	s and	d the	rapeu	itic are	ea.	
4	Analyze the imag	jes a	nd do	рар	redic	tion	using	g ima	ge p	roces	ssing.			
5	Understand the o	differ	ent e	quip	ment	's us	ed fo	r vari	ious	meas	urem	ents o	f physic	ology
Course Outcomes Mapping with Program Outcomes														
	Program	1	2	3	4	5	6	7	8	9	10	11	12	
	Outcomes→													
	↓ Course													
	Outcomes													
	EE2502-1.1	3	3	-	2	1	1	-	-	-	-	-	-	
	EE2502-1.2	2	2	2	2	-	-	-	-	-	-	-	-	
	EE2502-1.3	3	2	2	1	2	1	-	-	-	-	-	-	
	EE2502-1.4	2	3	-	-	1	_	-	_	-	-	1	-	
	EE2502-1.5	3	3	-	-	2	-	-	-	-	-	2	-	
1: L	ow 2: Medium 3: Hi	gh												
TEX	(TBOOKS:													
1	Leslie Cromwell, I	Fred	J.We	ibell,	Eric	h A.F	feiffe	er, "B	sio-N	1edic	al Ins	trume	ntation	and
	Measurements", Il	l edit	ion, I	Pears	on E	duca	tion,	2002						
2.	R. S. Khandpur,	"Han	dboo	ok of	f Bio	-Meo	dical	instr	ume	ntatio	on", T	Tata N	/IcGraw	Hill
_•	Publishing CoLtd.,	200	3.											
3.	J. Webster, "Medi	cal In	strur	nent	ation	", Joł	n W	iley 8	k Soi	ns, 19	995.			
4.	L. A. Geddes and	L. E.	Bak	er, "F	Princi	ples	of A	pplie	d Bio	o-Me	edical	Instru	mentat	ion",
	John Wiley & Son	s, 19	75.											
<u>5.</u>	David. Cooney an	d Mi	chel I	Jeck	ker, "	Bio-	Med	ical E	ngin	eerin	ng Prir	nciples	5", INC.	
REF	ERENCE BOOKS:	<u> </u>				•				0.04				
-	David Cooney, "	Bio-N	Medio	cal E	ngin	eerin	g Pr	incip	les",	201	5, 1st	t Edit	ion, Ma	arcel
1	Deckker Pub Co.,	New	York											

	ELECTRIC VEHICLE TECHNOLOGY								
Cou	rse Code:	EE2503-1	Course Type	OEC					
Teac	hing Hours/Week (L: T: P: S)	3:0:0:0	Credits	03					
Tota	l Teaching Hours	40+0+0	CIE + SEE Marks	50+50					
Prer	equisite	EE1001-1							
	Teaching Department:	Electrical & E	lectronics Engineerin	g					
Cours	e Objectives:								
1	To Understand the fundamenta	al laws and veh	nicle mechanics.						
2	To Understand working of Elec	tric Vehicles a	nd recent trends.						
3	3 Ability to analyze different power converter topology used for electric vehicle								
	application								
4	Ability to develop the electric electric vehicles	propulsion ui	nit and its control for	application of					
\/_L.'-		UNIT-I		07.11.					
venic				U/ Hours					
Propulsion Power, Force-Velocity Characteristics, Maximum Gradability, Velocity and Acceleration, Constant FTR, Level Road, Velocity Profile, Distance Traversed, Tractive Power,									
Electr	y Required, Nonconstant FTR, Ge		tion, Propulsion Syster						
Confi	ic and Hybrid Electric Vehicles	Dorformonco	of Floctric Vahielas	UT HOURS					
charae effort Archit electr	cteristics, Tractive effort and Tran in normal driving, Energy con ecture of Hybrid Electric Drive Tra ic drive train).	smission requi sumption Con ains, Series Hyb	rement, Vehicle perfor cept of Hybrid Electr prid Electric Drive Trains	mance, Tractive ic Drive Trains, s, Parallel hybrid					
F		UNIT-II		00 11					
Energ	y storage for EV and HEV		· · · · · · · · · · · · · · · · · · ·						
Energ	y storage requirements, Battery	parameters, Ty	pes of Batteries, Mode	Hing of Battery,					
Fuel	Leli basic principle and operation	on, types of t	ruel Cells, PEIVIFC and	a its operation,					
	ing of PEMFC, Supercapacitors.			00 110.000					
Electr			- Tradication and tradic						
EV CO Magn	et Motor Drives, Switch Reluctar	a speed contro nce Motor Dri [,]	ve for Electric Vehicles	s, Configuration					
Dacia	n of Electric and Wybrid Electri			10 40.000					
Sorios	Hybrid Electric Drive Train Desi	an: Operating	nattorne control strat	<u>IO HOUIS</u>					
desigi drive transr	Series Hybrid Electric Drive Train Design: Operating patterns, control strategies, Sizing of major components, power rating of traction motor, power rating of engine/generator, design of PPS Parallel Hybrid Electric Drive Train Design: Control strategies of parallel hybrid drive train, design of engine power capacity, design of electric motor drive capacity, transmission design, energy storage design.								

Cours	se Outcomes: At the end of the course student will be able to							
1	Explain the roadway fundamentals, laws of motion, vehicle mechanics and							
1	propulsion system design							
2	Explain the working of electric vehicles and hybrid electric vehicles in recent trends.							
3	Model batteries, Fuel cells, PEMFC and super capacitors.							
4	Analyze DC and AC drive topologies used for electric vehicle application.							
F	Develop the electric propulsion unit and its control for application of electric							
5	vehicles.							

Course Outcomes Mapping with Program Outcomes

Program Outcomes→	1	2	3	4	5	6	7	8	9	10	11	12
↓ Course Outcomes												
EE2503-1.1	2	3	-	-	I	-	I	1	-	1	-	-
EE2503-1.2	1	2	3	-	-	-	-	-	1	-	-	-
EE2503-1.3	1	2	3	-	-	-	-	-	-	-	-	-
EE2503-1.4	1	2	3	-	-	-	-	-	-	-	-	-
EE2503-1.5	1	2	2	-	-	-	-	-	-	-	3	-

1: Low 2: Medium 3: High

TEXT	BOOKS:					
1	Iqbal Husain, "Electric and Hybrid Vehicles: Design Fundamentals", CRC Press, 2003.					
ſ	M. Ehsani, Y. Gao, S.Gay and Ali Emadi, "Modern Electric, Hybrid Electric, and Fuel					
2	Cell Vehicles: Fundamentals, Theory, and Design", CRC Press, 2005.					
REFE	RENCE BOOKS:					
-	Sheldon S. Williamson, "Energy Management Strategies for Electric and Plug-in					
Ŧ	Hybrid Electric Vehicles", Springer, 2013.					
2	C.C. Chan and K.T. Chau, "Electric Vehicle Technology", OXFORD University, 2001					
ſ	Chris Mi, M. Abul Masrur, David Wenzhong Gao, "Hybrid Electric Vehicles Principles					
5	And Applications with Practical Perspectives", Wiley Publication, 2001					
E Boo	oks / MOOCs/ NPTEL					
1.	Introduction to Mechanics Coursera					
2.	Electric Vehicles - Part 1 - Course (nptel.ac.in)					
3.	NPTEL: Electrical Engineering - Introduction to Hybrid and Electric Vehicles					
4.	Hybrid Vehicles (edX) MOOC List (mooc-list.com)					
5.	Electric Cars: Technology My MOOC (my-mooc.com)					

FUNDAMENTALS OF PLC AND ITS APPLICATIONS									
Course Code:EE2504-1Course TypeOEC									
Teaching Hours/Week (L: T: P: S)	3:0:0:0	Credits	03						
Total Teaching Hours	40 CIE + SEE Marks 50								
Prerequisite	EC1001-1								
Teaching Department: Electrical & Electronics Engineering									

Teaching Department: Electrical & Electronics Engineering

Cour	se Objectives:	
1.	To understand main parts and their functions, basic sequence of operative	ation of PLC.
2.	To study the different programming languages and fundamental wirir	ig diagrams.
3.	To explain the functions of PLC counter instructions, applying con	nbinations of
	counters and timers to control systems.	
4.	To explain the basic operation of PLC closed-loop control system, var	ious forms of
	mechanical sequencers and their operations	
5.	To discuss the operation of various processes, structures of control sys	tems and the
	method of communication between different industrial processes	
	UNIT-I	
Prog	rammable Logic Controllers	02 Hours
Intro	duction, Parts of a PLC, Principles of Operation, PLC Size and Application	ו.
PLC	Hardware Components	05Hours
The	I/O Section, Discrete I/O Modules, Analog I/O Modules, Special I/O	Modules, I/O
Spec	ifications, The Central Processing Unit (CPU), Memory Design, M	emory Types,
Prog	ramming Terminal Devices, Human Machine Interface (HMIs).	
Basio	: Programming Language	05Hours
Ladd	er diagrams, Ladder conventions, Logic functions with timing diag	ram, latching,
mult	ple outputs, entering programs, Functional blocks, Program examples,	instruction list,
bran	ch codes, programming examples, Sequential functions charts, b	ranching and
conv	ergence, actions, Structured Text, conditional and iteration statements	
Deve	eloping Fundamental PLC wiring Diagrams and Ladder Logic	03Hours
Flect	romagnetic Control Relays, Contactors, Motor Starters, Manually Oper	ated Switches
Mech	nanically Operated Switches, Sensors, Output Control Devices, Seal-In Cir	cuits. Latching
Relay	vs. Converting Relay Schematics into PLC Ladder Programs. Writing a	Ladder Logic
Prog	ram Directly from a Narrative Description.	
	UNIT-II	
Prog	ramming Timers	02 Hours
Intro	duction, Necessity of Energy Storage and Methods of Energy Storage	(Classification
and l	prief description using block diagram representation)	
Prog	ramming Counters	04 Hours
Cour	iter Instructions, Up-Counter, Down-Counter, Cascading Counters	, Incremental
Enco	der-Counter Applications, Combining Counter and Timer Functions.	
Prog	ram Control Instructions	05 Hours
Mast	er Control Reset Instruction, Jump Instruction, Subroutine Functions, Im	mediate Input
and I	mmediate Output Instructions, Forcing External I/O Addresses, Safety C	ircuitry,
Selec	table Timed Interrupt, Fault Routine, Temporary End Instruction, Susper	d Instruction.
Data	Manipulation Instructions	02 Hours
Data	Manipulation, Data Transfer Operations, Data Compare Instructions, Da	ta
Mani	pulation Programs, Numerical Data I/O Interfaces, Closed-Loop Control	•
Math	n Instructions	02 Hours

Math Instructions, Addition Instruction, Subtraction Instruction, Multiplication Instruction, Division Instruction, Other Word-Level Math Instructions, File Arithmetic Operations

UNIT-III

Sequencer and Shift Register Instructions

05 Hours

Mechanical Sequencers, Sequencer Instructions, Sequencer Programs, Bit Shift Registers, Word Shift Operations.

Process Control, Network Systems, and SCADA

05 Hours

Types of Processes, Structure of Control Systems, On/Off Control, PID Control, Motion Control, Data Communications, Supervisory Control and Data Acquisition (SCADA).

Course Outcomes: At the end of the course student will be able to

	Identify main parts, functions of PLC and describe basic circuitry for I/O modules to
1.	select PLC for desired application
	Apply suitable logic using various programming languages to achieve specific
2.	control mechanism for a given application
	Identify timer/counter resources of a PLC to design control logic for interfaced
3.	device.
4.	Interpret data manipulation and math instructions as they apply to a PLC program
	Develop programs that use shift registers and explain functions of control elements
5.	of a closed loop control system

Course Outcomes Mapping with Program Outcomes

Program Outcomes→	1	2	3	4	5	6	7	8	9	10	11	12	
↓ Course Outcomes													
EE2504-1.1	3	-	-	-	-	-	I	1	-	-	-	-	
EE2504-1.2	1	3	-	-	1	I	I	-	-	-	-	-	
EE2504-1.3	1	2	3	-	-	-	-	-	-	-	-	-	
EE2504-1.4	1	2	3	-	-	-	-	-	-	-	-	-	
EE2504-1.5	1	2	3	-	-	-	-	-	_	-	-	-	

1: Low 2: Medium 3: High

TEXTBOOKS:

1.	Frank Petruzella, "Programming Logic Controllers", Fifth Edition.
2.	W Bolton, "Programmable Logic controllers", 6th edition, Elsevier- newness, 2015.
REFE	RENCE BOOKS:
1.	John W Webb, Ronald A Reis, "Programmable logic controllers - principles and
	applications", 5th edition, 2nd impression, Pearson education, 2009
2.	L. A Bryan, E. A Bryan, "Programmable Controller Theory and Implementations", 2nd
	edition, 2003
3.	S. P. Sukhumi, J. K. Nayak, "Solar Energy: Principles Collection and Storage", 3rd
	edition, McGraw-Hill Education (India), 2009.
E Boo	oks / MOOCs/ NPTEL
1.	https://library.automationdirect.com/category/product/programmable-control/

2.	https://www.coursera.org/lecture/intelligent-machining/programmable-logic-
	controllers-plc-fGz3r
3.	https://www.udemy.com/course/plc-programming-from-scratch/

MOTORS AND MOTOR CONTROL CIRCUITS											
Course Code:	EE2505-1	Course Type	OEC								
Teaching Hours/Week (L: T: P: S)	3:0:0:0	Credits	03								
Total Teaching Hours	40	CIE + SEE Marks	50+50								
Prerequisite	EE1001-1		i.								
Teaching Department:	Electrical & E	lectronics Engineering									
Course Objectives:											
1. Study architecture of induction	1. Study architecture of induction motor and synchronous motor										
2. Understanding control of AC mo	otor										
3. Study principle of operation of o	different dc mo	otors									
4. Understand the different types of	of control tech	niques									
5. Study different sensors and thei	r role in contro	ol of a motor									
	UNIT-I										
AC Motor Designs			08 Hours								
Introduction, Three phase AC motor	r architecture,	Torque speed curve,	wound rotor,								
Synchronous motors											
Single phase AC motors, split phase	e motor, capa	citor start and shaded	pole motors,								
Universal and gear motors, AC Mot	or Specification	ons, Specifying an AC	motor for an								
application.			-								
AC Motor Control:			07 Hours								
AC motor Enclosures, AC motor contro	l components,	Manual motor starting s	ystems, Direct								
On Line Starter, semi-automatic star d	elta starter, ful	ly automatic star delta s	tarter, control								
circuit for sequence operation of two r	notors										
DC Motors	UNIT-11										
DC motor principle of operation Bruch	had DC matar	s chunt carios and com									
motors Bruchless DC motors driving a	heu DC motor	motor Commutation S	pound wound								
motor	i biusiliess DC		bechying a DC								
DC Motor Control and Stepper Moto	ors		08 Hours								
Stepper motor principles of operation	Illustrative exa	mple of a stepper motor	drive stepper								
motor specification and operation co	mmercial step	per motor drive chips a	and packages								
Direction Controller- H Bridge, Speed (Controller: Puls	e Width Modulation (PV	VM). Armature								
Controller: Variable resistance, DC vs.A	C motors		(ini), / initiatare								
	UNIT-III										
Sensors 10 Hours											
Unipolar Hall Effect Switches, Omnipol	lar Hall Effect S	Switches, Latched Hall E	ffect Switches.								
Current Sensors: Shunt resistor, Curre	ent-sensing tra	ansformer, Hall effect c	urrent sensor,								
Speed/position sensors: Quadrature er	ncoder, Hall ef	fect tachometer, Back El	MF/Sensorless								
control method, BLDC motor control w	ith Hall sensor	, Block diagram approac	h of BLDC Fan								
and Motor Control		. J - FF									
Course Outcomes: At the end of the c	ourse student	will be able to									

1.	Demonstrate an understanding of the general principles of AC Motor.
	Understand the basic principles of AC motor controls which includes starters,
2.	contactors, and control relays
3.	Demonstrate an understanding of the general principles of DC Motor.
	Understand the basic principles of DC motor controls which includes starters,
4.	contactors, and control relays
5.	Set up sensors in order to give feedback to a control circuit

Course Outcomes Mapping with Program Outcomes

Program	1	2	3	4	5	6	7	8	9	10	11	12				
Outcomes→																
↓ Course																
Outcomes																
EE2505-1.1	3	-	-	-	-	-	-	-	-	-	-	-				
EE2505-1.2	2	3	3	-	-	2	-	-	-	-	-	-				
EE2505-1.3	3	-	-	-	-	-	-	-	-	-	-	-				
EE2505-1.4	2	3	3	-	-	2	-	-	-	-	-	-				
EE2505-1.5	2	3	3	-	-	2	-	-	-	-	-	-				
L: Low 2: Medium 3: H	ligh	•	•	•	•	L: Low 2: Medium 3: High										

TEXTBOOKS: S. K. Bhattacharya Birjindersingh, "Control of electrical machines", New Age International. Gary J. Rockis & Glen A. Mazura, "Electrical Motor Controls", 5th Edition, ISBN number is 9780826912268 REFERENCE BOOKS: Stephen L. Herman, "Industrial Motor Control", Delmar Publishers, Inc., latest Edition. E Books / MOOCs/ NPTEL https://www.coursera.org/learn/motors-circuits-design http://ww1.microchip.com/downloads/en/appnotes/00894a.pdf

	NON-CONVENTIONAL ENERGY SOURCES										
C οι	ırse Code:	EE2506-1	Course Type	OEC							
Теа	ching Hours/Week (L: T: P: S)	3:0:0:0	Credits	03							
Tot	al Teaching Hours	40	CIE + SEE Marks	50+50							
Pre	requisite	EE1001-1									
	Teaching Department:	Electrical & El	ectronics Engineering	g							
Cou	rse Objectives:										
1.	1. To understand the principle of extraction of energy from conventional,										
	To understand the working p	rinciple and ar	onlications of solar h	ased thermal							
2.	electrical and PV systems.		oplications of solar b	aseu mermai,							
	To justify the usage of energy s	storage technic	ues and understand	the process of							
3.	design and implement wind bas	ed energy conv	version systems.								
	To understand the process of	f design and	implement biomass	based energy							
4.	conversion systems	-									
		UNIT-I									
Ener	gy Sources			03 Hours							
Intro	duction, Importance of Energy C	Consumption a	s Measure of Prospe	rity, Per Capita							
Ener	gy Consumption, Classification of	Energy Resour	ces, Conventional Ene	ergy Resources-							
Avail	ability and their Limitations, No	on-Convention	al Energy Resources-	- Classification,							
Adva	antages, Limitations, Comparison	of Conventio	onal and Non-Conve	ntional Energy							
Reso	urces, World Energy Scenario, Indi	ian Energy Scer	nario								
Sola	ar Energy Basics			05 Hours							
Intro	duction, Solar Constant, Basic Sun	-Earth Angles -	 definitions and their 	representation,							
Solai	r Radiation Geometry (numerical p	roblems), Estim	nation of Solar Radiatio	on of Horizontal							
and	Tilted Surfaces (numerical prob	olems), Measu	rement of Solar Rad	diation Data –							
Pyra	nometer and Pyrheliometer										
Sola	r Thermal Systems			04 Hours							
Princ	iple of Conversion of Solar Radiati	ion into Heat, S	Solar Water Heaters (Fl	at Plate							
Colle	ectors), Solar Cookers – Box type, C	Concentrating d	lish type, Solar driers, S	Solar Still, Solar							
Furn	aces, Solar Green House.										
Sola	r Electric Systems			04 Hours							
Sola	r Thermal Electric Power Ger	neration, Solai	r Pond and Conce	ntrating Solar							
Colle	ctor(Parabolic Trough, Parabolic	Dish, Central	Tower Collector), A	dvantages and							
Disa	dvantages; Solar Photovoltaic – So	olar Cell fundaı	mentals, characteristic	s, classification,							
cons	truction of module, panel and array	y. Solar PV Syste	ems- stand-alone and	grid connected,							
Appl	ications- Street lighting, Domestic	lighting and So	olar Water pumping sy	Applications- Street lighting, Domestic lighting and Solar Water pumping systems.							
	UNIT-II										
Ener	gy Storage			/stems.							
Introduction, Necessity of Energy Storage and Methods of Energy Storage (Classification											
Intro	brief description using block diagr	age and meth	ods of Energy Storage	04 Hours e (Classification							
	brief description using block diagr	am representat	ods of Energy Storage tion)	e (Classification							
and Wine	brief description using block diagr d Energy	am representat	ods of Energy Storage tion)	04 Hours e (Classification 04 Hours							
Energy Storage 04 Hours Introduction, Necessity of Energy Storage and Methods of Energy Storage (Classification and brief description using block diagram representation) 04 Hours											
and Wine	brief description using block diagr d Energy duction Wind and its Properties	am representat	ods of Energy Storage tion)	04 Hours e (Classification 04 Hours 04 Hours							

N)

Wind site selection consideration, Advantages and Disadvantages of WECS.														
Bio	Biomass Energy 06 Hours													
Intr	Introduction, Photosynthesis process, Biomass fuels, Biomass conversion technologies,													
Urban waste to Energy Conversion, Biomass Gasification, Biomass to Ethanol Production,														
Biog	Biogas production from waste biomass, Factors affecting biogas generation, types of biogas													
plar	its- KVIC and Janata model, Bio	ma	ss p	rogr	am i	in In	dia							
			ι	JNIT	-III									
Ene	Energy From Ocean 05 Hours											rs		
Tida	l Energy – Principle of Tidal Po	wei	r, Co	omp	onei	nts c	of Ti	dal	Pow	ver F	Plant, (Classifi	ication	of
Tida	l Power Plant, Estimation of E	Ener	gy	– Si	ngle	ba:	sin a	and	Do	uble	e basir	n type	TPP (no
deri	vations, Simple numerical probl	lem	s), A	dva	ntag	jes a	nd l	Limi	tatio	on o	f TPP.	Ocear	n Therr	nal
Ene	rgy Conversion (OTEC): Principle	e of	OT	EC s	yste	m, N	/leth	ods	of (OTE	C pow	er gen	eratio	n –
Оре	n Cycle (Claude cycle), Close	d C	Sycle	e (A	ndei	rson	сус	cle),	Hyl	orid	cycle	, Site-	select	ion
crite	eria, Biofouling, Advantages & L	imi	tatio	on o	f OT	EC								
												- 1		
Eme	erging Technologies											0	5 Hou	rs
Fuel	Cell, Small Hydro Resources, H	Hyd	roge	en E	nerg	gy ai	nd V	Nave	e En	ergy	y (Prin	ciple o	of Ene	ſgy
gen	eration using block diagrams, a	idva	nta	ges a	and	limi	tatic	ons)						
Cou	rse Outcomes: At the end of the	he c	cour	se si	tude	ent w	vill b	be at	ole t	0				
1.	Describe non-conventional e	ener	gy s	our	ces a	and s	sola	r rad	liatio	on g	eome	try to e	estima	te
	and measure solar radiation.	•												
2.	Apply the principle of solar r	adi	atio	n int	o he	eat t	o ur	nder	star	nd th	ne ope	ration	of sol	ar
	thermal and solar electric sys	ster	ns.											
3.	Describe energy storage	met	thoc	ls a	ind	win	id–e	nerg	gy (conv	versior	n syst	ems	to
	understand the factors influe	enci	ng p	00W	er go	ener	atio	n.						
4.	Review the biomass conve	rsio	n te	echr	olo	gies	to	des	ign	bio	mass-	based	energ	ду
	systems.													
5.	Describe tidal, ocean therma	lan	d fu	el ce	ell er	herg	у со	nve	rsio	n sy	stems	to unc	lerstar	nd
5.	emerging non-conventional	ene	ergy	tecl	nnol	ogie	es.							
Course Outcomes Mapping with Program Outcomes														
_	Program Outcomes→	1	2	3	4	5	6	7	8	9	10	11	12	
	↓ Course Outcomes													
	EE2506-1.1	2	3	-	-	-	1	2	1	-	-	-	-	
	EE2506-1.2	2	3	-	-	-	1	2	1	-	-	-	-	
	EE2506-1.3	2	3	-	-	-	1	2	1	-	-	-	-	
	EE2506-1.4	2	3	-	-	-	1	2	1	-	-	-	-	
	EE2506-1.5	2	3	-	-	-	1	2	1	-	-		-	
1: Ī	ow 2: Medium 3: High													
TEX	TBOOKS:													
	_											D	417	
	INI											Page	41/	

Derivation for Power in the wind, Electrical Power Output and Capacity Factor of WECS.

1.	Rai G. D., "Non-Conventional Sources of Energy", 4th Edition, Khanna Publishers,									
	New Delhi, 2007.									
REFE	REFERENCE BOOKS:									
1.	Mukherjee D. and Chakrabarti, S., "Fundamentals of Renewable Energy Systems",									
	New Age International Publishers, 2005.									
2.	Khan, B. H., "Non-Conventional Energy Resources", TMH, New Delhi, 2006.									
3.	S. P. Sukhumi, J. K. Nayak "Solar Energy: Principles Collection and Storage", 3rd									
	edition, McGraw-Hill Education (India) , 2009.									
E Boo	E Books / MOOCs/ NPTEL									
1.	https://nptel.ac.in/courses/108108078									

ELEMENTS OF YOGA											
C οι	ırse Code:	HU1501-1	Course Type	OEC							
Теа	ching Hours/Week (L:T:P:S)	3:0:0:0	Credits	03							
Tot	al Teaching Hours	40+0+0+0	CIE + SEE Marks	50+50							
	Teaching Depart	ment: Mechan	ical Engineering								
Cou	rse Objectives:										
1.	1. To give a brief history of the development of Yoga										
2.	Identify names of different class	ical texts on Yo	ga								
3.	To illustrate how Yoga is importa	ant for healthy	living								
4.	To explain the Asanas and other	Yogic practice	S								
5.	To explain, how Yoga practices c	an be applied	for overall improvemen	t							
		UNIT-I									
Yoga	3			09 Hours							
Mea	ning and initiation, definitions and	d basis of yoga	a, History and develop	nent, Astanga							
yoga	, Streams of yoga. Yogic practices	for healthy live	ng.								
Gene	eral guidelines for Yoga practices f	or the beginne	rs: Asanas, Pranayama.	07.11							
Class	sification of Yoga and Yogic text	ts		07 Hours							
Yoga	asutra of Patanjali, Hatha yogic pi	ractices- Asana	as, Pranayama, Dharana	a, Mudras and							
banc	inas.										
		UNIT-II									
Yoga	a and Health			06 Hours							
Cond	cept of health and Diseases-Yogic	c concept of b	ody – pancakosa vivek	a, Concept of							
disea	ase according to Yoga Vasistha.	-									
				04 Hours							
Yogi	c concept of healthy living- rules &	४ regulations, y	ogic diet, ahara, vihara.	Yogic							
conc	ept of holistic health.			- 1							
Арр	lied Yoga for elementary educat	ion		04 Hours							
Perso	onality development- physical lev	el, mental leve	l, emotional level. Spec	ific guidelines							
and	Yoga practices for - Concentration	development,	Memory development								
Yoas	and physical development	0111-111		05 Hours							
Minc	d-body. Meditation. Yogasanas and	d their types D	ifferent Yoga practices	and Benefits							
IVIIIIC		a then types. D	inclent rogu practices	05 Hours							
Spec	Specific guidelines and Yoga practices for - Elevibility Stamina Endurance (Suna										
Nam	Namaskara)										
	,										
Cou	Course Outcomes: At the end of the course student will be able to										
1.	Understand a brief history of the	e development	of Yoga								
2.	Know important practices and p	rinciples of You	ja								
3.	3. Explain how Yoga is important for healthy living										

4.	Practice meditation to improvement of concentration etc.														
5.	Have knowledge about specific guidelines of yoga practices														
Course Outcomes Manning with Program Outcomes															
Cou	Program Outcomes→	1	2	3	4	5	6	7	8	9	10	11	12	1	
-	Course Outcomes	-	-			5	Ũ	,	Ŭ						
	HU1501-1.1	_	_	-	-	_	1	-	_	1	_	_	1		
	HU1501-1.2	_	-	-	-	-	1	-	-	1	_	_	3		
•	HU1501-1.3	-	-	-	-	-	2	-	-	1	_	_	3	1	
•	HU1501-1.4	-	-	-	-	-	3	-	-	2	-	-	3		
•	HU1501-1.5	-	-	-	-	-	2	-	-	2	-	-	3	1	
1: Low 2: Medium 3: High															
TEXTBOOKS:															
1.	B. K. S. Iyengar, "Light on Yoga: The Classic Guide to Yoga by the World's Foremost														
	Authority", Thorsons publisher 2016.														
2.	Makarand Madhukar Gore, "Anatomy and Physiology of Yogic Practices:													ices:	
	Understanding of the Yogic Concepts and Physiological Mechanism of the Yogic														
	Practices", Motilal Banarsidass Publishers; 6 edition (2016).														
3.	Swami Satyananda Sar	asw	ati,	"Asa	na, I	Prana	ayam	na, N	Лudr	a ar	nd Ba	ndha:	1″, \	loga	
REFERENCE BOOKS:															
1.	Ann Swanson, "Science	of Y	oga:	Unc	lerst	and	the A	Anato	omy	and	Physi	ology	to		
	Perfect Your Practice".														
2.	Dianne Bondy, "Yoga fo	or Ev	eryo	ne :	50 P	oses	For	Ever	у Тур	be of	Body	/".			
E Bo	oks / MOOCs/ NPTEL					_									
1.	https://onlinecourses.sv	vaya	m2.a	ac.in,	/aic1	9_ec	29/p	orevi	ew						
2.	https://youtu.be/FMf3b	PS5۱	wDs												

INTELLECTUAL PROPERTY RIGHTS

Course Code	HU1502-1	Course Type	OEC
Teaching Hours/Week (L:T:P: S)	3:0:0:0	Credits	03
Total Teaching Hours	40+0+0+0	CIE + SEE Marks	50+50

Teaching Department: Humanities

Course Objectives:

1.	Understand the creativity component in intellectual property, different types of legal
	protection of intellectual properties and other basic concepts of Intellectual property.
2.	Analyze different types of protection for inventions, different types of agreements
	and tractice for Intellectual properties with an ability to even inclusion to the

specifications and patent search and database for 'prior art'. Understand the basic procedure of drafting claims, apply for patents, other legal 3. forms of intellectual property rights and also to examine the protocol involved in protection of inventions like patents.

UNIT - I

Introduction to Intellectual Property

Invention and Creativity - Intellectual Property (IP) – Importance, Jurisprudential definition and concept of property, rights, duties and their correlation; History and evaluation of IPR like Patents, Trademarks, Copyright & Related Rights, Industrial Design, Traditional Knowledge, Geographical Indications.

Agreements and Treaties

History - General Agreement on Trade and Tariff (GATT). Indian Position vis-a-vis WTO and Strategies; TRIPS Agreement; Madrid Agreement; Hague Agreement; WIPO Treaties; International convention relating to Intellectual Property - Establishment of WIPO - Mission and Activities - Budapest Treaty; PCT; Indian Patent Act 1970 & recent amendments - Patent (Amendment) Rules, 2017

UNIT - II

Basics of Patents and Concept of Prior Art

Introduction to Patents; Types of patent applications: Ordinary, PCT, Conventional, Divisional and Patent of Addition; Specifications: Provisional and complete; Forms and fees Invention in the context of "prior art"; Patent databases; Searching International Databases; Country-wise patent searches (USPTO, EPO, WIPO, IPO, etc.)

Patent filing procedures

National & PCT filing procedure; Time frame and cost; Status of the patent applications filed; Structure of Patent document, Precautions while patenting - disclosure/non-disclosure; Financial assistance for patenting - introduction to existing schemes; Patent licensing and agreement; Patent infringement- meaning, scope, litigation, case studies.

I	J	Ν	IT	_	II
	J	IN	11	-	ш

Case Studies

Π

08 Hours

08 Hours

08 Hours

08 Hours

08 Hours

Patents: Biological Cases - i) Basmati rice ii) Turmeric iii) Neem; Non-biological cases – (i) TVS V/S Hero, (ii) Samsung V/S Nokia – Copyright and related rights – Trade Marks – Trade secrets - Industrial design and Integrated circuits – Geographic indications – Protection against unfair competition; Technology transfer and license agreements (US anti-HIV drug license to Africa).

Course Outcomes: At the end of the course student will be able to

1. Have a General understanding of the Intellectual Property Rights.

- **2.** Have awareness of different forms of intellectual property rights, national and international IPR related legislations.
- **3.** Have a general understanding about the provisions, privileges and limitations of intellectual property right holders with an understanding of the legal aspects (civil or criminal) of the use of intellectual property rights.
- **4.** Acquire Knowledge of National and International Trade Agreements and Agencies functioning in relation to intellectual property rights

5. Be aware and have a general understanding of patenting procedures and licensing.

Course Outcomes Mapping with Program Outcomes

Program Outcomes→	1	2	3	4	5	6	7	8	9	10	11	12
↓ Course Outcomes												
HU1502-1.1	-	3	3	2	-	3	1	-	2	2	-	3
HU1502-1.2	2	2	3	-	-	З	-	3	1	1	2	2
HU1502-1.3	2	-	-	2	-	3	-	-	2	2	2	3
HU1502-1.4	-	-	1	1	-	3	-	-	1	2	-	3
HU1502-1.5	3	2	1	-	-	3	-	-	3	1	-	2

1: Low 2: Medium 3: High

REFERENCE MATERIALS:

- **1.**BAREACT, "Indian Patent Act 1970 Acts & Rules", Universal Law Publishing Co. Pvt.
Ltd., 2007.
- 2. Kankanala C., "Genetic Patent Law & Strategy", 1st Edition, Manupatra Information Solution Pvt. Ltd., 2007.
- **3.** Subbaram N.R., "Handbook of Indian Patent Law and Practice", S. Viswanathan (Printers and Publishers) Pvt. Ltd., 1998.
- **4.** Eli Whitney, United States Patent Number: 72X, Cotton Gin, March 14, 1794.
- **5.** Intellectual Property Today: Volume 8, No. 5, May 2001.
- 6. M B Rao, "WTO and International Trade", Vikas Publishing House Pvt. Ltd.
- **7.** Correa, Carlos M. "Intellectual property rights, the WTO and developing countries: the TRIPS agreement and policy options", Zed Books, New York 2000.
- **8.** Wadehra, B. L. "Law relating to patents, trademarks, copyright designs & geographical indications", 2 ed. Universal Law Publishing 2000.
- **9.** Sinha, Prabhas Chandra, "Encyclopedia of Intellectual Property Rights", 3 Vols. Eastern Book Corporation, 2006.
- **10.**Rachna Singh Puri and Arvind Vishwanathan, "Practical Approach to Intellectual
Property Rights"; I. K. International Publishing House Pvt. Ltd.

E-RE	E-RESOURCES:					
1.	http://www.w3.org/IPR/					
2.	http://www.wipo.int/portal/index.html.en					
3.	http://www.ipr.co.uk/IP_conventions/patent_cooperation_treaty.html					
4.	www.patentoffice.nic.in					
5.	www.iprlawindia.org/					

INTRODUCTION TO GERMAN LANGUAGE

Course Code	HU1503-1	Course Type	OEC
Teaching Hours/Week (L:T:P: S)	3:0:0:0	Credits	03
Total Teaching Hours	40+0+0+0	CIE + SEE Marks	50+50

Teaching Department: Mechanical

Course Objectives:

1.	Distinguish - definite and indefinite articles, declension of singular and plural nouns
	by adding certain endings to them to differentiate between subjects, objects and
	indirect objects and construct sentences of simple day to day usage.
2.	Differentiate between nomnative and akkusative cases with transitive and intransitive
	verbs, and negation with Kein/e/er
3.	Differentiate use of dative object besides the subject for some specific verbs and
	Apply the grammar principles of use of personal pronoun as a substitute for noun
	as per the case, number and gender of the noun.
4.	Differentiate preposition forms when used exclusively in akkusative or Dative forms
	or on combination of the two cases
5.	Differentiate conjugation of verbs in present, present-perfect and past participle
	tenses, separable and inseparable verbs, application of conjugation of modal verbs
	and position of modal verb in a sentence.

UNIT - I

15 Hours

Introduction: Mein Name ist (saying who you are, greeting people and saying goodbye, asking people where they come from and where they live. Language point: I and you), Lesen der politischen Karte der Welt, Nationalitaeten und Spachen, Die Uhrzeit (The time) telling time and talking about daily routine, Tage der Woche, die Monate, die vier Jahreszeiten, die Jahre

Mir geht es gut: Asking people how they are, saying how you are, saying which cities and counries people come from, Language points: verb endings),

Wie schreibt man das (how do you write that?) Counting from 1-100 and above, alphabet, spelling our names and words, talking about us and them. Language points: Yes-no questions

Artikel (Articles): As in English, there are definite (der/die/das) and indefinite (ein/eine) articles:

the · der/die/das; a/an · ein/eine

Die vier Fälle (The four cases): Nominativ, Akkusativ, Dativ, Genitiv(Not in level A-1)

Deklination des bestimmten Artikels der/die/das

Deklination des unbestimmten Artikels ein/eine

(Deklination/Declension: the variation of the form of a noun, pronoun, or adjective, by which its grammatical case, number, and gender are identified)

Deklination von Substantiven (Declension of nouns) (Singular and Plural)

(German nouns are declined by attaching certain endings to them, according to case, number and gender. This helps to differentiate between subjects, objects and indirect objects).

Nominativ und Akkusativ(nominative and accusative cases)

The verb determines the case of the noun. Some verbs only go with the nominative, others only with the accusative (or the dative). Thus, German verbs are either transitive or intransitive.

(Nominative and accusative cases) Intransitive Verben (intransitive verbs) Transitive Verben (transitive verbs)

Negation "kein/e/er "(negation with "kein/e/er ")

(Singular und Plural)

The negation of the indefinite article (ein/eine/ein) is kein/keine/kein. For this, you just have to put a "k" at the beginning of the declined form of ein/eine/ein.

Peter sieht ein Haus. · Negation · Peter sieht kein Haus.

(Peter sees a house. · negation · Peter does not see a house.)

(With examples, writing and hearing exercises, and German to English Glossary as applicable)

UNIT - II

14 Hours

Dativ (the dative)

(You are already familiar with verbs which require a direct accusative object in addition to the subject, which is in the nominative case. But there also some verbs which require a dative object besides the subject. To identify the dative object you ask "(To) whom?")

Der Plural (the plural)

There are many different forms of the plural in the German language. Principally, the gender and the ending of the noun determine the plural form. Then, you either attach a plural ending

to the noun, change a vowel, or keep the noun as it is in the singular.

Das Personalpronomen (the personal pronoun)

The personal pronoun is a substitute for a noun. Its forms are determined by the case, number and gender of the noun which is to be replaced.

Die Formen des Personalpronomen im Nominativ (The nominative forms of the personal pronoun):

Präpositionen (prepositions)

German prepositions are followed by an object, either in the accusative or the dative case. Some prepositions always take an accusative object, others always a dative object. But thereare also prepositions which can be followed by both. In this case, the question "Where(to)?"

(\cdot accusative) or "Where?" (\cdot dative) determines the case of the object.									
Präpositionen mit Akkusativ und Dativ (Prepositions with accusative and dative) 1.Präpositionen mit Akkusativ (prepositions with accusative)									
2.Präpositionen mit Dativ (prepositions with dative) 3.Präpositionen mit Akkusativ oder Dativ (prepositions with accusative or dative)									
(With examples, writing and hearing exercises, and German to English Glossary as									
11 Hours									
Konjugation von Verben im Präsens									
(Conjugation of verbs in present tense)									
ofthe subject.									
Trennbare und untrennbare Verben									
(separable and inseparable verbs)									
The prefix of an incorporable work must power be separable and inseparable verbs.									
on the stem: he-kommen. The prefix of a separable verb dets separated from the stem when									
the verb is conjugated. In the infinitive, the stress is on the prefix: an-kommen									
1.Trennbare Verben (separable verbs)									
2.Untrennbare Verben (inseparable verbs)									
Konjugation von Verben im Perfekt									
(Conjugation of verbs in present perfect) The present perfect (Perfekt) describes something which happened in the past and									
isespecially used in spoken German. It is formed with the present tense form of "haben" or "sein" and the past participle of the main verb.									
1. Die Bildung des Partizips									
(the formation of the past participle)									
2. Die blouing des Periekts mit "naben" und "sein" (the formation of the present perfect with "baben" and "sein")									
Modalverben (modal verbs)									
A modal verb is rarely used as a main verb; instead, it usually modifies the main verb. Whilethe main verb remains in the infinitive, the modal verb is conjugated.									
können (can/be able), dürfen (mav/be allowed), wollen (want)									
müssen (must/have to), sollen (shall), mögen (to like), möchten (wish/would like)									
1. Konjugation der Modalverben									
(Conjugation of the modal verbs)									

2. Stellung des Modalverbs im Satz (Position of the modal verb within a sentence)

(With examples, writing and hearing exercises, and German to English Glossary as applicable)

Course Outcomes: At the end of the course student will be able to
 Distinguish - definite and indefinite articles, declension of singular and plural nouns by adding certain endings to them to differentiate between subjects, objects and indirect objects and construct sentences of simple day to day usage.

- 2. Differentiate between nomnative and akkusative cases with transitive and intransitive verbs, and negation with Kein/e/er
- **3.** Differentiate use of dative object besides the subject for some specific verbs and Apply the grammar principles of use of personal pronoun as a substitute for noun as per the case, number and gender of the noun.
- **4.** Differentiate preposition forms when used exclusively in akkusative or Dative forms or on combination of the two cases
- **5.** Differentiate conjugation of verbs in present, present-perfect and past participle tenses, separable and inseparable verbs, application of conjugation of modal verbs and position of modal verb in a sentence.

Course Outcomes Mapping with Program Outcomes

Tangram Aktuell 1A/1B (Text and workbook).

Program Outcomes→	1	2	3	4	5	6	7	8	9	10	11	12
↓ Course Outcomes												
HU1503-1.1	-	-	-	-	-	3	-	-	2	1	-	1
HU1503-1.2	-	-	-	-	-	3	-	-	2	1	-	1
HU1503-1.3	-	-	-	-	-	3	-	-	2	1	-	1
HU1503-1.4	-	-	-	-	-	3	-	-	2	1	-	1
HU1503-1.5	-	_	_	_	-	3	_	_	2	1	-	1

1: Low 2: Medium 3: High

TEXT BOOKS: Ulrich Haessermann, Georg Dietrich, Christianne C. Guenther, Diethelm Kaminski, 1. Ulrike Woods and Hugo Zenker, Sprachkurs Deutsch Neusaffung 1, Unterrichtswerk fuer Erwachsene, Verlag Moritz Diesterweg, Universitaetsdruckerei H. Stuertz AG Wuerzburg, 1989. Paul Coggle and Heiner Schenke, Teach Yourself German (a complete course in 2. understanding, speaking and writing), Teach Yourself Books, Hodden & Stoughton Educational, UK, 2001 Langenscheidt German In 30 Days: Book + Cd Paperback, www.amazon.in, -1 3. September 2011 **REFERENCE MATERIALS:** Deutsche Sprachlehre für Ausländer. 1. Themen Aktuell (Text and workbook). 2. Deutsch als Fremdsprache 1A. 3.

N

4.

5.	Wherever required the Videos/Audios are also played in the class room sessions									
E-RE	E-RESOURCES:									
1.	https://onlinecourses.nptel.ac.in/noc21_hs30/preview									
	NPTEL-Swayam, German-I by Prof. Milind Brahme IIT Madras									
2.	https://www.traingerman.com/en/									
	powered by Sprachinstitut TREFFPUNKT Online									

INTRODUCTION TO JAPANESE LANGUAGE														
Со	urse Code			HU	150	4-1	C	ours	e Ty	pe			OEC	
Теа	ching Hours/Week (L:T:I	P:S)		3:0	:0:0		C	redit	ts				03	
Tot	al Teaching Hours		40	+0+(0+0	C	IE +	SEE	Mar	'ks		50+5	0	
	Teaching Department:													
Cou	Course Objectives:													
1.	1. Have basic spoken communication skills													
2.	2. Write Simple Sentences													
3.	3. Listen and comprehend basic Japanese spoken Japanese													
4.	4. Read and understand basic Japanese characters including Kanji													
UNIT - I														
(Les	sons 1-6)											15	6 Hou	rs
Grar	nmar – Introduction, Alph	abets	, Ac	cent	ts, N	oun,	Pror	noun	, Pre	esent	Tens	e, Pas	t tens	е
Voca	abulary – Numbers, Days, v	week	day	/s, m	onth	is, Se	asor	ns, N	atur	e, Dia	alogs	and V	'ideo (Clips
														•
				UN	IIT -	II								
(Les	sons 7-13)											14	Hou	rs
Com	munication skills – Time,	Adde	ectiv	ve, S	easc	ons, (Conv	/ersa	tion	, Q8	ιΑ, Η	obby,	5-W/	1-H,
Ente	ring School/Company, Boo	dy Par	ts,	Colo	urs,	Featu	ires	etc.						
				UN	IIT -	III								
(Les	sons 14-20)											11	Hou	rs
Japa	nese Counting System, B	Sirth/E	Dea	th, I	Dialo	gs ((Goin	g to	Pa	rty, I	Restau	urant)	, My	day,
Succ	ess/Failure, Kanji Characte	rs, an	d se	ente	nce i	maki	ng, \	/ideo	o Cli	ps				
Cou	At the end	of th			o c+	dont		haa	bla	+0				
	Linderstand Simple word				e siu	d cor	will top		ible mol			and d	licting	-by
<u> </u>	Speak clowly and disting	is, exp	<u>ле</u>	more	s an	<u>u sei</u> A	iten	ces, s	ьрок	ens	lowly		ISUNC	liy
2.	Pood and Understand co	ily il	00	inpre		u 1.con	tone							
<u>э.</u> л	Ack Basic questions and	<u>cnoal</u>	/ in	cim		ontor		.85						
4. E	Mrite Hiragana/Katakan	speak		51111 aii (1	201	chara	ctor							
5.	WITTE HITAYATIA/ Katakatia	a anu	Ndi	IJI (I	.20) (cter	5.						
Cou	rse Outcomes Manning v	vith P	Prod	nran		tcon	100							
Cou	Program Outcomes	1	2	2	1 U	5	6	7	8	g	10	11	12	
		-	2	5		5	0	,	0		10		12	
	<u>↓ course outcomes</u> HU1504-1 1	_	_	_	_	_	r	_	_	2	1	_	1	
	HU1504-1.2	_	_	_	_	_	י ר	_	-	2	1	_	1	
	HU1504-1 3	_	_	_	_	_	ך ר	_	_	2	1	_	1	
	HU1504-1.4	_	-	-	-	_	3	_	_	2	1	_	1	
	HU1504-1.5	-	_	-	_	_	3	-	_	2	1	_	1	
1: Lo	ow 2: Medium 3: Hiah	<u> </u>		I	1	<u> </u>	•	I			-	1		
		COR	PS		RG∆	NI7	ΔΤΙ	ON	FU	NC.	ΓΙΟΝ	IS AN	ND	
		~~!\	<u> </u>		RI		с. С							
			U		DIL	1116	ر							

Cou	rse Code	HU1505-1	Course Type	OEC						
Tea	ching Hours/Week (L:T:P:S)	3:0:0:0	Credits	03						
Tota	al Teaching Hours	40+0+0+0	CIE + SEE Marks	50+50						
Teaching Department: Chemistry										
Course Objectives:										
1.	To create evolved youth, who will be equipped to contribute in the development of									
	the nation.									
2.	To train students so as to achiev	ve their physica	al and mental endurance.	To acquire						
	body language of smart sold	ier and to in	culcate the sense of au	thority by						
	commanding the troop under h	im/her.								
3.	To inculcate spirit of adventure,	undertake adv	enture activities, to hone	leadership						
	qualities and risk-taking abilities	5.								
4.	To understand and develop life	skills, soft skills	and to improve emotion	al quotient						
	of the student.									
5.	To impart basic military training	g, to develop a	wareness about the defe	nse forces						
	and expose learners to military e	ethos / values								
		UNIT - I		r						
NCC:	Aims, Objectives and Organizat	tion		07 Hours						
NCC	General, Aims, Objectives and Org	anization of NC	C. Duties of NCC Cadets, N	NCC Camps:						
Types	s and Conduct. National Integratic	on: Importance	and Necessity, Unity in Di	versity.						
Perso	onality Development			07 Hours						
Self-	Awareness, Empathy, Critical and	Creative Thin	king, Decision Making ar	nd Problem						
Solvi	ng. Communication Skills, Copi	ng with stress	and emotions. Leaders	ship: Traits,						
Indic	ators, motivation, moral values	s, Honor Cod	e. Social Service and	Community						
Deve	lopment.									
Nava	I Communication and Seamans	nip Sama aka wa Nia		08 Hours						
Nava	Communication: Introduction, S	semaphore, Na	Nigation: Navigation of S	snips- Basic						
requi	rements, Chart work.	orle Digging Ca	noula Postwork Darts a	f Doot Doot						
Sean	a instructions. Whater calling inst	ork, Rigging Ca	Ipsule, boat work- Parts o Aodoling	Ι Δυάι, δυάι						
Disa	tor management and environm	ontal awarong	nouenny.							
Disas	ter Management - Organization T		ss pre Eccontial Sonvicos Acci	stance Civil						
Disas	ace organization. Adventure Activ	vitios	is, Essential Services, Assi	stance, civil						
Dos	and Don'ts. Fire services and Firefu	ahtina Environ	mental Awareness and Co	nservation						
0050		UNIT - III								
Nava	I Orientation			10 Hours						
Nava	Orientation- Armed Forces and N	Navy Cansule F	F7 Maritime Security & IC	G Border &						
Coast	tal Areas: Security setun and F	Boarder/Coasta	I management in the :	area. Naval						
Orier	itation: Modes of Entry- IN. ICG. N	lerchant Navy								
Borde	er and Coastal areas: Security Cha	llenges & role o	of cadets in Border manac	jement						

	Course Outcomes At the and of the course student will be able to																
C	ours	se Outcomes: At the end c	of th	e co	urse	e stu	iden	t wi	ll be	e ab	le to)					
]	L.	Display sense of patriotist youth who will contribute cohesion.	m, s tov	ecul vard	ar v s na	alue tion	es ar bui	ıd sl Idin	nall g th	be t rou	rans gh n	sforn natio	ned i nal u	nto r nity a	noti and s	vateo socia	k I
2	2.	Demonstrate the sense develop the quality of i reflexes.	of (mm	disci edia	iplin ite a	e, ii and	mpr imp	ove licit	bea ob	aring edie	g, s ence	mart e of	ness orde	, tur ers, w	nout /ith	anc gooc	k k
	3.	Acquaint, expose & provide knowledge about Army/Navy/ Air force and acquire information about expanse of Armed Forces, service subjects and important battles.															
C	Course Outcomes Manning with Brogram Outcomes																
	Juis	se outcomes mapping m		iug	ian		1100	mea	,								
		Program Outcomes→	1	2	3	4	5	6	7	8	9	1 0	1 1	1 2	PS	5 0 L	
	Ļ	Course Outcomes													1	2	
		HU1505-1.1	-	-	-	-	-	3	3	1	-	-	-	-	I	-	
		HU1505-1.2	-	-	-	-	-	3	3	-	-	-	-	-	-	-	
		HU1505-1.3	-	-	-	-	-	-	-	-	1	-	-	-	-	-	
1:	Lo	w 2: Medium 3: High															•
R	REFERENCE BOOKS:																
	1.	R.K. Guptha, "Cadets Han	ndbo	ook"	, Rai	mes	h Pu	ublis	hing	g Ho	buse	, Ne	w De	elhi.			

OVERVIEV	CULTURE	
Course Code	HU1506-1	Course Type
Teaching Hours/Week (L:T:P: S)	3:0:0:0	Credits
Total Teaching Hours	40+0+0+0	CIE + SEE Marks

Teaching Department: Humanities

Course Objectives:

Knowing Culture

1.	To understand the relevance of Culture in Human Life, dynamism of Indian Culture
	and Arts through ages.

- 2. To understand the local culture and its vibrancies.
- **3.** To develop awareness about Indian Society, Culture and Arts under Western rule.
- **4.** To comprehend different dimension and aspects of the Indian culture and arts.
 - **5.** To appreciate cultural performances in India.

UNIT - I

08 Hours

OEC

50 + 50

03

- What is Culture, Different aspects of Culture, Cultural expression, Importance of Culture

 Influence of Culture

 07 Hours
- Relationship of Culture with: Language, Religion and History, Gender

UNIT - II

Media and Culture 07 Hours

Role of News Papers, Indian Cinema, Music, Advertisements

Languages, Literature and Culture

Role of Sanskrit, Vedas, Upanishads, Ramayana and Mahabharata, Puranas, other Sanskrit Literature, Buddhist and Jain Literature, Dravidian Languages and Literature, North Indian Languages and Literature, Subaltern Literature

UNIT - III

Arts and Culture

Indian Theatre and Performing Arts, Ritual performances, and Tuluva cultural and ritual performances.

(Self-study Component)

04 Hours

07 Hours

07 Hours

Contribution of Indian History to Culture

Ancient India – Persian and Macedonian invasions and its impact on Indian Culture, Development of Culture and Arts during the Mauryan Empire (Ashoka), the Guptas, the South Indian Dynasties – the Cholas, Nalanda as a Centre of Learning.

Medieval India – Life of People under Delhi Sultanate, Rise of Islam and Sufism, Political Scene of India, Bhakti Movement, Folk Arts, Rise of Modern Indian Languages.

Modern India – British Ruling and its impact on Indian Culture, Social and Religious Reforms, Indian National Movement and Achievement of Independence.

Course Outcomes: At the end of the course student will be able to

1. Examine how the culture has a very important role in human life and growth of human civilization and have a general awareness on historical perspective of growth of Indian Culture and Arts.

2.	Appreciate their own loc	al cu	ulture	e fro	m ar	n aca	dem	ic pe	erspe	ective	e.				
3.	Know about the impact	of V	Veste	ern F	Rule	in In	idia a	and	India	an St	ruggl	e for	Freed	om	
	and also its impact on Ind	dian	Cult	ure a	and <i>i</i>	Arts	and	able	to a	ppre	ciate	and th	ne role	e of	
	language in connecting	рео	ple,	grov	/th c	of cu	lture	anc	arts	s bey	/ond	the ba	arriers	s of	
	religion and ages.														
4.	Take interest in learning	thes	e fo	rms o	of ar	ts, aı	nd al	so a	ppre	ciate	e and	prese	rve th	em	
	for the future generations feeling proud of Indian Culture, Arts and Architecture.														
5.	. Appreciate art performances in India which will enable them to get exposed to an														
	artistic sphere, which eventually help them to be creative and imaginative.														
Cou	rse Outcomes Mapping v	vith	Prog	gram	n Ou	tcor	nes								
	Program Outcomes→	1	2	3	4	5	6	7	8	9	10	11	12		
	↓ Course Outcomes														
	HU1506-1.1	-	1	-	-	-	3	-	3	3	1	-	3		
	HU1506-1.2	-	-	-	2	1	3	1	2	З	З	-	3		
	HU1506-1.3	-	-	-	-	-	3	-	1	-	-	-	1		
	HU1506-1.4	-	-	-	-	-	3	-	2	1	2	-	3		
	HU1506-1.5	-	-	-	-	-	3	-	3	3	3	-	2		
1:10	ow 2: Medium 3: High		•									•	•		

Course CodeHU1507-1Course TypeOECTeaching Hours/Week (L:T:P: S)3:0:0:0Credits03Total Teaching Hours40+0+0+0CIE + SEE Marks50+50Teaching Department: VisitingCourse Objectives:1.To provide a new understanding based on which one can move to overcome the current problems, both at the individual level as well as at the societal level.2.To introduce an orientation course for humanities courses in general and for philosophy courses in particular.3.To relate philosophy to literature, culture, society and lived experience.4.To train students in already available philosophical systems.5.To bridge the gap between theory and practice.													
Teaching Hours/Week (L:T:P: S)3:0:0:0Credits03Total Teaching Hours40+0+0+0CIE + SEE Marks50+50Teaching Department: VisitingCourse Objectives:1.To provide a new understanding based on which one can move to overcome the current problems, both at the individual level as well as at the societal level.2.To introduce an orientation course for humanities courses in general and for philosophy courses in particular.3.To relate philosophy to literature, culture, society and lived experience.4.To train students in already available philosophical systems.5.To bridge the gap between theory and practice.													
Total Teaching Hours40+0+0+0CIE + SEE Marks50+50Teaching Department: VisitingCourse Objectives:1.To provide a new understanding based on which one can move to overcome the current problems, both at the individual level as well as at the societal level.2.To introduce an orientation course for humanities courses in general and for philosophy courses in particular.3.To relate philosophy to literature, culture, society and lived experience.4.To train students in already available philosophical systems.5.To bridge the gap between theory and practice.													
Teaching Department: Visiting Course Objectives: 1. To provide a new understanding based on which one can move to overcome the current problems, both at the individual level as well as at the societal level. 2. To introduce an orientation course for humanities courses in general and for philosophy courses in particular. 3. To relate philosophy to literature, culture, society and lived experience. 4. To train students in already available philosophical systems. 5. To bridge the gap between theory and practice.													
 Course Objectives: To provide a new understanding based on which one can move to overcome the current problems, both at the individual level as well as at the societal level. To introduce an orientation course for humanities courses in general and for philosophy courses in particular. To relate philosophy to literature, culture, society and lived experience. To train students in already available philosophical systems. To bridge the gap between theory and practice. 													
 To provide a new understanding based on which one can move to overcome the current problems, both at the individual level as well as at the societal level. To introduce an orientation course for humanities courses in general and for philosophy courses in particular. To relate philosophy to literature, culture, society and lived experience. To train students in already available philosophical systems. To bridge the gap between theory and practice. 													
 To introduce an orientation course for humanities courses in general and for philosophy courses in particular. To relate philosophy to literature, culture, society and lived experience. To train students in already available philosophical systems. To bridge the gap between theory and practice. 													
 3. To relate philosophy to literature, culture, society and lived experience. 4. To train students in already available philosophical systems. 5. To bridge the gap between theory and practice. 													
 5. To relate philosophy to interature, culture, society and lived experience. 4. To train students in already available philosophical systems. 5. To bridge the gap between theory and practice. 													
5. To bridge the gap between theory and practice.													
5. To bridge the gap between theory and practice.													
5. To bridge the gap between theory and practice.													
UNIT - I Knowledge (Vidva) and Ignorance (Avidva)													
Knowledge (Vidya) and Ignorance (Avidya) 14 Hours Upanishads 14 Hours													
Six systems orthodox and Heterodox schools of Indian philosophy													
Greek philosophy													
Origin of the universe													
NasidiyaSukta: "Who really knows?"													
Brhadaranyaka Upanishad; Chandogya Upanishad: Non-Self, real and unreal													
Taithriya Upanishad: SikshaValli													
Plato's Symposium: Lack as the source if desire and knowledge.													
Socratic method of knowledge as discovery													
Language: word as root of knowledge (Bhartrahari's Vakyapadiyam)													
Fourteen Knowledge basis as a source of Vidya: Four Vedas, six auxiliary sciences (vedangas);													
Purana, Nyaya, Mimamsa and Dharma Sastras.													
UNIT - II													
Knowledge as Power 16 Hours													
Francis Bacon. Knowledge as both power and self- realization in Bhagavad Gita.													
Knowledge as Oppression													
M. Foucault. Discrimination between Ram and Satyam in Indian Philosophy.													
Knowledge as Invention													
iviouern definition of creativity; scientific activity in the claim that science invents new things													
at least through technology.													
Knowledge about the self transcendental self: knowledge about society polity and nature													
Knowledge about moral an ethics codes.													

Course Outcomes: At the end of the course student will be able to

N

Page | 434

1.	To provide a new under	stan	ding	bas	sed c	on w	hich	one	can	mo	ve to	over	come	the	
	current problems, both a	t the	e ind	lividu	ual le	evel a	as we	ell as	at t	he so	ocieta	l level	•		
2.	To introduce an orienta	atior	n co	urse	for	hun	nani	ties	cour	ses	in ge	neral	and	for	
	philosophy courses in pa	rticu	ılar.												
3.	To relate philosophy to l	itera	ture,	, cult	ure,	soci	ety a	nd li	ved	expe	erienc	e.			
4.	To train students in alrea	idy a	ivaila	able	philc	osop	hical	syst	ems						
5.	. To bridge the gap between theory and practice.														
Course Outcomes Mapping with Program Outcomes															
	Program Outcomes \rightarrow 123456789101112														
	$\downarrow \text{Course Outcomes} \qquad \boxed{\begin{array}{c} 1 \\ 1 \\ 2 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3$														
	HU1507-1.1 3 - 2 1 - 1														
	HU1507-1.2 3 2 1 - 1														
	HU1507-1.3	-	-	-	-	I	3	-	I	2	1	-	1		
	HU1507-1.4	-	-	_	-	-	3	-	-	2	1	-	1		
	HU1507-1.5	-	-	-	-	-	3	-	-	2	1	-	1		
1: Lo	ow 2: Medium 3: High														
REF	ERENCE MATERIALS:														
1.	Copleston, Frederick, "His	tory	of P	hilos	soph	y", V	ol. 1	. Gre	at B	ritair	n: Con	tinuu	m.		
2.	Hiriyanna, M. , "Outlines	of I	ndia	n Ph	ilosc	phy	", M	otila	l Bar	narsi	dass I	Publis	hers;	Fifth	
	Reprint edition, 2009.														
3.	Sathaye, Avinash, "Transla	ition	of N	lasa	diya	Sukt	a".								
4.	Raju, P. T. "Structural Dep	ths c	of Ind	dian	Thou	ught	", All	bany	: Sta	te U	nivers	ity of	New	York	
	Press.														
5.	Plato, Symposium, Hamilt	on F	ress												

PRINCIPLES OF PHYSICAL EDUCATION

Course Code	HU1508-1	Course Type	OEC
Teaching Hours/Week (L:T:P: S)	3:0:0:0	Credits	03
Total Teaching Hours	40+0+0+0	CIE + SEE Marks	50+50

Teaching Department: Physical Education

Course Objectives:

1.	Express understanding of constitution of sports organizations
2.	Demonstrate considerate familiarity of various food practices
3.	Grasp understanding of first aid and physical education
4.	Awareness on the importance of exercise
5.	Leadership skills and the rules of different sports

UNIT - I

15 Hours

History of Physical Education - Olympic games, Modern Olympic games, Olympic Ideals & Objectives, Olympic Symbols, Olympic Flag, Olympic Emblem, Olympic Motto, Olympic Flame, Asian games

International Olympic Committee (IOC), Indian Olympic Association (IOA)

Sports awards - Eligibility, Objectives & Criteria

Yoga - Meaning and Importance

World Health organization (WHO)

UNIT - II

14 Hours

Concept of Health - Meaning of Health, Health Definition, Factors Affecting Health, Qualities of Healthy Person. Health Hazards of College Students, Physical Fitness and Exercises. Food and Nutrition - Food & Nutrition Defined, Nutrients and their Functions - i) Proteins ii) Carbohydrates iii) Fats iv) Vitamins

Balanced Diet & Malnutrition

Health Education - Meaning of Health Education, Health Education Defined, Scope of Health Education, Importance of Health Education.

Posture - Concept of Posture, Correct Postures, Common Postural Defects

First Aid - First Aid Defined, Need and importance of First Aid, The Requisites of First Aid, Scope of First Aid, Qualities of a First Aider, Fundamental Principles to be followed and the Duties to be performed by the First Aider, First Aid in Different Cases.

Physical Education - Concept of Physical Education, Physical Education Defined, Importance of Physical Education, Scope of Physical Education, Aims and Objectives of Physical Education.

Teaching Aid in Physical Education

Competition - Introduction, Types of competition, Knock out, League or Round Robin Tournament.

11 Hours

Training in Sports – Meaning, Principles, Warming Up & Limbering Down Importance of Anatomy and Physiology in Physical Education, Oxygen Debt and Second wind

Leadership and Supervision – Leadership, Qualities of a good leader in Physical Education, Types of Leadership in Physical Education - 1. Teacher Leadership 2. Student Leadership. Measurement & specification of various playing fields - Cricket, Volley Ball, Basket Ball, Badminton, Ball Badminton, Foot Ball, Hand Ball & their basic playing skills.

Cou	rse Outcomes: At the er	nd of	f the	cou	rse s	tude	nt w	ill be	e abl	e to					
1.	Demonstrate knowled	ge o	f stru	uctur	e of	the	worl	d spo	orts	orga	nizati	ons			
2.	Display understanding	of c	liffer	ent t	ype	of fo	od a	and r	nutri	tion	for a l	health	y diet		
3.	Comprehend awarenes	ss of	first	aid	and	phys	ical	educ	atio	n					
4.	Elucidate about trainin	ig ar	nd th	e im	port	ance	of P	hysi	cal E	duca	ation				
5.	Aware of leadership skills and the knowledge of various sports														
Course Outcomes Mapping with Program Outcomes															
	Program 1 2 3 4 5 6 7 8 9 10 11 12														
	Outcomes→														
	↓ Course														
	Outcomes														
	HU1508-1.1	-	-	-	-	-	3	-	-	2	1	-	1		
	HU1508-1.2	-	-	-	-	-	3	-	-	2	1	-	1		
	HU1508-1.3	-	-	-	-	-	3	-	-	2	1	-	1		
	HU1508-1.4	-	-	_	-	-	3	-	-	2	1	-	1		

3

2

1

1: Low 2: Medium 3: High

HU1508-1.5

1

COMMON SENSE AND CRITICAL THINKING

Course Code	HU2501-1	Course Type	OEC						
Teaching Hours/Week (L:T:P:S)	3:0:0:0	Credits	03						
Total Teaching Hours	40+0+0+0	CIE + SEE Marks	50+50						
Pre-requisite	HU1001-1 (Technical English)								

Teaching Department: Humanities

Course Objectives:

- **1.** To Problematize Commonsense & Apply Critical thinking skills
- 2. Comprehend etiquettes and manners in different situations
- **3.** Be gender sensitive in both offline and online behavior
- **4.** Exhibit better comprehension of the social implications of human body
- **5.** Understand the importance of reading and writing skills

UNIT - I

Common sense and Emotional Intelligence

Common sense, Commonsensical Consensus, Critical thinking, Unsettling commonsensical Consensus, Role of language in Common sense and Critical Thinking;Nature & Functions of Emotional Intelligence, Emotions, Intelligence and Creativity, Growth of Emotional Intelligence

Etiquettes & Workplace

Etiquette, Workplace Etiquettes, Workplace Readiness Skills, Significance of Cross-Cultural Understanding; Cultural Sensitivity, Impact of social media in Workplace

UNIT - II

Social Networking Sites and its Impacts15 HoursEmergence of social media, Impact on Gender and Self Representation, Regulatory and
Liberatory aspects of social media, Offline Norms & Online Behaviour

Gender and Body

Gender & Sex, Genderization, Homogeneity and Heterosexuality, Gender Expressions, Gender Schooling, Representations of Body, Objectification, Gender Perspectives of Body, Different Ways of Seeing the Body, Discipline & Coercion, ISA & RSA

	UNIT - III												
Writing													
Types of Writing, Note Taking Methods, Plagiarism													
Read	ling												
Style	s of Reading, Types of Reading, Scanning, Skimming												
Cou	rse Outcomes: At the end of the course student will be able to												
1.	Problematize Commonsense & Apply Critical thinking skills												
2.	Comprehend etiquettes and manners in different situations												
3.	Be gender sensitive in both offline and online behavior												
4.	Exhibit better comprehension of the social implications of human body												
5.	Understand the importance of reading and writing skills												

Course Outcomes Mapping with Program Outcomes

15 Hours

	Program Outcomes →	1	2	3	4	5	6	7	8	9	10	11	12		
	↓ Course Outcomes														
	HU2501-1.1	-	3	-	-	-	-	-	-	3	3	-	3		
	HU2501-1.2	I	2	I	1	-	-	-	3	2	3	-	2		
	HU2501-1.3	-	3	-	-	-	-	-	-	2	2	-	3		
	HU2501-1.4	-	3	-	-	-	-	-	-	2	2	-	3		
	HU2501-1.5	-	2	-	-	-	-	-	-	3	3	-	2		
1: L	ow 2: Medium 3: High														
REF	ERENCE MATERIALS:														
1.	Geetha.V. Gender. Kolkatt	a: W	'eb Iı	mpre	essio	ns, 2	2009.								
2.	Bailey, Jane, et al. "Negotiating with Gender Stereotypes On Social Networking Sites: From "Bicycle Face" to Facebook " Journal of Communication Enguiny 37.2 (2013): 91														
	From "Bicycle Face" to Facebook." Journal of Communication Enquiry 37.2 (2013): 91-														
	112.														
3.	Barry, Peter. "Beginning Theory". New Delhi: Viva Books, 2010.														
4.	Berger, John. "Ways of Seeing". London: Penguin Books, 1977.														
5.	Cranny-Francis, Anny, et al. "Gender Studies: Terms and Debates". New York: Palgrave														
	Macmillan, 2003.														
6.	Gauntlett, David. "Media,	Ger	nder	and	Ider	ntity:	An 1	Intro	duct	ion"	. Lond	don: R	Routle	dge,	
_	2008						_		• •	_					
7.	Pilcher, Jane, and Imelda	Wh	eleh	an. "	'50 k	(ey (Conc	epts	in (end	ler St	udies'	'. Lon	don:	
•	Sage, 2004. Print.	<u> </u>	•	<u> </u>			1.14	,			-	•			
8.	Jeanne, Haraway Donna.	Sim	lians	, Cyl	oorg	s, ar	nd V	vom	en. L	.ond	on: F	ree A	SSOCI	ition	
•	BOOKS, 1991. Web.	T \/			N.	1 - l- : l	- Dh		. Г					"	
9.	Koskela, Hille. Webcams,		2001	ws ai	ום IV 10 וי		e Ph	ones	s. Em	ipow	ering	EXUI	JITION	sm.	
	Surveillance & Society 2.3	(20	04): .	122-	213.	vveb	•								
F-D															
1	http://www.cyhernsycholy	א עומר	نى/ 11	ew r	hn?	risla	clant	<u>/II-</u> 2	000)615	01/ \				
<u>-</u> . 2	http://www.cyberpsycholo	nd-«	socie	tv or	n/ar	ticle	s2(2)	/web	ncam	is no	<u>5 - / /</u> If	•			
<u>-</u> . 3	http://enrints.rclis.org/19	790/	>	cy.01	y, ui	ucic.	52(2)	,	Jeun	13.pt	• •				
э.	nup.//eprints.rclis.org/19/	/90/	>.												

LINGUISTICS & LANGUAGE TECHNOLOGY										
Course Code	HU2502-1	Course Type	OEC							
Teaching Hours/Week (L:T:P:S)	3:0:0:0 Credits 03									
Total Teaching Hours	40+0+0+0 CIE + SEE Marks 50+50									
Pre-requisite	HU1001-1 (Technical English)								
Teaching	g Department:	Humanities								

Cou	rse Objectives:													
1.	Introspect about the co	onsc	ious	ness	in o	ne's	lang	uage	e					
2.	Learn pronunciation ar	nd h	ow t	he p	roce	ss he	elps t	.o cc	mm	unica	ate ef	fective	ely.	
3.	Build contextual speec	h an	d wr	iting	with	n the	ped	lago	av in	sen	tence	struc	ture.	
4.	Improve skill of applyir	ng la	ngu	age	to er	nunc	iate	word	ls.					
5.	Progress on the speec	h asr	pects	s by i	unde	ersta	ndin	g the	e acc	uisit	ion o	f Seco	nd	
	Language.	ľ		,				5						
• .					UNI	Γ-Ι							00	
Intro	oduction to Linguistics		• .•										08	Hours
Lang	guage, Levels of Linguis	tic A	Analy	s, Lo /sis ((Pho	netic	s, Pl	hond	blogy	, Mo	orpho	logy,	Synta	ix and
Sem	antics); Approach to Ling	guist	ics (Tradi	tion	al, St	ruct	ural	and	Cogr	nitive)	•		
Pho	nology and Morpholog	IJ											08	Hours
Pers	pectives in Linguistics, I	Phor	neme	es, A	llopł	none	s, Pl	none	emic	Ana	lysis,	Morp	holog	y and
Mor	phemes, Word building	proc	ess,	Mor	phol	ogica	al Ar	alys	is.		-			
				l	JNIT	- II								
Synt	tax												16	Hours
Cons	stituent structure (Simpl	e Se	enter	nce,	Noui	n Ph	rase,	, Ver	b Pł	nrase	e, Prep	oositio	onal F	hrase
Adje	ective Phrase, Adverb Phr	ase,	Stru	cture	e Rul	es),	Tree	Diag	gram	s, Ca	ise			
				ι	JNIT	- III	1							
Soci	olinguistics & Psycholi	ngui	istic	s, Ar	tific	ial Ir	ntelli	igen	ce				08	Hours
Noti	on of Language Variety,	Lang	guag	jes ir	n Cor	ntact	, Lar	igua	ge al	nd N	lind, E	Fror A	Analys	is.
-			с.,					••••						
Cou	rse Outcomes: At the er	10 01		cou	rse s	τυαε			e abi	e to				
1.	Understand the import	tance		lang	uage	e anc	I ITS I	acet	S.					
2.	Demonstrate knowledg	ge o	t sou	inds	and	com	pete	ence	in pi	oces	s of v	vord k	buildir	ng.
3.	Evolve to reason the co	onsti	ituer	nt pa	rts o	fas	ente	nce.						
4.	Understand the techni	ques	s of h	างพ	'mea	ining	j' is a	ppli	ed.					
5.	Analyze errors in day-t	o-da	ау-со	onve	rsati	ons a	and I	าอพ	lang	uage	e is re	lated	to soc	ciety.
Cou	rse Outcomes Mapping	ı wit	h Pr	ogra	am C	Jutc	ome	S	I			T	I	Γ
	Program	1	2	3	4	5	6	7	8	9	10	11	12	
	Outcomes →													
	↓ Course													
	Outcomes													
			1			1	-	1	1	-		1	1	
	HUZ3VZ-1.1	_	L 1	-	-	1	1	-	-	L 1	-	-	2	

1: Low 2: Medium 3: High

HU2502-1.3

HU2502-1.4

HU2502-1.5

2

_

_

3

-

2

3

-

_

_

-

_

_

2

_

_

-

2

_

-

1

-

-

_

3

1

_

2

2

_

_

-

1

-

-

_

REFE	RENCE MATERIALS:
1.	Akmaijan, A, R. A. Dimers and R. M. Harnish. "Linguistics: An Introduction to Language
	and Communication". London: MIT Press, 1979.
2.	Chomsky, Noam. "Language in Mind". New York: Harcourt Brace Jovanovich, 1968.
3.	Fabb, Nigel. "Sentence Structure". London: Routledge, 1994.
4.	Hockett, C. "A Course in Modern Linguistics". New York: Macmillan, 1955.
5.	O'Grady, W., O. M. Dobrovolsky and M. Aronoff. "Contemporary Linguistics: An
	Introduction". New York: St. Martin's Press, 1991.
6.	Pride, J. B. and J. Holmes. "Sociolinguistics". Harmondsworth: Penguin, 1972.
7.	Richards, J. C. "Error Analysis: Perspectives in Second Language Acquisition". London:
	Longman, 1974.
8.	Salkie, R. "The Chomsky Update: Linguistics and Politics". London: Unwin Hyman Ltd.,
	1990.
9.	Sinclair, J. M. C. H. and R. M. Coulthard. "Towards an Analysis of Discourse". Oxford:
	OUP, 1975.
10.	Thomas, Linda. "Beginning Syntax". Oxford: Blackwell, 1993.
11.	Verma, S. K. and N. Krishnaswamy. "Modern Linguistics: An Introduction". New Delhi:
	OUP, 1989.
12.	Wekker, Herman and Liliane Haegeman. "A Modern Course in English Syntax". Kent:
	Croom Helm, 1985.

INTRODUCTION TO CYBER SECURITY										
Course Code:	IS2501-1	Course Type	OEC							
Teaching Hours/Week (L: T: P: S)	3:0:0:0	Credits	03							
Total Teaching Hours	40	CIE + SEE Marks	50+50							
Prerequisite	IS1651-1									
Teaching Department: Information Science & Engineering										
Course Objectives:	Course Objectives:									
1. Define the area of cybercrime and forensics and to understand the security threat										
2. Explain the motive and causes for cybercrime, detection, and handling.										
3. Investigate Areas affected by cybercrime.										
4. Illustrate tools used in cyber fo	rensic									
-										
	UNIT-I									
Introduction to Cyber Security			15 Hours							
Concepts of Cyber Security, Forma	Methods of	Security Validation, CIA	framework-							
Confidentiality, Integrity and Authen	ticity, Threat m	odelling, Domains of cy	yber security,							
Security attacks, Security services, S	Security Mecha	nisms, Fundamental se	curity design							
principles, Types of Cyber Threat.										

Tools	Tools and methods used in Cybercrime14 Hours													
Intro	duction, Proxy Servers and	Ar	nony	miz	ers,	Int	rude	ers	and	На	ckers,	Insid	er thre	ats,
Cybe	rcrimes. Network Threats: Ac	tive,	/ Pa	ssive	e – I	nter	fere	nce	– In	terc	eptior	ח–Imp	ersona	tion
– Wo	rms –Virus – Spam's – Ad wa	re -	Spy	wai	e –	Troj	ans	anc	l cov	/ert	chanr	nels –B	ackdoo	rs –
Bots	– IP, Spoofing - ARP spoofi	ng -	Ses	sior	۱ Hi	jack	ing,	Inti	odu	ictic	n to F	Phishir	ng, Ider	ntity
Theft	(ID Theft).													
				UNI	T-II	Ι								
Unde	erstanding Computer Foren	sics	5										11 Ho	urs
Intro	duction, Digital Forensics Sc	ienc	e, T	he l	Vee	d fo	r Co	omp	ute	r Fo	rensic	s, Cyb	erforen	sics
and I	Digital Evidence, Forensics A	Anal	ysis	of	E-M	lail,	Digi	ital	Fore	ensi	cs Life	e Cycle	e, Chair	۱ of
Custo	ody Concept, Network Fore	nsic	s, A	ppro	bach	ning	аC	Com	put	er F	orens	ics Inv	vestigat	ion,
Settir	ng up a Computer Forensics	Lab	orat	ory:	Un	ders	stand	ding	, the	e Re	quirer	nents,	Comp	uter
Forer	nsics and Steganography, Re	leva	nce	of t	he (DSI ⁻	7 La	yer	Мо	del t	o Cor	nputer	Forens	sics,
Forer	sics and Social Networking	Site	es: T	he	Secu	urity	/Pri	vacy	/ Th	reat	s, Cor	npute	r Foren	sics
from	Compliance Perspective, (Chal	leng	jes	in	Con	nput	er	Fore	ensio	cs, Sp	ecial	Tools	and
Techr	niques, Forensics Auditing, A	ntifo	oren	sics.										
Cour	se Outcomes: At the end of	the	cou	rse :	stuc	lent	will	be	able	to				
1.	Comprehend the Cybercrim	ie ar	nd it	s or	igin									
2.	Analyse Security Threat Mar	nage	eme	nt a	nd เ	unde	ersta	nd	the	secu	urity e	lemen	ts.	
3.	Apply tools and methods us	sed	in C	ybei	r cri	mes								
4.	Analyse Phishing and ID The	eft												
5.	Comprehend Digital Forens	ics												
Cour	se Outcomes Mapping with	ו Pr	ogra	am (Out	con	nes							
														_
	Program Outcomes→	1	2	3	4	5	6	7	8	9	10	11	12	
	↓ Course Outcomes													
	IS2501-1.1	2	-	-	-	-	1	-	3	-	-	-	-]
	IS2501-1.2	-	3	-	1	-	2	-	-	2	-	-	-]
	IS2501-1.3	-	3	2	-	-	-	-	-	-	-	-	-]
	IS2501-1.4	2	-	-	-	-	2	-	-	-	-	-	-]
	IS2501-1.5	-	-	-	-	-	-	-	3	-	-	-	-]
1: L	ow 2: Medium 3: High													•
TEXT	BOOKS:													
1.	William Stallings, "Crypto	grap	ohy	and	Ne	etwo	ork S	Secu	urity	: Pr	inciple	es and	l Practi	ce",
	Pearson Education, 2006.	5 1	,						,					•
2.	Swiderski, Frank and Synde	ex, "	Thre	eat N	Лod	lelin	g", N	Лicr	oso	ft Pr	ess, 2	004.		
3.	Sunit Belapure and Nina	Goo	bol	e, "(Cybe	er S	ecur	ity:	Und	ders	tandir	ng Cyb	er Crir	nes,
	Computer Forensics and Lo	egal	Per	spe	ctive	es", '	Wile	y In	dia	Pvt	Ltd, IS	BN: 97	78-81-2	265-
	21791, Publish Date 2013.	2		•										
REFE	RENCE BOOKS:													
<u> </u>														

UNIT-II

1.	Thomas J. Mowbray, "Cybersecurity: Managing Systems, Conducting Testing, and
	Investigating Intrusions", John Wiley & Sons, Inc, ISBN: 978 -1-118 -84965 -1, 2014.
2.	James Graham, Ryan Olson, Rick Howard, "Cyber Security Essentials'', CRC Press, 15-
	Dec 2010. Anti- Hacker Tool Kit (Indian Edition) by Mike Shema, Publication Mc
	Graw-Hill.
3.	Santosh B. J., K. V. S. S. S. S. Sairam, Shubham Kumar, Chandu Jagan Sekhar M,
	"Information and Cyber Security", Scientific International Publishing House, ISBN-
	978-93-5625-694-1.

	PYTHON APPL	ICATION PR	OGRAMMING	
Cou	ırse Code:	IS2502-1	Course Type	OEC
Теа	ching Hours/Week (L: T: P: S)	3:0:0:0	Credits	03
Tota	al Teaching Hours	40	CIE + SEE Marks	50+50
Pre	requisite	CS1002-1		
	Teaching Department:	Information	Science & Engineering	
Cour	rse Objectives:			1
1.	Construct Python programs usin	ng data types a	ind looping.	
2.	Design object-oriented Python	orograms using	g classes and objects.	
3.	Design useful stand-alone and (GI application	is in	
-		UNIT-I		4 - 11
Funct	tions, Classes and OOP			15 Hours
Funct	ions: Design with functions: hidi	ng redundanc	y, complexity; argumer	nts and return
value	s; formal vs actual arguments, i	named argum	ents. Program structur	e and design.
Recur	rsive functions			
Classe	es and OOP: Classes, objects, att	ributes and m	ethods; defining classe	s; design with
classe	es, data modelling; persistent stor	age of objects	, inheritance, polymorp	hism, operator
overlo	oading (_eq_, _str_, etc);	lasses; exceptio	on handling, try block	
- •		UNIT-II		
Lists,	Tuples, and Dictionaries			14 Hours
Lists,	tuples, and dictionaries: Basic list o	operators, repl	acing, inserting, removi	ng an element;
searc	hing and sorting lists; dictionary	literals, addin	g and removing keys, a	accessing, and
replac	cing values; traversing dictionaries			
File H	andling: Reading From Text Files,	Writing to Text	t Files, Working with Exc	el Sheets ,CSV,
PDF, \	Word,			
-		UNIT-III		
Essen	tial Python Libraries			11 Hours
Work	ing with SciPy, Numpy, Matplotlib	, Pandas.		
Graph	nical user interfaces: event-drive	en programm	ing paradigm; creating	g simple GUI;
butto	ns, labels, entry fields, dialogs; w	idget attribute	s - sizes, fonts, colors l	ayouts, nested
frame	es Simple CGI form.			
Cour	rse Outcomes: At the end of the c	ourse student	will be able to	
1.	Demonstrate the basics of Pytho	on programmi	ng like data types and lo	ooping
2.	Apply the basic data structures i	n solving the p	problems	
3.	Experiment with usage of function	ons in a given	problem	
4.	Develop Objects by creating cla	sses and apply	object-oriented feature	es
5.	Develop applications in Python	using File Prog	ramming &User Interfa	ce

Course Outcomes Mapping with Program Outcomes

	Program Outcomes→	1	2	3	4	5	6	7	8	9	10	11	12	
	↓ Course Outcomes													
	IS2502-1.1	2	-	-	-	2	-	I	I	1	-	-	3	
	IS2502-1.2	2	-	-	-	2	-	-	-	-	-	-	3	
	IS2502-1.3	2	-	-	-	2	I	-	-	-	-	1	3	
	IS2502-1.4	-	-	-	-	I	I	-	-	-	-	-	-	
	IS2502-1.5	-	-	-	-	-	-	-	-	-	-	-	-	
1: l	ow 2: Medium 3: High													
TEX	TEXTBOOKS:													
1.	1. Kenneth A. Lambert, "The Fundamentals of Python: First Programs", 2011, Cengage													
	Learning, ISBN: 978-1111822705.													

	SOFTWARE E	NGINEERIN	IG PRACTICES								
Cou	ırse Code:	IS2503-1	Course Type	OEC							
Теа	ching Hours/Week (L: T: P: S)	3:0:0:0	Credits	03							
Tot	al Teaching Hours	40	CIE + SEE Marks	50+50							
Pre	requisite	CS1002-1									
	Teaching Department	Information	Science & Engineering	J							
Cour	se Objectives:										
1.	Outline software engineering pr	inciples and ac	ctivities involved in build	ding large							
	software programs.										
2.	2. Explain the importance of architectural decisions in designing the software.										
3.	Describe the process of Agile pr	oject developr	nent.								
4.	Recognize the importance of so	ftware testing	and describe the intrica	acies involved							
	in software evolution.										
5.	Identify several project planni	ng and estin	nation techniques and	explain the							
	importance of software quality.										
		UNIT-I									
Intro	oduction			15 Hours							
Need	Need for Software Engineering, Professional Software Development, Software Engineering										
Ethic	s, Case Studies.										
Soft	ware Processes			•.•							
Mod	els: Waterfall Model, Incremental I	Model and Spi	ral Model; Process activ	ities							
Requ	lirements Engineering		· · ·	•							
Func	tional and non-functional req	juirements, R	equirements engineer	ing processes,							
Requ	Irements Elicitation and Analysis	, Requirement	s specification, Softwar	re requirements							
aocu	Requirem	ients	validation	α							
IIIdila	agement.										
Svete	am Models	0111-11		15 Hours							
Cont	evt models Interaction models St	ructural mode	ls Behavioral models	15 110013							
ΤΔη	chitectural Design										
Archi	itectural design decisions. Architec	tural Views an	d natterns Application	architectures							
Desi	and implementation										
Ohie	ct oriented Design using UMI			I							
Aaile	e Software Development										
Agile	methods Plan-driven and agile	development	Extreme Programmin	a Aaile project							
mana	agement.	development		g, right project							
	· · · · · · · ·										
		UNIT-III									
Proie	ect Management			10 Hours							
Risk	management, Teamwork.										
Proje	ect Planning										
Softv	vare pricing, Plan-driven developm	nent, Project S	cheduling.	I							
Qual	ity Management		5								
				I							

Software quality, Reviews and inspections, Software measurement and metrics, Software standards.

Cour	Course Outcomes: At the end of the course student will be able to									
1.	Recognise the basics of software system, component, process and Software									
	Requirement Specification to meet desired needs within realistic constraints and									
	outline the professional and ethical responsibility									

- Describe the waterfall, incremental and iterative models and architectural design in 2. implementing the software
- Make use of the techniques, skills, modern engineering design tools and agile 3. methods necessary for engineering practice.
- Describe the methods for maintaining software system. 4.
- Discuss project planning and management and illustrate the quality of software 5. products

Course Outcomes Manning with Program Outcomes

Cour	se Outcomes Mapping with	FIU	yrai		ullu	JIIIe	:5							
	Program Outcomes→	1	2	3	4	5	6	7	8	9	10	11	12	
	↓ Course Outcomes													
	IS2503-1.1	-	3	1	-	-	-	-	2	-	-	-	-	
	IS2503-1.2	1	3	1	-	-	-	-	-	-	-	-	-	
	IS2503-1.3	1	1	3	-	1	-	-	-	-	I	-	-	
	IS2503-1.4	1	3	2	-	I	-	-	-	-	-	-	-	
	IS2503-1.5	1	2	2	-	-	-	-	I	-	-	-	-	
1: Lo	ow 2: Medium 3: High													
TEXT	BOOKS:													
1.	Ian Sommerville, "Software	Engi	inee	ring	", 9t	h Ec	ditio	n, P	ears	son	Educa	tion, 2	012.	
REFE	RENCE BOOKS:													
1.	Roger S. Pressman: "Softwar	re Er	ngin	eerii	ng-A	۹ Pra	actit	ione	ers a	ppr	oach"	, 7th E	dition,	Tata
	McGraw Hill, 2017.													
2.	Pankaj Jalote: "An Integrate	d Ap	opro	ach	to S	Softv	ware	e En	gine	erir	ng", W	iley, Ir	idia, 20	010.
E Bo	oks / MOOCs/ NPTEL													
1.	http://agilemanifesto.org/													
2.	http://www.jamesshore.com	n/Ag	ile-l	Bool	</th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>									
3.	https://www.mooc-list.com/	/cou	rse/	uml	-cla	ss-d	iagr	ams	s-so	ftwa	re-en	gineer	ing-ed	dx
4	https://www.mooc-list.com/	/cou	rse/	ente	rnri	<u>se-s</u>	soft.	ware	-life		le-ma	nagen	ient-e	dx

WEB TECHNOLOGIES											
Course Code:	Course Type	OEC									
Teaching Hours/Week (L: T: P: S)	3:0:0:0	Credits	03								
Total Teaching Hours	40 CIE + SEE Marks										
Prerequisite	CS1002-1										
Teaching Department	· Information	Science & Engineering									

Cou	rse Objectives:						666							
1.	Illustrate the Semantic Stru	ctur	e of		ML 8	and	<u>CSS</u>)						
2.	Compose forms and tables	USII	ng ⊦	<u>+ M</u>	Lan		<u> </u>			<u> </u>			· .	
3.	Design Client-Side program	<u>าร น</u>	sing	j Jav		ript	and	Ser	ver-	SIG	e progr	ams u	sing P	ΗΡ
4.	Illustrate the Database con	nect	tivity	<u>/ usi</u>	ing F	PHP								
5.	Examine JavaScript framewo	orks	s suc	ch a	s jQi	uery								
Intr	oduction to HTML			UN	111-1								15 Ho	urs
HTN	All tags and simple HTML f	orm	ns v	web	site	st	ruct	ure	НТ	MI	table	Need		55
intro	duction to CSS basic syntax a	and	stru	ctur	е ц	sina		s ha	ncka	rou	nd ima		olours	and
pro	perties, manipulating texts, u	sind	n fo	nts.	boi	rder	s ai	nd t	noxe	es. r	marging	s. pad	dina I	ists.
pos	tioning using CSS. Selectors. T	he (Case	ade	: Ho	w S ¹	tvle	s Int	erac	t. Tl	he Box	Mode	L CSS T	lext
Stvl	na.												.,	
	<u> </u>													
				UN	IT-I	[
Clie	nt side Scripting												15 Ho	urs
Intro	oduction to JavaScript: JavaSo	crip [.]	t lar	ngua	age	– d	ecla	ring	j va	riab	les, sco	ppe of	varia	bles
fund	tions, event handlers (on c	lick,	, or	n su	ıbmi	t e	tc.),	Do	cum	ent	Objec	t Mo	del, Fo	orm
valio	lations. Introduction to PHP: [Decl	arin	g va	ariab	oles,	dat	a ty	oes,	arra	ays, stri	ngs, o	perati	ons,
exp	ressions, control structures, fu	inct	ions	5, Re	eadir	ng d	lata	froi	n w	eb	form co	ontrol	s like T	Fext
Box	es, radio buttons, lists etc.,													
				UN	IT-II	I								
PH	P Databases												<u>10 Ho</u>	urs
Basi	c command with PHP examp	les,	Cor	nnec	tion	to	ser	/er,	crea	ting	g datab	ase, s	electin	g a
data	ibase, listing database, listing	g ta	ble	nar	nes	crea	ating	ga_	tab	le, i	nsertin	g data	a, altei	ring
tabl	es, queries, deleting database,	del	eting	g da	ita a	nd t	able	es, ⊦i	le H	and	lling in	PHP, F	PHP Ar	rays
and	Superglobals, Arrays, \$_GE1 a	nds	\$_PC	221	Sup	ergl	oba	I Arr	ays,	JQU	iery Int	roduci	tion: W	hat
IS JC	Query, Adding jQuery in to yo	our	wet	o pa	ages	, jQ	uery	/ Sy	ntax	(, jÇ	uery S	electo	rs, jQt	iery
Eve	115.													
Соц	rse Outcomes: At the end of	the	COU	irse	stud	lent	will	be	able	to				
					5140									
1.	Adapt HTML and CSS synta	ix ar	nd s	ema	ntic	s to	bui	ld w	eb ı	bag	es			
2.	Construct and visually form	at t	able	es ar	nd fo	orms	s usi	ina l	HTM	1L a	nd CSS			
3.	Experiment with the usage	of E	ven	t ha	ndli	ng a	nd	Forr	n va	lida	ition us	ing Ja	vaScrip	ot.
4.	Understand the principles of	of ol	bjec	t-or	ient	ed c	leve	lopi	men	t us	ing PH	P and		
	Database concepts.		_											
5.	Inspect JavaScript framewo	orks	like	jQu	Jery	whi	ch f	facil	itate	es de	evelope	ers to	focus	on
	core features.				-									
Cou	rse Outcomes Mapping with	n Pr	ogr	am	Out	con	nes							
	Program Outcomes→	1	2	3	4	5	6	7	8	9	10	11	12	

1

2

-

2

-

- - - -

- -

-

1

IS2504-1.1

	IS2504-1.2	1	-	-	2	-	-	-	-	-	-	-	1	
	IS2504-1.3	1	2	-	2	З	1	I	-	-	-	-	1	
	IS2504-1.4	1	2	-	2	3	-	-	-	-	-	-	1	
	IS2504-1.5	1	-	-	2	З	-	I	-	-	-	-	1	
1: I	.ow 2: Medium 3: High													
TEX	TBOOKS:													
1.	Randy Connolly, Ricardo	Ноа	r, "F	und	ame	enta	ls o	of W	'eb	Dev	elopme	ent", 1	. st Edit	ion,
	Pearson Education India. (I	SBN	1:978	8-93	325	752	71).							
E Bo	ooks / MOOCs/ NPTEL													
1.	nptel ac in/courses/10610	5084	/11											

	GR	RAPH THEOP	RY							
C οι	ırse Code:	MA1501-1	Course Type	OEC						
Теа	ching Hours/Week (L: T: P: S)	3:0:0:0	Credits	03						
Tot	al Teaching Hours	40	CIE + SEE Marks	50+50						
	Teaching D	epartment: M	athematics							
Cou	rse Objectives:									
1.	Explain subgraphs, bipartite gra	aphs, isomorph	ic graphs etc. Apply th	ne concept of						
	trees and its properties									
2.	Distinguish between Hamilton a	and Eulerian gr	aph. Distinguish betwe	en planar and						
	nonplanar graphs and apply the	eir properties to	o solve problems.							
3. Represent a graph in terms of adjacency matrix, incidence matrix etc. and vice-versa.										
4. Find the shortest path between two vertices in a graph. Find minimal spanning tree.										
		UNIT-I								
Intro	oduction to graphs			15 Hours						
Grap	hs and Graph Models, digraphs, K	onigsberg brid	ge problem. Special Ty	pes of Graphs:						
Subg	graphs-spanning and induced	subgraphs, o	complete graph, Bip	artite Graphs.						
Isom	orphism of graphs. Complement o	of a graph and	its properties.							
Conr	nectivity-point and line connectivit	ty. Trees and its	s properties.							
Euler	r and Hamilton graphs and their a	pplications.								
		UNIT-II								
Plan	ar graphs			09 Hours						
Euler	r's polyhedron formula, outer plan	ar graphs, app	lications							
Colo	rability			07 Hours						
Chro	matic number, five color theor	em, chromatic	polynomial, Applicat	ions of graph						
COIO										
Adia	rix representation of graphs	cuit matrix cut	cat matrix Dath matrix							
Adja	cency matrix, incidence matrix, cire	cuit matrix, cut	set matrix, Path matrix.	<u>'</u>						
Not	work Flows									
May	-flow and Min-cut Theorem(state)	ment) problem	16							
Sho	test paths in weighted graphs	menty, problem	13.							
Diiks	tra's algorithm to find shortest part	ths								
Spar	ning trees			05 Hours						
Alao	rithms to find a spanning tree mi	nimal spanning	utree-Kruskal's & Prim'	s algorithm						
,		inna spannig		s algoriani.						
Cou	rse Outcomes: At the end of the c	course student	will be able to							
1.	Distinguish between bipartite a	nd complete b	ipartite graphs, identify	whether two						
	graphs are isomorphic, find sub	graphs of a gra	iph etc.							
2.	Distinguish between Eulerian an	d Hamiltonian	graphs.							
3.	Identify whether a graph is plan	ar and to find t	the chromatic polynom	ial of a graph.						
4.	Representing graphs interms of	Matrices.								
5.	Apply algorithmic methods to fi	nd the shortes	t path between two giv	en vertices.						
	Use a suitable algorithm to find	a minimal spai	nning tree.							

Cours	se Outcomes Mapping	g wi [.]	th P	rogr	am (Dutc	ome	es						
	Program	1	2	3	4	5	6	7	8	9	10	11	12	
	Outcomes→													
	↓ Course													
	Outcomes													
	MA1501-1.1	3	3	-	-	-	-	-	-	-	-	-	-	
	MA1501-1.2	2	1	-	-	-	-	-	-	-	-	-	-	
	MA1501-1.3	2	3	-	-	-	-	-	-	-	-	-	-	_
	MA1501-1.4	3	2	-	-	-	-	-	-	-	-	-	-	
	MA1501-1.5	3	2	-	-	-	-	-	-	-	-	-	-	
1: Lo	w 2: Medium 3: High													-
TEXT 1. 2.	BOOKS: F. Harary, "Graph the Narsing Deo "Grap	ory", h Tł	Nar	osa v wi	Publi ith a	shin pplia	g Ho ratio	ouse, ns t	198	8. 8.	and	Comi	n Sci	ences"
	PHI,1974.			<i>y</i>		ppm		115 0	.0 בו	igg.	ana	com	9. UCI	chees ,
3.	Kenneth H. Rosen, "Discrete Mathematics and its applications", Tata McGraw Hill, VEdition-2003.													
REFE	RENCE BOOKS:													
1.	D. B. West, "Introduct	tion	to G	raph	The	ory",	PHI	,200	1.					
2.	Chartrand and Zhang	g, " <u>Fi</u>	rst C	ours	se in	Grap	h Th	neory	<u>/</u> ", 20)12				
E Boo	oks / MOOCs/ NPTEL													
1.	http://diestel-graph-	-theo	ory.c	om.										
2.	https://nptel.ac.in/co	urse	s/11	1106	5102									

	NUMBER THEORY								
Cou	rse Code:	MA1502-1	Course Type	OEC					
Теа	ching Hours/Week (L: T: P: S)	3:0:0:0	Credits	03					
Tota	al Teaching Hours	40	CIE + SEE Marks	50+50					
	Teaching D	epartment: Ma	athematics						
Cour	se Objectives:								
1.	Understand the divisibility of int	egers, study of	prime numbers and bas	ic properties					
	of congruences.								
2.	2. Study Fermat's little theorem and understand Euler's function.								
3.	Study the existence of primitive	roots and quad	dratic residues.						
4.	Study the cryptographic applica	tions in numbe	r theory.						
		UNIT-I							
Divis	ibility and the theory of congru	iences		15 Hours					
Divis	ion algorithm, Euclid's algorithm f	for the greatest	common divisor. Linea	r Diophantine					
equa	tions. Prime numbers, fundame	ental theorem	of arithmetic. Basic	properties of					
cong	ruences, Linear congruences and	Chinese remino	ler theorem.						
UNIT-II									
F	07 Hours								
Ferm	at s theorem, wilson's theorem, E	uler's Phi lunci	ion, Euler's theorem.						
Prim	itive roots and Quadratic congr	uences		08 Hours					
Orde	r of an integer modulo n, primitiv	e roots for prim	nes, Euler's criterion, Leg	endre symbol					
and i	ts properties.								
_		UNIT-III							
Cryp	tography			10 Hours					
Intro to cry	duction to public key cryptograph /ptography.	y, RSA cryptosy	stem, an application of p	primitive roots					
Cour	se Outcomes: At the end of the c	ourse student	will be able to						
1.	Use divisibility and Greatest	common divis	sor in Euclidean algoi	rithm. Solve					
	Diophantine equations. Identify	prime factoriza	ition of an integers.						
2.	Understand the properties of co	ongruences. Us	e Chinese reminder the	orem to find					
	solution of system of linear cong	gruences							
3.	Use Fermat's Little Theorem and	l Wilson's Theo	rem. Use of Euler's Phi f	unction.					
4.	Identify primitive roots of an inte	egers. Apply Eu	ler's criterion and Legen	dre symbols.					
5.	Code and decode numbers in th	ne RSA cryptosy	vstem.						
Cour	se Outcomes Mapping with Pro	aram Outcom	es						

			1	1]
	Program	1	2	3	4	5	6	7	8	9	10	11	12	
	Outcomes→													1
	↓ Course													
	Outcomes													
	MA1502-1.1	2	3	-	-	I	I	I	I	I	-	-	-	
	MA1502-1.2	2	3	-	-	-	-	-	-	-	-	-	-	
	MA1502-1.3	2	3	-	-	-	-	-	-	-	-	-	-	
	MA1502-1.4	2	3	-	-	-	-	-	-	-	-	-	-	
	MA1502-1.5	2	3	-	-	-	-	-	-	-	-	-	-	
1: Lov	w 2: Medium 3: High													
TEXTE	BOOKS:	OOKS:												
1.	D. Burton, "Elementary Number Theory", McGraw-Hill, 2005.													
2.	Niven, H.S. Zuckerman & H.L. Montgomery, "Introduction to the Theory of													
	Numbers", Wiley, 2000.													
REFER	ENCE BOOKS:													
1.	H. Davenport, "The H	ighe	r Ari	thm	etic",	Can	nbrio	dge l	Jniv	ersity	/ Pres	s, 200	8.	
-	<u> </u>									<u> </u>				
2.	G. A. Jones & J. M. Jo	nes,	"Elei	men	tary	Num	ber	Theo	ory",	Sprii	nger l	JIM, 2	2007.	
3.	Thomas Koshy, "Elem	enta	rv N	umb	er Tł	neor	v wit	h Ap	plica	ation	s", 2n	d edit	ion, El	sevier,
	2007.													
4.	William J. LeVegue, "Fundamentals of Number Theory".													
E Boo	oks / MOOCs/ NPTEL													
1.	http://refkol.ro/matek/	math	bool	<u>ks/ro</u>	.matł	n.wiki	ia.coi	<u>m%2</u>	520v	/iki%	2520Fi	<u>siere</u>		
	pdf_incarcate/													
	Elementary-Number-Th	neory	/.pdf											
2.	https://nptel.ac.in/cour	ses/1	.111()4138	8									
3.	https://nptel.ac.in/cour	ses/1	.111()302(0									

	LIN	EAR ALGEBR	RA							
Cou	ırse Code:	MA3501-1	Course Type	OEC						
Теа	ching Hours/Week (L: T: P: S)	3:0:0:0	Credits	03						
Tot	al Teaching Hours	40	CIE + SEE Marks	50+50						
Pre	requisite	MA1001-1 a	nd MA2009-1							
	Teaching De	epartment: Ma	athematics							
Cour	se Objectives:									
1.	Understand the concepts of vec	tors, bases.								
2.	Determine the kernel, range, rai	nk, and nullity o	of a linear transformatic	on and apply						
	them suitably in their field of stu	ıdy.								
3.	Find the canonical forms and ap	praise its impo	rtance in various fields.							
4.	4. Make use of Gram-Schmidt process to produce an orthonormal basis.									
5.	Learn the concepts of singular v	alue decompos	ition and PCA.							
		UNIT-I								
Vect	or spaces			08 Hours						
Vecto	or spaces, subspaces, bases and	dimensions,	coordinate vecotrs, nul	I spaces and						
colur	nn spaces of the matrices.			-						
Linea	ar Transformations			07 Hours						
Linea	r transformations, rank-nullity the	eorem, algebra	of linear transformatio	ns, change of						
basis	, linear operators, linear functiona	ls, transpose of	a linear transformation.							
		UNIT-II		I						
Cano	onical Forms			08 Hours						
Revie	ew of characteristic values, similarit	ty of matrices, C	Cayley Hamilton theorem	n, annihilating						
polyr	nomials, invariant subspaces, Jorda	an and rational	canonical forms.							
Inne	r Product Spaces			07 Hours						
Inner	products; inner product spaces	s; orthogonal s	sets and projections; G	Fram-Schmidt						
proce	ess; QR-factorization, Least-square	es problems.								
C	matria Matrices and O select r			1011-						
Sym	metric Matrices and Quadratic F	orms		10 Hours						
Diag	onalization, quadratic forms, cons	strained optimi	zation, singular value d	ecomposition						
and p	orincipal component analysis. App	lications to line	ear recurrence relations.							
Cour										
	Se Outcomes: At the end of the c	three dimensio	will be able to	vraically and						
1.	geometrically.									
2.	Analyze the concept of a linear t	ransformation	as a mapping from one	vector space						
	to another and be able to calculate its matrix representation with respect to standard									
	and nonstandard bases.									
3.	Understand the concepts of Jord	dan and rationa	I canonical forms.							
4.	Make use of Gram-Schmidt prod	cess to produce	e an orthonormal basis a	nd also able						
	to use least square approximation	on method to c	btain the solution of ill	conditioned						
	system.									

5.	Apply techniques of constrained optimization singular value decomposition and													
	PCA for problems aris	ing i	n va	riou	s eng	ginee	ering	field	ds.					
Cours	Course Outcomes Mapping with Program Outcomes													
	Program	1	2	3	4	5	6	7	8	9	10	11	12	
	Outcomes→													
	↓ Course													
	Outcomes													
	MA3501-1.1	3	2	-	-	-	-	-	-	-	-	-	-	
	MA3501-1.2	2	2	-	-	-	-	-	-	-	-	-	-	
	MA3501-1.3	3	1	-	-	-	-	-	-	-	-	-	-	
	MA3501-1.4	3	2	-	-	-	-	-	-	-	-	-	-	
	MA3501-1.5	3	2	-	-	-	-	-	-	-	-	-	-	
1: Lo	1: Low 2: Medium 3: High													
TEXT	BOOKS:													
1.	Kenneth Hoffman an	d Ra	ιγ Κι	unze	, "Lir	near	Alge	bra,	" 2 nd	edit	tion, F	Pearsc	on Edu	ucation
	(Asia) Pte. Ltd, 2004.													
2.	David C. Lay, "Linear	· Alg	ebra	and	d its	Арр	licat	ions	",3 rd	edit	ion, P	earso	n Edu	ucation
	(Asia) Pte. Ltd, 2005.													
REFE	RENCE BOOKS:													
1.	M. Artin, "Algebra", Prentice Hall of India, 2004.													
2.	Gilbert Strang, "Linear Algebra and its Applications", 4th edition, Thomson Learning													
	Asia, 2003.													
3.	Bernard Kolman and	Dav	id R.	. Hill	, "Int	trodu	uctor	'n Lii	near	Alge	ebra v	vith A	pplica	itions",
	Pearson Education (A	Pearson Education (Asia) Pte.Ltd, 7 th edition ,2003.												
4.	Sheldon Axler, "Linea	r Alc	ebra	a Doi	ne Ri	ght"	, Spr	inge	r Int	erna	tional	Publi	catior	, Third
	Edition, 2015.	Edition 2015												

AUTOMOTIVE ENGINEERING

Course Code:	ME1501-1	Course Type	OEC
Teaching Hours/Week (L: T: P: S)	3:0:0:0	Credits	03
Total Teaching Hours	40	CIE + SEE Marks	50+50

Teaching Department: Mechanical Engineering

Course Objectives:

1.	Get an idea on the different components of an engine and its types with lubrication
	system.
2.	Understand the fuel supply system and ignition systems used in automobiles.
3.	Demonstrate the working of transmission system.
4.	Explain the importance of suspension system, steering geometry and drives in
	automobiles
5.	Know the concept of braking system, tyres and emission control.

UNIT-I

Engine Components and Cooling & Lubrication Systems

08 Hours

08 Hours

SI & CI engines, Cylinder arrangements and their relative merits, Liners, Piston, connecting rod, crankshaft, valves, valve actuating mechanisms, valve and port timing diagrams, Choice of materials for different engine co mponents, engine positioning, cooling requirements, methods of cooling, thermostat valves, different lubrication arrangements, crankshaft/flywheel position sensor, accelerator pedal sensors, engine coolant water temperature sensor.

Fuel Supply Systems for SI and CI Engines

Fuel mixture requirements for SI engines, types of carburetors, si mple carburetor, multi point and single point fuel injection systems, CRDI, fuel transfer pumps: AC Mechanical Pump, SU Electrical Pumps, injectors, Fuel gauge sensor, Throttle position sensor, Mass air flow sensors.

Ignition Systems : Battery Ignition systems, magneto Ignition system, Transistor assisted contacts. Electronic Ignition, Automatic Ignition advance systems, Lighting systems, Rain/Light sensors, starting device (Bendix drive)

Pedagogy: Chalk and talk method, Power Point Presentation

UNIT-II

Power Trains07 HoursClutches - Single plate, multiplate and centrifugal clutches. Gear box: Necessity for gear
ratios in transmission, Constant m esh gear box, Synchromesh gear box, principle of
automatic transmission, Vehicle Speed Sensors, calculation of gear ratios, Types of
transmission systems. No numerical.

Drive to Wheels

Propeller shaft, universal joints, Hotchkiss. and torque tube drives, differential, rear axle, steering geometry, camber, king pin inclination, included angle, castor, toe in & toe out, condition for exact steering, power steering, over steer, under steer & neutral steer, Steering angle sensors, numerical problems.

08 Hours

Brakes

Suspension and Springs: Requirements, leaf spring, coil spring, Torsion bar suspension systems, independent suspension for front Wheel, Air suspension system. Collective bargaining; Characteristics, Necessity, Forms Safety & Health; Industrial accidents, Safety Quality circle; Meaning, Structure

Pedagogy: Chalk and talk method, Power Point Presentation

UNIT-III

09 Hours

Types of brakes, mechanical, compressed air, vacuum and hydraulic braking systems, construction and working of master and wheel cylinder, brake shoe arrangements, Disk brakes, Drum brakes.

Tyres: Desirable tyre properties, Types of tyres.

Automotive Emission: Automotive exhaust emissions, sources and emission control method: EGR, SCR, Emission Standards, Exhaust sensors.

Electric Vehicles.

Pedagogy Chalk and talk method, Power Point Presentation

Course Outcomes: At the end of the course student will be able to

1.	Describe and demonstrate the layout of an automobile and components of an
	automobile engine. Explain cooling and lubrication systems.

2. Explain and demonstrate the fuel supply and Ignition systems for SI and CI engines.

- **3.** Describe and demonstrate the transmission system
- **4.** Explain and demonstrate the components of drive to wheel and suspension system, calculate the parameters of steering geometry.
- **5.** Describe and demonstrate automotive braking system. Explain types and construction of tyres and wheels. Explain the significance of automotive emissions and its controlling methods

Course Outcomes Mapping with Program Outcomes

	Program Outcomes→	1	2	3	4	5	6	7	8	9	10	11	12	
	↓ Course Outcomes													
	ME1501-1.1	3	1	-	-	-	1	-	-	3	1	-	1	
	ME1501-1.2	3	1	-	-	-	1	-	-	3	1	-	1	
	ME1501-1.3	3	1	1	-	-	1	-	_	3	1	-	1	
	ME1501-1.4	2	3	1	-	-	1	-	-	3	1	-	1	
	ME1501-1.5	3	1	1	-	-	1	1	1	3	1	-	1	
1: Lov	w 2: Medium 3: High													

TEXTBOOKS:

1.	S. Srinivasan, "Automotive Mechanics", Tata McGraw Hill, 2003.
2.	Kirpal Singh, "Automobile Engineering", Vol I and II, 2013.
3.	A. K. Babu, "Automotive Electrical and Electronics", Khanna Publishers, 2 nd edition,
	2016.
REFER	RENCE BOOKS:
1.	R. B. Gupta, "Automobile Engineering", Satya Prakashan, 4th Edn., 1984 .
2.	Naran G, "Automobile Engineering", Khanna Publishers 2002

INDUSTRIAL POLLUTION CONTROL

Course Code:	ME1502-1	Course Type	OEC
Teaching Hours/Week (L: T: P: S)	3:0:0:0	Credits	03
Total Teaching Hours	40	CIE + SEE Marks	50+50

Teaching Department: Mechanical Engineering

Course Objectives: Know the Consequences of pollution, relationship between man and environment 1. over the last few decades, necessity of modern awareness on pollution and how carbon audit can help in developing a carbon strategy. Identify the Importance of Meteorology in pollution control and global warming, 2. various types of plume dispersions and its effect; analyze various levels of plume height for different pollutants. Distinguish Particulates and fly ash separation techniques such as cyclone separator, 3. electrostatic precipitator efficiency calculations etc. Illustrate Formation, measurement and control techniques for Smoke and gaseous 4. pollutants. Summarize the Effects of water, soil, plastics and odor pollution their control 5. techniques, Different Pollution Control Acts, Legal aspects of pollution control and

how these acts can help in bringing down the pollution rate.

UNIT-I

Introduction to Pollution

Man and the environment, types of pollution and its consequences, Changing environmental management concept, sustainable industrial growth, carbon audit, Ill effects of various pollutants, permissible concentration levels & AQI.

Meteorology

Meteorology, Wind rose, Lapse rate, plume dispersion studies & Numerical problems. Pedagogy: Chalk and talk method, Power Point Presentation

Separation techniques

Different types of Particulates, Need for Separation techniques, Sources of Particulates Matter Fly Ash Electrostatic precipitator (Problems) Theory of settling processes (Design Problems), Bag House fabric filter Cyclone separator Spray Tower Scrubbers & Venturi Scrubber

UNIT-II

Smoke and gaseous pollutants: Smoke- White, blue and black smoke, Sources of smoke, T,T,T-O Principle of smoke Measurement of stack smoke intensity using Ringlemann Chart and Smokescope & Bosch Smoke meter, Domestic and Industrial Incinerators-Design factors, Pollutant gaseous So2, Co, UBHC, Nox their ill effects and & control methods.

Pedagogy: Chalk and talk method, Power Point Presentation

UNIT-III

08 Hours

08 Hours

08 Hours

08 Hours

08 Hours

Water, soil, noise, and odor pollution, their control methods, problems associated with nuclear reactors, Legal aspects of pollution control in India, brief details of Euro and BS standards

Pedagogy: Chalk and talk method, Power Point Presentation

Cour	se Outcomes: At the er	nd of	f the	cou	rse s	tude	nt w	ill be	abl	e to				
1.	Identify the various ty	pes	of po	olluta	ants	and	disti	ngui	sh b	etwe	en th	em w	ith reg	gards
	to Particulate matters	and	AQI											
2.	Outline the instrume	nts f	for N	∕lete	orol	ogica	al m	easu	rem	ents,	disti	nguisl	h typ	es of
	plume dispersions ar	nd it	s eff	ect;	anal	yze	the	cond	centr	atio	n of v	variou	is gas	seous
	pollutants from T-Z di	agra	ms											
3.	Explain the Particulate	es ar	nd fly	y asł	n sep	barat	ion	tech	niqu	es, c	ompa	re an	d Inte	rpret
	their efficiency													
4.	Illustrate Formation, n	neas	uren	nent	and	con	trol t	echr	nique	es fo	r Smc	oke ar	id gas	seous
	pollutants													
5.	Identify Effects of wate	er, so	oil, pl	astic	s an	d od	or po	ollut	ion c	on er	iviron	menta	al Poll	ution
	and explain the Legal	aspe	ects o	of po	ollutio	on co	ontro	ol.						
Cour	se Outcomes Mapping	ı wit	h Pr	ogra	m C)utco	ome	S			n	1	1	
	Program	1	2	3	4	5	6	7	8	9	10	11	12	
	Outcomes→													
	↓ Course													
	Outcomes													
	ME1502-1.1	1	-	-	1	-	3	3	2	1	2	-	3	
	ME1502-1.2	1	2	1	1	3	2	3	1	1	1	-	2	
	ME1502-1.3	1	2	2	1	1	2	3	1	1	1	-	1	
	ME1502-1.4	1	1	1	1	1	2	3	1	1	1	-	2	
	ME1502-1.5	1	-	-	1	-	2	3	1	1	1	-	3	

TEXT	BOOKS:
1.	"Environmental Pollution Control Engineering", Wiley Eastern Ltd.,
2.	Gilbert M Masters, "Introduction to Environmental Engineering & Science", PHI,1995
3.	C. S Rao, "Environmental Pollution Control Engineering", New Age Int.
REFE	RENCE BOOKS:
1.	Henry C. Perkins, "Air Pollution", Mc-Graw Hill, 1974.
2.	W. L. Faith, "Air Pollution control", John Wiley
E Boo	oks / MOOCs/ NPTEL
1.	http://nptel.ac.in/courses/105106119/36

SUSTAINABLE DEVELOPMENT GOALS

Course Code:	ME1503-1	Course Type	OEC	
Teaching Hours/Week (L: T: P: S)	3:0:0:0	Credits	03	
Total Teaching Hours	40	CIE + SEE Marks	50+50	

Teaching Department: Mechanical Engineering

Course Objectives: 1. To provide the knowledge, skills, attitudes and values necessary to address sustainable development challenges 2. Address the global challenges including poverty, inequality, climate change, environmental degradation, peace and justice. 3. To learn more and take action. 4. Addresses critical global challenges put forth by UN. 5. Analyze how sustainable development can be achieved in practice.

UNIT-I

08 Hours

The origin, development and idea of the SDGs History and origins of the Sustainable Development Goals. What are the SDGs? What are their aims, methodology and perspectives? How are they related to the Millennium Development Goals?

SDGs and Society 08 Hours Ensuring resilience and primary needs in society In-depth discussion and analysis of goals related to poverty, hunger, health & well-being and education 08 Hours

Pedagogy: Chalk and talk method, Power Point Presentation

UNIT-II	
SDGs and Society	14 Hours
Strengthening Institutions for Sustainability In-depth discussion and analysis of goals related	ated to gender
equality, affordable and clean energy, sustainable cities & communities, and peace, ju	stice & strong
institutions	
SDGs and the Economy: Shaping a Sustainable Economy In-depth discussion and analysis of	of goals related
to work & economic growth, industry, innovation & infrastructure, inequalities, responsible	e production &
consumption	

Pedagogy: Chalk and talk method, Power Point Presentation

UNIT-III

SDGs and the Biosphere

Development within Planetary Boundaries In-depth discussion and analysis of goals related to clean water, climate, life below water and life on land

Realizing the SDGs: Implementation through Global Partnerships In-depth discussion and analysis of SDG 17 which aims to implement the SDGs through partnerships, finance, technology and the development of coherence between policies.

Pedagogy: Chalk and talk method, Power Point Presentation

Course Outcomes: At the end of the course student will be able to

10 Hours

1.	Summarize the UN"s Sustainable Development Goals and how their aims, methodology
	and perspectives.
2.	Analyze the major issues affecting sustainable development and how sustainable
	development can be achieved in practice.
3.	Identify and apply methods for assessing the achievement/possibilities of sustainable
	development in Nitte gram panchayath.
4.	Evaluate the implications of overuse of resources, population growth and economic
	growth. sustainability & Explore the challenges the society faces in making transition to
	renewable resource use.
5.	Create skills that will enable students to understand attitudes on individuals, society and
	their role regarding causes and solutions in the field of sustainable development.

Course Outcomes Mapping with Program Outcomes

Program Outcomes→	1	2	3	4	5	6	7	8	9	10	11	12	
↓ Course Outcomes													
ME1503-1.1	1	2	1	1	1	3	3	1	1	1	-	2	
ME1503-1.2	2	2	1	1	1	3	3	2	1	1	-	1	
ME1503-1.3	3	2	2	1	1	3	3	2	3	1	-	1	
ME1503-1.4	3	2	3	1	1	3	3	2	1	1	-	1	
ME1503-1.5	1	2	2	1	1	3	3	2	2	2	-	1	

1: Low 2: Medium 3: High

TEXT	BOOKS:
1.	Sachs, Jeffrey D. "The age of sustainable development" Columbia University Press, 2015
2.	Gagnon, B., Leduc, R., and Savard, L., "Sustainable development in engineering: a review of principles and definition of a conceptual framework", Cahier de recherche / Working Paper 08-18, 2008.

REFERENCE BOOKS:

1. Elliott, Jennifer, "An introduction to sustainable development", Routledge, 2012.

E Books / MOOCs/ NPTEL

1. https://www.un.org/sustainabledevelopment/poverty/

TECHNOLOGICAL INNOVATION

Course Code:	ME1504-1	Course Type	OEC
Teaching Hours/Week (L: T: P: S)	3:0:0:0	Credits	03
Total Teaching Hours	40	CIE + SEE Marks	50+50

Teaching Department: Mechanical Engineering

Course Objectives:

1.	Understand basics of operations management and Quality.	
2.	Define the concept of technological innovation.	
3.	Discuss Innovation management and the difference between Invention and	
	Innovation.	
4.	Appreciate the importance of Innovation as a management process and Innovation	
	management techniques.	
5.	Discuss the Innovation system, Understand the importance of Technology	,
	management and Transfer and basics of Technological Forecasting.	
	UNIT-I	
Prod	uction and Operations Management and Introduction to Quality Concepts	04 Hours
Produ	uction and Operations Management: Introduction - Functions within business o	rganizations - the
opera	ation management function - Classification of production systems.	
Intro	duction to Quality Concepts: The Meaning of Quality and Quality Improvement -	Key dimensions of
Quali	ty - Concept of cost of quality - Customers' perception of quality.	
Intro	duction to Technological Innovation	09 Hours
Basic	Concepts and Definitions: Technology - Technology Management – Invention – Crea	ativity – Innovation
- The	e Concept of Technological Innovation - Innovation Posture, Propensity and Perforn	nance - Innovation
Meas	surement - Key factors linking creativity and innovation – Classifications of Innova	tions – Innovation
Proce	ess.	
Start	up Idea Pitching	03 Hours
	UNIT-II	
Intro	UNIT-II duction to Innovation Management and Innovation & Competitiveness	07 Hours
Intro	UNIT-II duction to Innovation Management and Innovation & Competitiveness duction to Innovation Management: Innovation Management Through Management	07 Hours of Knowledge and
Intro Introd Educa	UNIT-II duction to Innovation Management and Innovation & Competitiveness duction to Innovation Management: Innovation Management Through Management ation – Types of Learning - Difference Between Innovation and Invention - Types and	07 Hours of Knowledge and d Characteristics of
Intro Intro Educa Innov	UNIT-II duction to Innovation Management and Innovation & Competitiveness duction to Innovation Management: Innovation Management Through Management ation – Types of Learning - Difference Between Innovation and Invention - Types and vation.	07 Hours of Knowledge and d Characteristics of
Intro Intro Educa Innov Innov	UNIT-II eduction to Innovation Management and Innovation & Competitiveness duction to Innovation Management: Innovation Management Through Management ation – Types of Learning - Difference Between Innovation and Invention - Types and vation. vation and Competitiveness: Case Study – Barriers for Innovation and Competitiveness	07 Hours of Knowledge and d Characteristics of s
Intro Intro Educa Innov Innov	UNIT-II duction to Innovation Management and Innovation & Competitiveness duction to Innovation Management: Innovation Management Through Management ation – Types of Learning - Difference Between Innovation and Invention - Types and vation. vation and Competitiveness: Case Study – Barriers for Innovation and Competitiveness vation as a Management Process itigs to enhance competic encoded of Tachne	07 Hours of Knowledge and d Characteristics of s 08 Hours
Intro Intro Educa Innov Innov Activi	UNIT-II duction to Innovation Management and Innovation & Competitiveness duction to Innovation Management: Innovation Management Through Management ation – Types of Learning - Difference Between Innovation and Invention - Types and vation. vation and Competitiveness: Case Study – Barriers for Innovation and Competitiveness vation as a Management Process ities to enhance companies' capacity for innovation – Management of Techno prote Damagement Damagement Damagement of Techno	07 Hours of Knowledge and d Characteristics of s 08 Hours logical Innovation:
Intro Educa Innov Innov Activi Corpo	UNIT-II duction to Innovation Management and Innovation & Competitiveness duction to Innovation Management: Innovation Management Through Management ation – Types of Learning - Difference Between Innovation and Invention - Types and vation. vation and Competitiveness: Case Study – Barriers for Innovation and Competitiveness vation as a Management Process ities to enhance companies' capacity for innovation – Management of Techno orate Perspective, National Perspective, Theoretical Perspective and Individual Perspec- tion Anagement Process	07 Hours of Knowledge and d Characteristics of s 08 Hours logical Innovation: ective - Challenges
Intro Educa Innov Innov Activi Corpo in Teo	UNIT-II duction to Innovation Management and Innovation & Competitiveness duction to Innovation Management: Innovation Management Through Management ation – Types of Learning - Difference Between Innovation and Invention - Types and vation. vation and Competitiveness: Case Study – Barriers for Innovation and Competitiveness vation as a Management Process ities to enhance companies' capacity for innovation – Management of Techno orate Perspective, National Perspective, Theoretical Perspective and Individual Perspective chnological Innovation Management - Case Study in Technological Innovation Management pagement Technological Innovation Management - Case Study in Technological Innovation Management	07 Hours of Knowledge and d Characteristics of s 08 Hours logical Innovation: ective - Challenges ement - Innovation
Intro Educa Innov Innov Activi Corpo in Teo Mana	UNIT-II duction to Innovation Management and Innovation & Competitiveness duction to Innovation Management: Innovation Management Through Management ation – Types of Learning - Difference Between Innovation and Invention - Types and vation. vation and Competitiveness: Case Study – Barriers for Innovation and Competitiveness vation as a Management Process ities to enhance companies' capacity for innovation – Management of Techno orate Perspective, National Perspective, Theoretical Perspective and Individual Perspec- chnological Innovation Management - Case Study in Technological Innovation Manage- agement Techniques (IMTs).	07 Hours of Knowledge and d Characteristics of s 08 Hours logical Innovation: ective - Challenges ement - Innovation
Intro Educa Innov Innov Activi Corpo in Teo Mana	UNIT-II duction to Innovation Management and Innovation & Competitiveness duction to Innovation Management: Innovation Management Through Management ation – Types of Learning - Difference Between Innovation and Invention - Types and vation. vation and Competitiveness: Case Study – Barriers for Innovation and Competitiveness vation as a Management Process ities to enhance companies' capacity for innovation – Management of Techno orate Perspective, National Perspective, Theoretical Perspective and Individual Perspective chnological Innovation Management - Case Study in Technological Innovation Management agement Techniques (IMTs). UNIT-III	07 Hours of Knowledge and d Characteristics of s 08 Hours logical Innovation: ective - Challenges ement - Innovation
Intro Educa Innov Innov Activi Corpo in Teo Mana	UNIT-II duction to Innovation Management and Innovation & Competitiveness duction to Innovation Management: Innovation Management Through Management ation – Types of Learning - Difference Between Innovation and Invention - Types and vation. vation and Competitiveness: Case Study – Barriers for Innovation and Competitiveness vation as a Management Process ities to enhance companies' capacity for innovation – Management of Techno orate Perspective, National Perspective, Theoretical Perspective and Individual Perspect chnological Innovation Management - Case Study in Technological Innovation Management Techniques (IMTs). UNIT-III vation Systems and Technology Management & Transfer	07 Hours of Knowledge and d Characteristics of s 08 Hours logical Innovation: ective - Challenges ement - Innovation 04 Hours
Intro Educa Innov Innov Activi Corpo in Tec Mana Innov	UNIT-II duction to Innovation Management and Innovation & Competitiveness duction to Innovation Management: Innovation Management Through Management ation – Types of Learning - Difference Between Innovation and Invention - Types and vation. vation and Competitiveness: Case Study – Barriers for Innovation and Competitiveness vation as a Management Process ities to enhance companies' capacity for innovation – Management of Techno orate Perspective, National Perspective, Theoretical Perspective and Individual Perspect chnological Innovation Management - Case Study in Technological Innovation Manage agement Techniques (IMTs). UNIT-III vation Systems and Technology Management & Transfer vation Systems: The Concept of Innovation Systems - Innovation Systems: Sectoral, Receiper Management and Transfer: Technology Transfer	07 Hours of Knowledge and d Characteristics of s 08 Hours logical Innovation: ective - Challenges ement - Innovation 04 Hours egional, National. equiverse
Intro Educa Innov Innov Activi Corpo in Tec Mana Innov Techr	UNIT-II duction to Innovation Management and Innovation & Competitiveness duction to Innovation Management: Innovation Management Through Management ation – Types of Learning - Difference Between Innovation and Invention - Types and vation. vation and Competitiveness: Case Study – Barriers for Innovation and Competitiveness vation as a Management Process ities to enhance companies' capacity for innovation – Management of Techno orate Perspective, National Perspective, Theoretical Perspective and Individual Perspective chnological Innovation Management - Case Study in Technological Innovation Management agement Techniques (IMTs). UNIT-III vation Systems and Technology Management & Transfer vation Systems: The Concept of Innovation Systems - Innovation Systems: Sectoral, Re nology Management and Transfer: Technology Transfer - Impacts of MNCs in technological duction to Technological Eprecasting	07 Hours of Knowledge and d Characteristics of s 08 Hours logical Innovation: ective - Challenges ement - Innovation 04 Hours egional, National. ogy transfer 05 Hours
Intro Educa Innov Innov Activi Corpo in Tec Mana Innov Techr Intro	UNIT-II duction to Innovation Management and Innovation & Competitiveness duction to Innovation Management: Innovation Management Through Management ation – Types of Learning - Difference Between Innovation and Invention - Types and vation. vation and Competitiveness: Case Study – Barriers for Innovation and Competitiveness vation as a Management Process ities to enhance companies' capacity for innovation – Management of Techno orate Perspective, National Perspective, Theoretical Perspective and Individual Perspective chnological Innovation Management - Case Study in Technological Innovation Manage agement Techniques (IMTs). UNIT-III vation Systems and Technology Management & Transfer vation Systems: The Concept of Innovation Systems - Innovation Systems: Sectoral, Re nology Management and Transfer: Technology Transfer - Impacts of MNCs in technological duction to Technological Forecasting duction - Applications & Limitations of Technological Eorecasting – Technology Fore	07 Hours of Knowledge and d Characteristics of s 08 Hours logical Innovation: ective - Challenges ement - Innovation egional, National. ogy transfer 05 Hours casting Techniques
Intro Educa Innov Innov Innov Activi Corpo in Tec Mana Innov Techr Intro Intro	UNIT-II duction to Innovation Management and Innovation & Competitiveness duction to Innovation Management: Innovation Management Through Management ation – Types of Learning - Difference Between Innovation and Invention - Types and vation. vation and Competitiveness: Case Study – Barriers for Innovation and Competitiveness vation as a Management Process ities to enhance companies' capacity for innovation – Management of Techno orate Perspective, National Perspective, Theoretical Perspective and Individual Perspect chnological Innovation Management - Case Study in Technological Innovation Management Techniques (IMTs). UNIT-III vation Systems and Technology Management & Transfer vation Systems: The Concept of Innovation Systems - Innovation Systems: Sectoral, Recology Management and Transfer: Technology Transfer - Impacts of MNCs in technological Innovations & Limitations of Technological Forecasting – Technology Fore- ploratory. Forecasting – Normative Forecasting – Delphi Technique – Problems	07 Hours of Knowledge and d Characteristics of s 08 Hours logical Innovation: ective - Challenges ement - Innovation egional, National. ogy transfer 05 Hours casting Techniques a of Technological
Intro Educa Innov Innov Activi Corpo in Tec Mana Innov Techr Intro Entro	UNIT-II duction to Innovation Management and Innovation & Competitiveness duction to Innovation Management: Innovation Management Through Management ation – Types of Learning - Difference Between Innovation and Invention - Types and vation. vation and Competitiveness: Case Study – Barriers for Innovation and Competitiveness vation as a Management Process ities to enhance companies' capacity for innovation – Management of Techno orate Perspective, National Perspective, Theoretical Perspective and Individual Perspec chnological Innovation Management - Case Study in Technological Innovation Manag agement Techniques (IMTs). UNIT-III vation Systems and Technology Management & Transfer vation Systems: The Concept of Innovation Systems - Innovation Systems: Sectoral, Re nology Management and Transfer: Technology Transfer - Impacts of MNCs in technolo duction to Technological Forecasting duction - Applications & Limitations of Technological Forecasting – Technology Fore- ploratory Forecasting – Normative Forecasting – Delphi Technique – Problems asting	07 Hours of Knowledge and d Characteristics of s 08 Hours logical Innovation: ective - Challenges ement - Innovation egional, National. ogy transfer 05 Hours casting Techniques a of Technological
Intro Educa Innov Innov Activi Corpo in Tec Mana Innov Techr Intro Intro Forec	UNIT-II duction to Innovation Management and Innovation & Competitiveness duction to Innovation Management: Innovation Management Through Management ation – Types of Learning - Difference Between Innovation and Invention - Types and vation. vation and Competitiveness: Case Study – Barriers for Innovation and Competitiveness vation as a Management Process ities to enhance companies' capacity for innovation – Management of Techno orate Perspective, National Perspective, Theoretical Perspective and Individual Perspec- chnological Innovation Management - Case Study in Technological Innovation Manage agement Techniques (IMTs). UNIT-III vation Systems and Technology Management & Transfer vation Systems: The Concept of Innovation Systems - Innovation Systems: Sectoral, Re- nology Management and Transfer: Technology Transfer - Impacts of MNCs in technological duction to Technological Forecasting duction - Applications & Limitations of Technological Forecasting – Technology Fore- ploratory Forecasting – Normative Forecasting – Delphi Technique – Problems tasting	07 Hours of Knowledge and d Characteristics of s 08 Hours logical Innovation: ective - Challenges ement - Innovation egional, National. ogy transfer 05 Hours casting Techniques a of Technological
Intro Educa Innov Innov Innov Activi Corpa in Tea Mana Innov Techr Intro Intro Forec	UNIT-II duction to Innovation Management and Innovation & Competitiveness duction to Innovation Management: Innovation Management Through Management ation – Types of Learning - Difference Between Innovation and Invention - Types and vation. vation and Competitiveness: Case Study – Barriers for Innovation and Competitiveness vation as a Management Process ities to enhance companies' capacity for innovation – Management of Techno orate Perspective, National Perspective, Theoretical Perspective and Individual Perspect chnological Innovation Management - Case Study in Technological Innovation Manage agement Techniques (IMTs). UNIT-III vation Systems and Technology Management & Transfer vation Systems: The Concept of Innovation Systems - Innovation Systems: Sectoral, Re- nology Management and Transfer: Technology Transfer - Impacts of MNCs in technolog duction to Technological Forecasting duction - Applications & Limitations of Technological Forecasting – Technology Fore- ploratory Forecasting – Normative Forecasting – Delphi Technique – Problems tasting se Outcomes: At the end of the course student will be able to	07 Hours of Knowledge and d Characteristics of s 08 Hours logical Innovation: ective - Challenges ement - Innovation egional, National. ogy transfer 05 Hours casting Techniques a of Technological
Intro Educa Innov Innov Activi Corpo in Tec Mana Innov Techr Intro Intro Forec 1.	UNIT-II duction to Innovation Management and Innovation & Competitiveness duction to Innovation Management: Innovation Management Through Management ation – Types of Learning – Difference Between Innovation and Invention – Types and vation and Competitiveness: Case Study – Barriers for Innovation and Competitiveness vation as a Management Process ities to enhance companies' capacity for innovation – Management of Techno orate Perspective, National Perspective, Theoretical Perspective and Individual Perspective chnological Innovation Management - Case Study in Technological Innovation Management Techniques (IMTs). UNIT-III vation Systems and Technology Management & Transfer vation Systems: The Concept of Innovation Systems - Innovation Systems: Sectoral, Re hology Management and Transfer: Technology Transfer - Impacts of MNCs in technological duction to Technological Forecasting duction - Applications & Limitations of Technological Forecasting – Technology Fore- ploratory Forecasting – Normative Forecasting – Delphi Technique – Problems tasting se Outcomes: At the end of the course student will be able to Define operations management and quality.	07 Hours of Knowledge and d Characteristics of s 08 Hours logical Innovation: ective - Challenges ement - Innovation egional, National. ogy transfer 05 Hours casting Techniques a of Technological
Intro Educa Innov Innov Innov Activi Corpo in Tec Mana Innov Techr Intro Intro Forec Cours 1. 2.	UNIT-II duction to Innovation Management and Innovation & Competitiveness duction to Innovation Management: Innovation Management Through Management ation – Types of Learning - Difference Between Innovation and Invention - Types and vation. vation and Competitiveness: Case Study – Barriers for Innovation and Competitiveness vation as a Management Process ities to enhance companies' capacity for innovation – Management of Techno orate Perspective, National Perspective, Theoretical Perspective and Individual Perspection chnological Innovation Management - Case Study in Technological Innovation Management agement Techniques (IMTs). UNIT-III vation Systems and Technology Management & Transfer vation Systems: The Concept of Innovation Systems - Innovation Systems: Sectoral, Re nology Management and Transfer: Technology Transfer - Impacts of MNCs in technolog duction to Technological Forecasting duction - Applications & Limitations of Technological Forecasting – Technology Fore- ploratory Forecasting – Normative Forecasting – Delphi Technique – Problems casting se Outcomes: At the end of the course student will be able to Define operations management and quality. Describe technological innovation and its key features for business.	07 Hours of Knowledge and d Characteristics of s 08 Hours logical Innovation: ective - Challenges ement - Innovation egional, National. ogy transfer 05 Hours casting Techniques a of Technological

4.	Explain innovation as a management process, its management and perspectives.							
	Understand Innovation management techniques.							
5.	Explain innovation systems, technology management transfer and basics of							
	technological forecasting.							

Course Outcomes Mapping with Program Outcomes

Program	1	2	3	4	5	6	7	8	9	10	11	12
Outcomes→												
↓ Course Outcomes												
ME1504-1.1	3	2	-	-	-	1	1	-	1	-	-	1
ME1504-1.2	3	2	-	-	-	1	1	-	1	-	-	1
ME1504-1.3	2	2	-	-	-	1	1	-	1	-	_	1
ME1504-1.4	2	2	-	-	-	1	1	-	1	-	_	1
ME1504-1.5	3	2	-	-	-	1	1	-	1	-	_	1

1: Low 2: Medium 3: High

N)

TEXTBOO	DKS:
1.	Carayannis, Elias G., Samara, Elpida T., Bakouros, Yannis L., "Innovation and Entrepreneurship
	Theory, Policy and Practice", Springer, 2015.
REFEREN	CE BOOKS:
1.	Dick Whittington, "Digital Innovation and Entrepreneurship", Cambridge University Press, 2018.
E Books	/ MOOCs/ NPTEL
1.	https://krishi.icar.gov.in/jspui/bitstream/123456789/46063/1/21_Technological%20forecasting.pdf
	dtd 12/06/2022
2.	http://www.oipec.eu/wp-content/uploads/2017/07/Introduction-to-Technology-Forecasting.pdf
	dtd 12/06/2022

HUMAN RESOURCE MANAGEMENT						
Course Code:	MG1501-1	Course Type	OEC			
Teaching Hours/Week (L: T: P: S)	3:0:0:0	Credits	03			
Total Teaching Hours	40	CIE + SEE Marks	50+50			
Teaching Depart	ment: Mechan	ical Engineering				
Course Objectives:						
1. To develop a meaningful unders	standing of HR	M theory, functions and p	ractices.			
2. To understand concepts and ski	lls recruitment.					
3. To understand the concepts of t	raining and de	velopment.				
4. To deal with employees' grievar	ices, safety and	health types of organizat	ions.			
5. To understand the concepts of e	e-HRM.					
	UNIT-I		1			
Human Resource Management & H	RP		08 Hours			
Introduction, meaning, nature, scop	e of HRM. N	lajor functions of HRM,	, Personnel			
Management vs Human Resource Man	agement, job d	esign, job evaluation, job	analysis, job			
specification, job enlargement, job en	richment. Role	of HR Manager.HR Planni	ing. Process			
HRP.						
Recruitment			08 Hours			
Definition, Sources and Methods of	Recruitment S	Selection: Definition and	Process of			
Selection. Cost benefit analysis of selection	ction.					

ſ

-

Placer	Placement: Meaning, Induction/Orientation, Internal Mobility, Transfer, Promotion,						notion,							
Demo	otion and Employee Sep	barat	ion.	Perf	orma	ance	Арр	raisa	al me	etho	ds.			
Pedag	gogy: Chalk and talk me	etho	d, Pc	wer	Poir	it Pr€	esen	tatio	n					
- •	• • • • •				UNI	T-II								
	ing and development				•	-							0/1	Hours
Iraini	ng v/s development, s	tage	es in	trai	ning,	Ira	ining	j M€	ethoo	ds, E	xecuti	ive De	evelop	oment,
Metho	ods and Development d		anag	eme	nt D	even	opm	ent,	Care	erar		cessio	on Pla	nning.
Comr	pensation												08	Hours
Emplo	ovee remuneration rew	ardo	: W2	ane a	and 9	Salar	νΔα	Imin	istra	tion	Bonu	s frin		nefits
Intern	al Mobility External M	ohili	tv Tr	ade 'ade	unic	n Δα	γ Λυ •† (Δι	men	dme	nt) 2	001	5, 1111	ge be	inchio.
Emplo	ovee Grievances: Emplo	vee	Griev	vanc	e pro	oced	ure.	Disc	iplin	e pro	ocedu	re		
Collec	ctive bargaining: Charag	teris	tics.	Nec	essit	v. Fo	rms	Safe	tv &	Неа	lth: In	dustria	al acci	idents.
Safety	Quality circle; Meanin	q, St	ructi	ure		<i>,</i> , -			- j		- 1			,
Pedac	gogy: Chalk and talk me	etho	d, Pc	wer	Poin	nt Pre	esent	tatio	n					
					UNI	Γ-III								
IHRM	l and e-HRM												09	Hours
Mana	ging IHRM. e-HR Act	tiviti	es, (Glob	al re	ecrui	tmer	nt, s	elect	ion,	ехра	triates	s. Ind	ustrial
confli	ct –Causes, Types, Prev	entic	on ar	nd Se	ettler	nent								
Aspec	ts of e-HRM,e-Job des	ign 8	ያ An	alysi	s, Etl	hical	issu	es in	emj	oloyı	ment			
Pedag	gogy: Chalk and talk me	etho	d, Pc	wer	Poir	nt Pre	esen	tatio	n					
Cours	se Outcomes: At the er	nd of	fthe	cou	rse s	tude	nt w	ill be	e abl	e to				
1.	Describe the basic cor	псер	ts of	HRN	N & N	HRP	•							
2.	Elucidate the HRM fur	nctio	ns o	f rec	ruitn	nent	, sele	ectio	ns, a	nd a	pprais	sal.		
3.	Apply the training, de	velo	pme	nt ar	nd co	ompe	ensa	tion	meth	nods	in HF	RD.		
4.	Identify the employee	grie	vano	ces to	o spe	ell ou	ut th	e rer	nedi	al m	easur	es.		
5.	Infer the concepts of e	e-HR	RM a	nd I-	HRN	1.								
_		•.												
Cours			n Pr	ogra	am C		ome	S -7	0	0	10	11	10	
	Program	1	2	5	4	5	б	/	ð	9	10			
	Outcomes→													
	↓ Course	1												
	Outcomes													
							4				4		4	
	MG1501-1-1.1	3	-	-	-	-	1	-	-	1	1	-	1	
	MG1501-1-1.2	3	-	-	-	-	1	-	-	1	1	-	1	
	MG1501-1-1.3	3	-	-	-	-	1	_	-	1	1	-	1	
	MG1501-1-1.4	3	-	-	-	-	1	-	-	1	1	-	1	
	MG1501-1-1.5	3	-	-	-	-	1	-	-	1	1	-	1	

1: Low 2: Medium 3: High

N

TEXTBOOKS:						
1.	P Courseba Rao, "Essentials of Human Resource Management & Industrial					
	Relations", Third Revised Edition.					
REFERENCE BOOKS:						
1.	John M. Ivancevich, "Human Resource Management", 10/e, McGraw Hill.					
2.	Flippo, "Human Resource Management".					

E Books / MOOCs/ NPTEL

1. http://edx.nimt.ac.in/courses/course-v1:nimtX+PGDM1212+2017_H1/about

	MANAGEMENT ACCO	DUNTING A	ND CONTROL SYSTE	M			
Cours	se Code:	MG1502-1	Course Type	OEC			
Teacl	Teaching Hours/Week (L: T: P: S)3:0:0:0Credits			03			
Total	Teaching Hours	40	CIE + SEE Marks	50+50			
Course	Teaching I e Objectives:	Department: N	lanagement				
1	Apply Cost Accounting conce	nts and techni	nues in the decision making	na process			
2	Make decisions such as pricin	ng special orde	r pricing make-or-buy an	d elimination			
	of a part of the company or re	eplacement of	equipment				
3.	Understand the relevance of c	different types	of costs in the decision m	aking process			
	such as relevant costs, sunk co	osts or controll	able costs.				
4.	Understand fundamental con	cepts in Financ	ial, Cost & Management A	Accounting.			
5.	Develop analytical skills asso	ociated with t	he preparation and inte	rpretation of			
	Financial Statement			'			
				07.11			
Introd	luction to Cost and Manageme	ent Accounting	g and Marginal Costing	07 Hours			
Cost A	Accounting – Meaning, Objectiv	ves and Scope	, Management Accountir	ig – Meaning,			
Object	ives and Scope, Tools and Techn	iques of Manag	gement Accounting, Relati	onship of Cost			
Accour	nting, Financial Accounting, M	lanagement A	ccounting and Financial	Management,			
Conflic	ts in Profit versus Value Maxim	nization Princip	le, Role of Management	Accountant in			
Decisio	on Making.						
Margi	nal Costing	I A 11 .1		08 Hours			
Meani	ng, Advantages, Limitations and	Applications.	Breakeven Analysis, Cost	Volume Profit			
Analys	is, P/V Ratio and its Significance,	, Margin of Saf	ety, Absorption Costing: S	ystem of Profit			
Report	ting and Stock Valuation, Differen	nce between M	arginal Costing and Abso	rption Costing,			
Incom	e Measurement under Marginal	Costing and A	osorption Costing. (Practio	al Problems)			
Ctoral	and Costing and Duductors Co			07 Цение			
Standa	ard Costing and Budgetary Co		nlications Variana Turas	of Standard			
Standa	ard Costing – Definition, Signifi	icance and Ap	plications, various Types	of Standards,			
Installa	ation of Standard Costing System	n-for Material,	Labour, and Overnead. Va	riance Analysis			
	for Materials, Labour and Overheads, Accounting Treatment of Variances. Benchmarking for						
Setting	j of Standards, Variance Reporting	ng to Manager	nent. (Practical Problems)	00 110			
Budge	etary Control	· 'lelle De elle ette		U8 Hours			
виdде	t Concept, Manual, Fixed and Fle	exible Budgets,	Preparation and Monitor	Ing of Various			
Types Base B	of Budgets, Budgetary Control S udgeting Programme and Perfo	oystem- Advant	ages, Limitations and Inst	allation. Zero			
	augeting, i rogramme and Peric						
Fund I	Flow and Cash Flow Statement			05 Hours			

Fund Stater	Flow Statement Analys	sis –	Defi	nitic	on, F	eatu	res,	Step	s fo	r Pre	epara	tion c	of Fun	d Flow
Cash	Cash Flow Statement Analysis 05 Hours						Hours							
Classi	fication, Preparation of	Cash	ו Flo	w Sta	atem	ient,	Use	s of	Casł	n Flo	w sta	temer	nt, Dif	ference
betwe	en Cash Flow and Fund	Flov	v Sta	teme	ent. (Prac	tical	Prol	olem	s)				
Cours	e Outcomes: At the end	d of	the c	ours	se sti	uden	t wil	ll be	able	to				1
1.	Describe the Cost Ac	cour	nting	cor	ncep	ts ar	nd t	echr	nique	es in	the	decis	ion n	naking
	process.													
2.	Elucidate the Make dee elimination of a part of	cisioı f the	ns su com	ich a pany	s pri / or i	icing, repla	spe cem	ecial nent o	orde of ec	er pri quipr	cing, nent.	make	-or-bı	iy and
3.	Apply the relevance of	diffe	erent	type	es of	cost	s in	the c	lecis	ion r	nakin	g pro	cess s	uch as
	relevant costs, sunk cos	sts o	r cor	ntroll	able	cost	S.							
4.	Identify fundamental c	once	epts i	n Fir	anci	al, C	ost &	& Ma	anag	eme	nt Ac	count	ing.	
5.	Infer the analytical skills	s ass	ociat	ed w	vith t	he pi	ера	ratio	n an	d int	erpre	tation	of Fir	nancial
	Statement													
Cours	e Outcomes Mapping	with	n Pro	grar	n Oı	utco	nes			_			Γ	
	Program	1	2	3	4	5	6	7	8	9	10	11	12	
	Outcomes→													
	↓ Course													
	Outcomes													
	MG1502-1-1.1	3	-	-	_	-	1	-	_	1	1	-	1	
	MG1502-1-1.2	3	-	-	-	_	1	-	-	1	1	_	1	
	MG1502-1-1.3	3	-	-	-	-	1	-	-	1	1	-	1	
	MG1502-1-1.4	3	-	-	-	-	1	-	-	1	1	-	1	
	MG1502-1-1.5	3	-	-	-	-	1	-	-	1	1	-	1	
1: Lo	w 2: Medium 3: High													
TEXTI	BOOKS:													
1.	M.Y. Khan and P.K. J	lain.	"Mar	nage	men	t Acc	our	nting	", M	Gra	w-Hill	Educ	ation	
2.	Robert N. Anthony, "Management Accounting", Richard Dirwin.													
3.	I.M. Pandey , "Management Accounting", Vikas Publishing House.													
4.	Paresh shaw, "Management Accounting", Oxford University Press.													
5.	A. Murthy and S. Gurusamy , "Management Accounting", McGraw Hill.													
6.	NM Singhvi and Ruz	beh	J. Bo	dhar	nwala	a, "M	ana	gem	ent A	Acco	unting	g", PH	I learn	ing Pvt.
	Ltd.													
	OPERAT	ION	S A	ND	QU	ALI1	Y		A	jΕΜ	ENT			1
Cour	rse Code:			M	G15	03-1		Cour	se T	уре			OEC	
Teaching Hours/Week (L: T: P: S)				3:0):0:0)		Cred	its				03	

Teaching Department: Management

40

CIE + SEE Marks

50+50

Total Teaching Hours

Course	Objectives:
1.	Define production/operations management. Differentiate between Production and
	service system and types of production systems Discuss continuous and
	intermittent production systems with their advantages and disadvantages. Discuss
	CRM and ERP systems.
2.	Solve problems on fundamentals of statistics and normal distribution. Draw and
	Analyze variable process control charts and determine process capability.
3.	Discuss Total Quality Management tools and methods. Calculate reliability of series
	and parallel systems using the information on failure rate and time.
4.	Solve decision-making problems using break even analysis and decision tree
	methods. Apply the concepts of Design and System capacity. Solve problems on
	faculty location using break even analysis and transportation method. Solve
	problems related to product and process layouts.
5.	Use concepts of replacement theory to solve problems of replacing items that fail
	gradually and suddenly.
46.	
47.	

UNIT-I

Production and Operations Management

Introduction, Functions within business organizations, the operation management function, Classification of production systems, Productivity, factors affecting productivity, Introduction to Customer Relationship Management (CRM) and Enterprise Resource Planning (ERP).

Philosophy of statistical process control and modeling process quality11 HoursNormal distribution tables, Finding the Z score, Central limit theorem, Chance and assignable
causes of variation, Statistical Basis of the Control Charts (basic principles, choices of control
limits, significance of control limits, warning limits)11 Hours

Control charts for variables: Control Charts for X-Bar and R- Charts, Type I and Type II errors, Simple Numerical Problems,

Process capability: The foundation of process capability, Natural Tolerance limits, c_p – process capability index, c_{pk} , p_p – process performance index, summary of process measures. Numerical problems. Concept of Six sigma.

Pedagogy: Chalk and talk method, Power Point Presentation

UNIT IIQuality Concepts and Reliability06 HoursIntroduction to Quality Concepts: The Meaning of Quality and Quality Improvement, Key
dimensions of Quality, Concept of cost of quality. Customers' perception of quality.KeyTOTAL Quality Management: Definition, Principles of TQM, Gurus of TQM, Benefits of TQM.
Managing Quality: Quality circles, Continuous Improvement- Juran's Trilogy, PDSA cycle,
Kaizen, 7 QC tools.Introduction to reliability, Mean time to failure, Mean time between failures, Bath tub curve,
Reliability of series and parallel systems, Numerical problems on the above topics.12 Hours

Decision Making: The decision process, characteristics of operations decisions, use of models - decision making environments. Break even Analysis, Decision trees.

06 Hours

Capacity Planning: Importance of capacity decisions, defining and measuring capacity, determinants of effective capacity. Design, System an actual capacity. System efficiency and utilization. Determination of Equipment requirement for a single stage production processes. Numerical problems on the above.

Facilities location planning: Need for location decisions, nature of locations decisions, general procedure for making locations decisions, Use of Breakeven analysis and Transportation algorithms for making location decisions.

Facilities layout planning: Need for layout decisions. Minimizing material handling cost in process ayout using Load distance analysis, Simple line balancing problems in product layout.

UNIT III							
Replacement Theory	05 Hours						
Replacement policy for equipment which deteriorates gradually. Replacement	of items that						
fail suddenly.							
Pedagogy: Chalk and talk method, Power Point							
Course Outcomes: At the end of the course student will be able to							
1. Define production/operations management. Differentiate between Prod	duction and						
service system and types of production systems Discuss continuous and	intermittent						
production systems with their advantages and disadvantages. Discuss Cl	RM and ERP						
systems.							
2. Solve problems on fundamentals of statistics and normal distribution.	Draw and						
Analyze variable process control charts and determine process capability.							
3. Discuss Total Quality Management tools and methods. Calculate reliabil	ity of series						
and parallel systems using the information on failure rate and time.							
4. Solve decision-making problems using break even analysis and decision tr	ee methods.						
Apply the concepts of Design and System capacity. Solve problems on fac	ulty location						
using break even analysis and transportation method. Solve problems	s related to						
product and process layouts.							
5. Use concepts of replacement theory to solve problems of replacing ite	ms that fail						
gradually and suddenly.							
Course Outcomes Mapping with Program Outcomes							
Program Outcomes1234567891011	12						
↓ Course Outcomes							
MG1503-1-1.1 2 1 2	-						
MG1503-1-1.2 2 2 2	-						
MG1503-1-1.3 1 1 2	-						
MG1503-1-1.4 3 2 3	-						
MG1503-1-1.5 1 1 1 -							
1: Low 2: Medium 3: High	1: Low 2: Medium 3: High						
TEXTROOKS							

1.	Joseph G Monks, "Production / Operations Management", McGraw Hill Books
2.	William J Stevenson, "Production and Operations Management", Tata McGraw Hill,
	8th Edition.
3.	RC Gupta, "Statistical Quality Control", Khanna Publishers, New Delhi, 2005.
4.	N.D. Vohra, "Quantitative Techniques in Management", Tata McGraw Hill, 2015
REFERE	NCE BOOKS:
1.	E.L. Grant and R.S. Leavenworth, "Statistical Quality Control", 7th edition, McGraw-
	Hill publisher, 2004.
2.	Prem Kumar Gupta, D S. Hira, "Operations Research", S Chand Publications, New
	Delhi, 2 nd edition 2008, Prentice Hall.
3.	W S Messina, "Statistical Quality Control for Manufacturing Managers", Wiley
	& Sons, Inc. New York, 1987
4.	Montgomery, Douglas, "Statistical Quality Control", 5th Edition, John Wiley &
	Sons, Inc. 2005, Hoboken, NJ.
5.	Jerry Banks, "Principles of Quality Control", Wiley & Sons, Inc. New York.

ORGANIZATIONAL BEHAVIOUR						
Course	e Code:	MG1504-1	Course Type	OEC		
Teach	ing Hours/Week (L: T: P: S)	3:0:0:0	Credits	03		
Total [·]	Teaching Hours	40	CIE + SEE Marks	50+50		
Teaching Department: Management						
Course	Objectives:					
1.	Describe the Nature and	Characteristics,	Determinants and Ap	proaches of		
	Organizational Behaviour. Describe the concepts of Perception, Attitudes and values					
	and their implications.					
2. Describe the concepts of learning and motivation along with their managerial				ir managerial		
	implications.					
3.	Describe the concepts of Lead	lership along w	ith their managerial impli	ications.		
4.	4. Discuss the concepts of group dynamics and conflict management along with their					
implications.						
5.	5. Discuss the concepts of Organization culture and change and conflict management					
along with their implications.						
48.						
		UNIT-I				
				15 Hours		

Introduction: Conceptual Foundation of Organisational Behaviour; Nature and Characteristics; Determinants; Contributing Disciplines; Challenges and Opportunities for Organisational Behaviour, Models and Approaches of Organizational Behaviour, OB and Emotional Intelligence.

Perception, Attitude, and Values: Nature, Process, Importance, Factors Influencing Perception; Attribution Theory of Perception; Issues Involved in Perception: Selective Perception, Halo Effect, Contrast Effect, Projection, Stereotyping; Concept of Pygmalion Effect; an overview of Emotions and feelings, Values, Beliefs and Attitudes with Managerial Implications.

Learning: Concept; Theories of Learning: Conditioning, Social Learning, Managerial Implication of Learning Theories. Reinforcement.

Motivation: Concept, Major Theories and Process of Motivation: Maslow's Need-Hierarchy Theory; Herzberg's Motivation-Hygiene Theory; McGregor's Theory X and Theory Y; Goal-Setting Theory; ERG Theory; Vroom's Expectancy Theory; Equity Theory; Managerial implications of Various Theories.

Pedagogy: Chalk and talk method, Power Point Presentation, Case studies

UNIT II

15 Hours

Leadership: Concept and Functions; Style and Theories of Leadership: Traits, Behavioural and Situational/ Contingency Groups of Theories; Inspirational approaches to Leadership; Charismatic Leadership, Transformational Leadership, and Transactional Leadership, Contemporary Leadership Roles; Challenges to the Leadership Construct; Substitutes and Neutralizers to Leadership.

Group Behaviour: Groups: Concept and Classification; Stages of Group Development; Group Structure; Roles and Norms; Premise and Issues; Group Decision-Making: Group vs Individual;

Groupthink and Groups Shift; Group Decision Making Techniques and Process.

Conflict Management: Concept; Causes; Types; Stages; Effects; Management of Conflicts. Pedagogy: Chalk and talk method, Power Point Presentation, Case studies

UNIT III

10 Hours

Organizational Culture: Concept; Dominant Culture; Strong vs Weak Cultures ; Creating and Sustaining Culture; Employees Learning of The Culture; Creating a Customer-Responsive Culture.

Organizational Changes: Concept and Forces for Change; Managing Planned Changes; Resistance to Change; Approaches to Manage Organizational Change; Organizational Development;

Culture-Boundedness of Managing the Change.

Pedagogy: Chalk and talk method, Power Point Presentation, Case studies

Course Outcomes: At the end of the course student will I	be able to
--	------------

1.	Describe the Nature and Characteristics, Determinants and Approaches of
	Organizational Behaviour. Describe the concepts of Perception, Attitudes and values
	and their implications.
2.	Describe the concepts of learning and motivation along with their managerial
	implications.
3.	Describe the concepts of Leadership along with their managerial implications.
4.	Discuss the concepts of group dynamics and conflict management along with their
	implications.
5.	Discuss the concepts of Organization culture and change and conflict management
	along with their implications

Course Outcomes Mapping with Program Outcomes

Program Outcomes→	1	2	3	4	5	6	7	8	9	10	11	12	
↓ Course Outcomes													
MG1504-1-1.1	2	-	-	-	-	-	-	-	3	1	-	-	
MG1504-1-1.2	2	-	-	-	-	-	-	-	3	1	-	-	
MG1504-1-1.3	1	-	-	-	-	-	-	-	3	1	-	-	
MG1504-1-1.4	3	-	-	-	-	-	-	-	3	1	-	-	
MG1504-1-1.5	1	_	-	-	-	-	-	-	-	1	-	-	

1: Low 2: Medium 3: High

TEXTBOOKS: 1. Robbins, SP Stephen P, Timothy Judge and Nehasika Vohra, "Organisational Behaviour", 12th or 16th edition, Pearson Education, 2011.

2.	Fred Luthans, "Organisational Behaviour", 11th edition, Mc Graw Hill, 2009.
49.	
REFERE	NCE BOOKS:
1.	W. Newstrom, John, "Organisational Behaviour", 10 th edition, Tata Mc Graw –Hill
	2009.
2.	Paul Heresy, Kenneth H. Blanchard, and Dewey E. Johnson, "Management of
	Organisational Behaviour", Leading Human Resources, 2008.
3.	Dr S S Khanka, "Organisational Behaviour", S. Chand & Co, New Delhi, 2008.
4.	Sanghi Seema, "Organisational Behaviour", Pearson, 2011.

	TAXATI	ON FOR EN	GINEERS			
Cours	se Code:	MG1505-1	Course Type	OEC		
Teach	ning Hours/Week (L: T: P: S)	3:0:0:0	Credits	03		
Total	Teaching Hours	40	CIE + SEE Marks	50+50		
	Teaching D	Department: M	lanagement			
Course	objectives:				_	
1.	To make students understand	the overview of	of Income Tax Law in Indi	a.		
2.	To make students understand status, tax incidence.	I the basic cond	cepts of income tax such	as residential		
3.	To make students understand	l the income ta	x provisions involved in a	determination		
	of income from salary, House other sources.	e property, bus	iness and profession, cap	oital gain and		
4.	To help students understand t	the determinati	ion of tax liability Individu	ial assessees.		
5.	To make students understand	the deduction	s u/s 80.			
50.						
		UNIT-I				
Basic o	concepts and Explanation unde	er various Hea	ds of Income	15 Hours		
Deeme Manag Explana proble	Gross Total Income, Capital and Revenue Receipts, Residential status, Connotation of income, Deemed to accrue or arise in India, Incidence of tax, Tax Planning, Tax Evasion, Tax Management. (Problems on Residential Status of Individual assessee) Explanation under various Heads of Income: Income from Salary (theory, basic and full-fledged problems on allowances, perquisites and retirement benefits) UNIT II					
Income under the head Profit and gains of Business or Professions and Income under Capital Gain15 HoursIncome under the head Profit and gains of Business or Professions and its computation - basis - Method of accounting - Scheme of business deductions/ allowance - Deemed profits - maintenance of books, (Problems on computation of Income from Business/ Profession of Individual assessee)Profession & exclusion & exclusion from Capital Gain: Basis of charge, Transfer of capital asset, inclusion & exclusion from Capital Asset, Capital Gain, Computation of Capital Gains (theory & problems), Exemptions/deductions from capital gains						
		UNIT III				
Income from House Property and Other Sources 10 Hours						
Income from House Property and Other Sources IO Hours Income from House Property - Basic problems on House Property Income from Other Sources (theory only) Deductions under section 80C to 80U (No problems - Provisions only) Income from Other Sources (theory only) Course Outcomes: At the end of the course student will be able to Income Tax Law in India. Income from Uterstanding of the Income Tax Law in India. Income Tax Law in India.						
2.	Identify the nature of Incomes a	nd their tax inc	cidence.			

3.	Demonstrate how to determine the income from salary, house property, business and
	profession, capital gain.
4.	Demonstrate the determination of tax liability of Individual assessees.
5.	Exhibit a clear understanding of various provisions of deductions u/s 80.

Course Outcomes Mapping with Program Outcomes

	1			1		1	1	1	1	1			1
Program	1	2	3	4	5	6	7	8	9	10	11	12	
Outcomes→													
↓ Course													
Outcomes													
MG1505-1-1.1	2	-	-	-	-	1	-	-	1	-	2	1	
MG1505-1-1.2	2	-	-	-	-	1	-	-	1	-	2	1	
MG1505-1-1.3	3	-	-	-	-	1	-	-	1	-	2	1	
MG1505-1-1.4	3	-	-	-	-	1	-	-	1	-	2	1	
MG1505-1-1.5	3	-	-	-	-	1	-	-	1	-	2	1	

1: Low 2: Medium 3: High

(N

REFERE	REFERENCE BOOKS:					
1.	Vinod Singhania, "Students Guide to Income Tax", Taxman Publications.					
2.	Mehrotra & Goyal, "Direct Tax", Sahitya Bhavan.					
3.	Lal & Vashisht, "Direct Tax", Pearson Ed. 28E.					
4.	V S Datey, "Indirect Taxes", Taxman Publications.					
5.	Vinod Singhania, "Direct Taxes", Taxman Publications.					
6.	T N Manoharan, "Students Guide to Income Tax", Snow White.					
7.	Kul Bushan, "How to deal with VAT", Pearson Education/PHI, 1/e.					
8.	Mahesh Chandra & Shukla, "Income Tax Law & Practice", Pragathi Publications.					
9.	Dr.Pillai, "VAT", Jaico Publications.					

WORKING CAPITAL MANAGEMENT					
Course Code:	MG1506-1	Course Type	OEC		
Teaching Hours/Week (L: T: P: S)	3:0:0:0	Credits	03		
Total Teaching Hours	40	CIE + SEE Marks	50+50		

Need of the Course: The course will enable the student to manage activities in the area of working capital in an enterprise and help the students to do advance study in the field of financial-management through detailed analysis of financial statements, liquidity crises, cash optimization, credit analysis etc. The student will learn how to apply sound techniques for managing inventory.

Description of the Course: Every business needs adequate liquid resources in order to maintain day-to-day cash flow. It needs enough cash to pay wages and salaries as they fall due and to pay creditors if it is to keep its workforce and ensure its supplies. Maintaining adequate working capital is not just important in the short-term. Sufficient liquidity must be maintained in order to ensure the survival of the business in the long-term as well. Even a profitable business may fail if it doesn't have adequate cash flow to meet its liabilities as they fall due.

	Teaching Department: Management					
Course	Objectives:					
1.	Discuss the importance of working capital management.					
2.	Evaluate working capital requirement.					
3.	Assess the challenges faced in managing working capital in domestic and international operations.					
4.	4. Plan for financing working capital requirement.					
51.						

UNIT-I

Working Capital Decisions, Working Capital Management and Sources of Working Capital

Working Capital Decisions: Meaning, Concepts, components Importance & types of working Capital.

Working Capital Management: Meaning, objectives, Principles, Importance of adequate working capital & consequences of inadequate working capital, Dangers of excessive working capital, determinants of working capital - operating cycle and Cash cycle. Approaches to determine an appropriate financing mix, Estimation of working capital requirements (problems) important working capital ratios.

Sources of Working Capital: Financing of long term working capital & short term working capital. Factoring - Meaning mechanism, Functions, types, merits & demerits.

UNIT II

Liquidity Management and Receivable Management

15 Hours

15 Hours

Liquidity Management: Cash Management - Meaning - Objectives of Cash Management - Nature of Cash - Motives of holding cash - Cash Management planning aspects - Cash Budgets (Problems), Cash Management control aspects - Concentration banking - Lock box

system - Playing the float - Cash Management models - William J Baumol Model - Miller-Orr Model (Problems using these models)

Receivable Management: Definition, Objectives, cost and benefits of receivable. Credit policy & its variables. Types of Credit policy & their merits & demerits, Factors influencing the size of investment in receivables. Control of receivables. Framing optimum credit policy & Average collection period (Problems)

UNIT III

Inventory Management10 HoursMeaning of Inventory - Need/Purpose of holding inventory - Benefits of holding inventory -
Risk and cost of holding inventory - Management of Inventory - Objectives of Inventory
Management - Techniques of Inventory Management - Economic Order Quantity (EOQ) -
Determination of Stock levels - ABC analysis - Just in Time (JIT).

Course Outcomes: At the end of the course student will be able to						
1.	Understand the meaning of working capital					
2.	Realize the importance of management of working capital in an organization					
3.	Learn about some key liquidity ratios used to understand more about a business'					
	working capital position					
4.	Understand various techniques used to manage working capital.					
5	Be aware of the techniques of cash inventory and receivables management					

Course Outcomes Mapping with Program Outcomes

Program	1	2	3	4	5	6	7	8	9	10	11	12
Outcomes→												
↓ Course												
Outcomes												
MG1506-1-1.1	2	-	-	-	-	1	-	-	-	1	2	1
MG1506-1-1.2	2	_	-	-	_	1	-	-	-	1	2	1
MG1506-1-1.3	2	_	-	_	-	1	-	-	-	1	2	1
MG1506-1-1.4	2	-	-	-	-	1	-	-	-	1	2	1
MG1506-1-1.5	2	-	-	-	-	1	-	-	-	1	2	1

1: Low 2: Medium 3: High

REFERE	NCE BOOKS:
1.	Sekhar Satya G.V., "Working Capital Management", 1/e; New Delhi: Wiley, 2014.
2.	Bhalla V. K., "Working Capital Management", 1/e; New Delhi: S. Chand Publishing,
	2014.

3.	Sagner James S., "Working Capital Management, Applications and Cases", 1/e, New
	Delhi: Wiley, 2015.

NANOTECHNOLOGY										
Course Code:	PH2501 -1	Course Type	OEC							
Teaching Hours/Week (L: T: P: S)	3:0:0:0	Credits	03							
Total Teaching Hours	40	CIE + SEE Marks	50+50							
Prerequisite	PH1001 -1									
Teaching Department: PHYSICS										
Course Objectives:										
1. To understand the basic scientific concepts of nanoscience, properties of nano materials, synthesis and fabrication of nano materials.										
2. To understand the various characterization techniques of nano materials.										
3. Study of carbon nano technolog	gy and its chara	cterizations.								
4. To understand the applications and technology fields.	of nano techno	logy in various science	, engineering							
	LINIT_I									
Properties of Materials										
Introduction: History of nano science	a definition o	f nano meter nanon	otorials nano							
technology Classification of nano ma	terials Crystal	symmetries crystal dir	actions crystal							
nlanes Band structure	iterials. Crystal .	symmetries, crystar an	cetions, crystal							
Properties Of Materials: Mechanical r	properties, elect	rical properties, dielec	tric properties.							
thermal properties, magnetic propertie	es, opto electro	nic properties. Effect of	size reduction							
on properties, electronic structure of r	ano materials.									
Synthesis and Fabrication			08 Hours							
Synthesis of bulk polycrystalline sampl	es, growth of si	ngle crystals, Synthesis	techniques for							
preparation of nano particle – Botto	m Up Approac	h – sol gel synthesis,	hydro thermal							
growth, thin film growth, PVD and CVD	; Top Down App	proach – Ball milling, mi	cro fabrication,							
lithography, Requirements for realizin	g semiconducto	or nano structure, grov	wth techniques							
for nano structures.										
	UNIT-II									
Characterization Techniques			15 Hours							
X-Ray diffraction and Scherrer method	, scanning elect	ron microscopy, transm	nission electron							
microscopy (TEM), scanning probe r	nicroscopy (SEI	M), atomic force micr	oscopy (AFM),							
piezoresponse microscopy, X-ray ph	otoelectron spe	ectroscopy, XANES an	d XAFS, angle							
resolved photoemission spectroscop	y, diffuse refle	ectance spectra, phot	oluminescence							
spectra, UV-VIS-IR Spectrophotome	ters, Magnetic	and electrical meas	urements and							
Infrared/ Raman, EPR and NMR										
	UNIT-III									
Carbon Nano Technology	V.11.1 111		05 Hours							
Characterization of carbon allotrope	s, synthesis of	diamond – nucleation	n of diamond							
growth and morphology. Application	s of nano cryst	alling diamond films of	arapheme, and							
applications of carbon nano tubes.										
Applications of Nano Technology			05 Hours							

Applications in material science, biology and medicine, surface science, energy and environment. Applications of nano structured thin films, applications of quantum dots.

Cour	Course Outcomes: At the end of the course student will be able to								
1.	Ability to choose the appropriate nano material to meet the requirerment of a								
	particular application.								
2.	Identify the essential concepts used in nanotechnology.								
3.	Identify the materials, properties, synthesis and fabrication of nanomaterials.								
4.	Understand the various characterization techniques of nano materials.								
5.	Applications of nanomaterials in various fields								

Course Outcomes Mapping with Program Outcomes

Program	1	2	3	4	5	6	7	8	9	10	11	12	
Outcomes→													
↓ Course													
Outcomes													
PH2501-1.1	3	3	-	-	-	-	-	-	-	-	-	-	
PH2501-1.2	3	3	-	-	-	-	-	-	-	-	-	_	
PH2501-1.3	3	3	-	-	-	-	-	-	-	-	-	-	
PH2501-1.4	3	3	-	-	-	-	-	-	-	-	-	_	
PH2501-1.5	3	3	-	-	-	-	-	-	-	-	-	_	

1: Low 2: Medium 3: High

TEXTBOOKS:

1. M.S. Ramachandra Rao, Shubra Singh, "Nano science and nano technology", Wiley publishers.

REFEI	RENCE BOOKS:
1.	Charles P. Poole, Jr. Frank J. Owens, "Introduction to Nano Technology", Wiley
	publishers.
2.	Jermy J Ramsden, "Nanotechnology", Elsevier publishers.
3.	A. K. Bandyopadhyay, "Nano Materials", New Age publishers.
4.	T. Pradeep, "Nano Essentials", TMH.
5.	M. A. Shah, "Nanotechnology the Science of Small", Wiley publishers.
6.	Phani Kumar, "Principles of Nanotechnology", Scitech.
E Boo	oks / MOOCs/ NPTEL
1.	https://youtu.be/ebO38bbq0_4
2	https://youtu.be/0MzIh7wkaMs

OPTOELECTRONIC DEVICES											
Course Code:	PH2502-1	Course Type	OEC								
Teaching Hours/Week (L: T: P: S)	3:0:0:0	Credits	03								
Total Teaching Hours	40	CIE + SEE Marks	50+50								
Prerequisite	PH1001 -1										

Teac	hing Department: PHYSICS										
Course Objectives:											
1.	To understand the basic principles of construction, working and app	lications of									
	various optoelectronic devices.										
2.	Study of sources of radiation like lasers and LED, their specific properties	and hence									
	their use for applications.										
3.	Study of radiation detectors like semiconductor detector, diode as de	etector and									
	photo multiplier.										
4.	Understanding the fabrication and applications of optical fibers, optical	modulators									
	and waveguides for optical communication										
	UNIT-I										
Opti	cal processes in Semiconductor, Display devices & Optical fibers	15 Hours									
Elem	ents of optical phenomena in Semiconductors- fundamentals of	Fermi-Dirac									
distri	bution, band structure, direct and indirect band gap semiconductors,	generation-									
recor	nbination mechanisms, absorption and emission processes.										
Displ	ay devices- cathode ray tube, liquid crystal display, charge coupled dev	ices, plasma									
displ	ay.										
Optical fibers- types of fibers, modes of propagation, attenuation and losses, optical fiber											
comr	nunication system, advantages.										
0		15.11									
Uption	cal sources and Detectors	15 Hours									
Laser Nd V	S- basic principles, optical resonator-types, modes and quality factor, pra	cucal lasers-									
hotor	rojunction laser quantum well laser applications	aser action,									
Light	emitting diode- electroluminescence in p-n junction LED characteristics e	fficiency and									
respo	onsivity. Heteroiunction LED. Surface-Emitting LED and Edge emitting LED	include y and									
Phote	o detectors- photo conductor detector, junction photo diode, p-i-n p	hoto diode.									
avala	nche photo diode. Photo multiplier tube.										
	UNIT-III										
Integ	grated Optics and Modulators	10 Hours									
Mod	ulation of light- Analog and digital modulation, Direct modulation - us	ing LED and									
Semi	conductor diode laser (SDL). External modulation - Electro-optic modulation	tors (Pockels									
effec	t), Electro-absorption modulators. Acousto-optic modulation. Wavegu	ides- device									
struc	ture, waveguide devices – waveguide lenses, light bending devices, o	otical power									
divid	ers, directional couplers, waveguide polarizer, wavelength multi	plexers and									
demu	ultiplexers. Waveguide coupling. Optoelectronic integrated circuit										
Cour	se Outcomes: At the end of the course student will be able to										
1.	Ability to choose the appropriate device to meet the requirement of	a particular									
	application.										
2.	Making modifications to device structures by understanding the facto	rs affecting									
<u> </u>	their performance.										
3.	Attempting better efficiency and utility through an understanding of the	e principles									
	ot performance.										

4.	Use the technical knowledge acquired to troubleshoot and rectify devices and													
	circuits.													
5.	Explore the possibility of designing devices with better characteristics.													
Course Outcomes Mapping with Program Outcomes														
	Program	1	2	3	4	5	6	7	8	9	10	11	12	
	Outcomes→													
	↓ Course													
	Outcomes													-
	PH2502-1.1	3	3	-	-	-	-	-	-	-	-	-	-	-
	PH2502-1.2	3	3	-	-	-	-	-	-	-	-	-	-	-
	PH2502-1.3	3	3	-	-	-	-	-	-	-	-	-	-	-
	PH2502-1.4	3	3	-	-	-	-	-	-	-	-	-	-	-
	PH2502-1.5	3	3	-	-	-	-	-	-	-	-	-	-	
1: Lov	w 2: Medium 3: High													
TEXT	BOOKS:													
1.	P.R.Sasikumar, "Pho	tonio	2S – a	an in	trod	uctio	on", P	PHIL	earn	ing F	vt. Lto	d.,Nev	v Delł	ni, 2012
	edition.													
2.	Pallab Bhattacharya	a, "So	emic	ond	ucto	r Op	oto E	lect	ronic	: De	vices"	, Prer	ntice	Hall of
	India Pvt., Ltd., New	Delł	ni, 20)06.										
			0+					:		•: I	. D			f Tra ali a
1.	J. Wilson and J.Hauk	les,	Ορι	o eie	ectro	nics	- an	intro	Jauc	uon	, Prer	iuce i	Hall O	i india,
2	lacorit Singh "On	to 7		ronia	-c -	n ir	otroc	lucti	on t		latori			wicos"
۷.	McGraw Hill interna	tion	al od		.s- c 02	111 11		ucti		.0 10	ateria	ais di		evices,
2	A Ghatak and Th		raiar	ייי ה <u>יי</u> ייי ר	Ju. Intro	duct	ion	to	ont		lectro	nics"	Νον	
5.	International Public	yaya atior	iajai	1, .	Intro	uuci	1011	10	υρι	0 6	lectio	nics,	INCV	v Aye
		ation												
E Boo	oks / MOOCs/ NPTEL													
1.	http://nptel.ac.in/co	urse	s/11	5102	2026	/								
		3.50	-,	5-02		,								

AUTONOMOUS MOBILE ROBOTS											
Cou	ırse Code:	RI2501-1	Course Type	OEC							
Теа	ching Hours/Week (L: T: P: S)	3:0:0:0	Credits	03							
Tot	al Teaching Hours	40	CIE + SEE Marks	50+50							
Prerequisite EC 1001-1, ME 1003-1											
	Teaching Department: Robotics and Artificial Intelligence										
Cour	se Objectives:										
1.	Explain different types of locom	otion in mobil	e robots to obtain a requ	iired task.							
2.	Understand the different types	of kinematics	and dynamics involved	in a mobile							
	robot.										
3.	Study the different types of sen	sors used in ar	n autonomous mobile rol	pot.							

4. Understand the different types of algorithms to identify the position of the mobile robot.														
5	Inderstand the vario		laori	thm	c for	nlar	ninc		Inav	inati	ion of	the m	ohila	robot
5.		us a	igon	um		ומוק ווד_ו	mmg	janc	illav	iyati		the fi	IUDIIE	10001.
Rohe	at locomotion					411-1							07	Hours
Type	s of locomotion h	onni	na	roho	nts	اومر	har	roh	ots	wh	eled	roho	nts s	tability
maneuverability and controllability														
Mobile robot kinematics and dynamics 09 Hours														
Forw	Forward and inverse kinematics, holonomic and nonholonomic constraints, kinematic													
models of simple car and legged robots, dynamics simulation of mobile robots.														
UNIT-II														
Perception 07 Hours											Hours			
Prop	rioceptive/Exteroceptiv	ve an	d pa	ssive	e/act	tive s	enso	ors, p	erfo	rmai	nce m	easur	es of s	sensors,
senso	ors for mobile robots	like	e alc	bal	pos	ition	ina	syste	em (GPS), Do	ppler	effec	t-based
senso	ors, vision-based sense	ors, u	ncer	taint	ty in	sens	sing,	filte	ring.					
Loca	lization				,		J		J				07	Hours
Odor	netric position estim	atio	n, b	elief	rep	orese	ntati	ion,	prol	babi	listic	mapp	ing,	Markov
locali	ization, Bayesian locali	zatio	n, Ka	alma	n loo	caliza	ation	, and	d pos	sitior	ning b	eacor	n syste	ems.
	•													
UNIT-III														
Intro	duction to planning	and	navi	gati	on								10	Hours
Path	planning algorithms	bas	ed	on	A-st	ar, [Dijkst	tra,	Vorc	onoi	diag	rams,	prob	abilistic
roadı	maps (PRM), rapidly e>	plor	ing ı	rand	om t	trees	(RR	T), N	larko	ov De	ecisio	n Proc	cesses	(MDP),
stoch	astic dynamic prograr	nmir	ng (S	DP).										
Cour	se Outcomes: At the e	end o	of th	e co	urse	stuc	ent	will k	be ab	ole to)			
1.	Explain different type	es of	loco	omot	ion	in m	obile	e rob	ots t	o ob	otain a	a requ	ired t	ask.
2.	Identify the different	type	es of	kine	emat	ics a	nd d	ynar	nics	invo	lved i	n a m	obile	robot.
3.	Apply the different ty	/pes	of s	enso	rs us	sed i	n an	auto	onon	nous	mob	ile rob	ot.	
4.	Apply the different ty	/pes	of a	lgori	thm	s to	iden	tify t	he p	ositi	on of	the m	obile	robot.
5.	Apply the various al	gorit	hms	for	plar	nning	g and	d na	vigat	ion	of the	e mob	oile ro	bot to
	reach the destination	۱.												
Cour	se Outcomes Mappin	g w	ith P	Prog	ram	Out	com	es	_					1
	Program	1	2	3	4	5	6	7	8	9	10	11	12	
	Outcomes→													
	↓ Course													
Outcomes														
	RI2501-1.1	3	3	3	3	2	1	-	-	-	-	-	3	
	RI2501-1.2	3	3	3	3	2	1	-	-	-	-	-	3	
	RI2501-1.3	3	3	3	3	2	1	-	-	-	-	-	3	
	RI2501-1.4	3	3	3	3	2	1	-	-	-	-	-	3	
<u> </u>	RI2501-1.5	3	3	3	3	2	1	-	-	-	-	-	3	
1: Lo	ow 2: Medium 3: Higl	1												

TEXT	BOOKS:
1.	R. Siegwart, I. R. Nourbakhsh, "Introduction to Autonomous Mobile Robots", The MIT Press, 2011.
2.	Peter Corke, "Robotics, Vision and Control: Fundamental Algorithms in MATLAB", Springer Tracts in Advanced Robotics, 2011.
3.	S. M. LaValle, "Planning Algorithms", Cambridge University Press, 2006. (Available online http://planning.cs.uiuc.edu/)
REFE	RENCE BOOKS:
1.	Thrun, S., Burgard, W., and Fox, D., "Probabilistic Robotics". MIT Press, Cambridge, MA, 2005.
2.	Melgar, E. R., Diez, C. C., "Arduino, and Kinect Projects: Design, Build, Blow Their Minds", 2012.
3.	H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. E. Kavraki, and S. Thrun, "Principles of Robot Motion: Theory, Algorithms, and Implementations", PHI Ltd., 2005.
E Boo	oks / MOOCs/ NPTEL
1.	https://archive.nptel.ac.in/courses/112/106/112106298/
2.	https://www.edx.org/course/autonomous-mobile-robots

MEDICAL ROBOTICS									
(For All except AI)									
Cou	ırse Code:	RI2502-1	Course Type	PEC					
Теа	ching Hours/Week (L: T: P: S)	3:0:0:0	Credits	03					
Tot	al Teaching Hours	40	CIE + SEE Marks	50+50					
Pre	Prerequisite PH 1001-1, IS 1001-1, CY 1001-1								
	Teaching Department	: Robotics and	Artificial Intelligence	•					
Cour	se Objectives:								
1.	Understand the types of medica	al robots used i	n the field of healthcar	e.					
2.	Explain the various localization	and tracking se	nsors						
3.	Understand the applications of	surgical robots	with the help of few ca	ase studies					
4.	Understand Rehabilitation of lin	nbs and brain n	nachine interface with	the help of					
	few case studies								
5.	Understand the design method	ology of medic	al robots.						
		UNIT-I							
Intro	oduction			07 Hours					
Туре	s of medical robots - Navigation	- Motion Repli	cation - Imaging - Reh	abilitation and					
Prost	hetics - State of art of robotics in	the field of hea	althcare. Localization A	nd Tracking					
Posit	tion sensors requirements			09 Hours					
Track	king - Mechanical linkages - Opt	ical - Sound-b	ased - Electromagneti	c -Impedance-					
base	d - In-bore MRI tracking - Video r	natching - Fibe	r optic tracking						
Cont	wel Medes Padiesurgery	UNIT-11							
Orth	apadia Surgery	and Dob	otic Imaging Card						
Mour	opedic Surgery - Orologic Sur	gery and Roc	ouc imaging - Card	lac Surgery –					
neur	osurgery – case studies.								
Doha	hilitation								
Poho	bilitation for Limbs Prain Machi	no Intorfacor	Staarabla Naadlas ca	co ctudios					
Rella			Steelable Needles – Ca	se studies.					
		UNIT-III							
Desi	on of Medical Robots	••••••		10 Hours					
Char	acterization of gestures to the des	ian of robots- I	Design methodologies	- Technological					
choic	ces - Security		_ ee.gee.ee.ee.e g.ee						
0.1010									
Cour	se Outcomes: At the end of the c	course student	will be able to						
1.	Describe the types of medical	robots and the	concepts of navigatio	n and motion					
	replication.								
2.	Describe about the sensors used	d for localizatio	n and tracking						
3	Explain the applications of surgi	ical robots							
Δ	Explain the concents in Rehabili	tation of limbs	and brain machine inte	erface					
5	Classify the types of assistive	a robote and	analyze the decign of	haracteristics					
	methodology and technologica	l choices for me	edical robots.						

Course Outcomes Mapping with Program Outcomes														
	Program	1	2	3	4	5	6	7	8	9	10	11	12	
	Outcomes→													
	↓ Course													
	Outcomes													
	RI2502-1.1	3	-	1	-	-	-	-	-	-	-	-	1	
	RI2502-1.2	3	-	1	-	-	-	-	-	-	-	-	1	
	RI2502-1.3	3	-	1	-	-	-	-	-	-	-	-	1	
	RI2502-1.4	3	-	1	-	-	-	-	-	-	-	-	1	
	RI2502-1.5	3	-	3	-	-	-	-	-	-	-	-	1	
1: Lo	w 2: Medium 3: High	ו												
TEXTE	BOOKS:													
1.	Mark W. Spong, Seth	n Hu	tchin	ison,	and	M. V	'idya	isaga	ar, "R	lobo	t Mod	leling	and C	ontrol",
	Wiley Publishers, 20	06.												
2.	Paula Gomes, "Medi	cal r	obot	tics-	Mini	mall	y, In	vasiv	/e su	rger	y", Wo	oodhe	ad, 20)12.
3.	Achim Schweikard, F	loris	5 Erns	st, "N	Лedi	cal R	lobo	tics"	, Spr	inge	r, 201	5.		
REFER	RENCE BOOKS:													
1.	Jocelyne Troccaz, "N	1edio	cal R	obot	ics",	Wile	ey-IS	TE, 2	2012					
2.	Vanja Bonzovic, "Me	edica	l Rol	ootic	s", I-	tech	Edu	icati	on p	ublis	hing <i>i</i>	Austri	a, 200	8.
3.	Daniel Faust, "Medic	al R	obot	ics",	Rose	en Pi	ublis	hers	, 201	.6.				
4.	Jocelyne Troccaz, "N	1edio	cal R	obot	ics",	Wile	ey, 20	013.						
E Boo	ks / MOOCs/ NPTEL													
1.	https://www.futurele	earn.	com	/cou	rses,	/mec	ltech	n-ai-	and-	med	lical-r	obots		
2.	https://web.stanford	l.edu	ı/clas	ss/m	e328	3/								

PLC CONTROL OF HYDRAULIC AND PNEUMATIC CIRCUITS								
(For All except AI)								
Course Code:	RI2503-1	Course Type	OEC					
Teaching Hours/Week (L: T: P: S)	3:0:0:0	Credits	03					
Total Teaching Hours	40	CIE + SEE Marks	50+50					
Prerequisite EE 1001-1, EC 1001-1								
Teaching Department:	Robotics and	Artificial Intelligence						
Course Objectives:								
1. To understand the fundamentals	of fluid power	transmission systems						
2. To design various hydraulic syste	m components	5.						
3. To design various pneumatic syst	em componer	its.						
4. Learn various types of hydraulic a	and pneumatic	power circuits.						
5. Learn various types of application	ns in fluid powe	er circuits using PLC.						
	UNIT-I							
Fluid power systems and fundamenta			06 Hours					
Introduction to fluid power, Advantages	of fluid power	r, Application of fluid po	wer system.					
Types of fluid power systems, General ty	/pes of fluids -	Properties of hydraulic	fluids -Fluid					
power symbols. Basics of Hydraulics-Ap	plications of Pa	ascal's Law						
Autoria System components		laccification constructi	US Hours					
of number. Variable displacement nur	leory - Pump c	rformanco Actuatore: 1	inoar bydraulic					
actuators-Single acting and double actin	nps, pump pe na cylinders B	normance. Actuators. L	ntear nyuraunc					
Control Components								
Direction control valve - Valve terminolo	ogy - Various c	enter positions. Shuttle	valve - check					
valve - pressure control valve - pressure	reducing valve	e, sequence valve. Flow	control valves -					
Fixed and adjustable Safety valves.	<u> </u>	-,,						
	UNIT-II							
Pneumatic system components			07 Hours					
Pneumatic Components: Properties of	air. Compresso	ors. FRL Unit -Air contro	ol valves, Quick					
exhaust valves and pneumatic actuators	- cylinders, air	motors. Basics of low-co	ost automation					
Fluidics & Pneumatic circuit design			08 Hours					
Fluidics - Introduction to fluidic devic	es, simple cir	cuits. Introduction to E	lectrohydraulic					
Pneumatic logic circuits, PLC application	ns in fluid pow	er control, Sequential ci	rcuit design for					
simple applications using classic, cas	scade, logic v	vith Karnaugh- Veitch	Mapping and					
combinational circuit design methods.								
	UNIT-III							
Fluid power circuits			10 Hours					
Electrical control of pneumatic and hyc	fraulic circuits-	use of relays, timers, co	Sunters, Ladder					
diagram. Programmable logic control o	T Hydraulics P	neumatics circuits, PLC	adder diagram					
for various circuits, motion controllers,	use of field bu	sses in circuits. Electron	ic arive circuits					
Tor various iviotors.								
Course Outcomes: At the end of the co	ourse student v	viii de adle to						

1.	Compare the basics of	hydr	aulic	s to	the	perfo	orma	ince	of fl	uid p	ower	syste	ms	
2.	Explain the working principle of hydraulic systems including pumps and control													
	components.													
3.	Explain the working principle of pneumatic systems and their components.													
4.	Design various types of Electrohydraulic and electro pneumatic circuits													
5.	Design various types o	f app	olicat	ions	in fl	uid p	oowe	er cir	cuits	usir	ng PLC	2.		
Cour	se Outcomes Mapping	with	Pro	grar	n Oı	utco	mes				-	-	-	
	Program	1	2	3	4	5	6	7	8	9	10	11	12	
	Outcomes→													
		_												
	↓ Course													
	Outcomes													
	RI2503-1.1	3	2	3	2	3	-	-	-	-	-	-	3	
	RI2503-1.2	3	2	3	2	3	-	-	-	_	-	-	3	
	RI2503-1.3	3	2	3	2	3	-	-	-	-	-	-	3	
	RI2503-1.4	3	2	3	2	3	-	-	-	-	-	-	3	
	RI2503-1.5	3	2	3	2	3	-	-	-	-	-	-	3	
1: Lo	w 2: Medium 3: High	•	•	•	•	•	•	•	•		•	•	•	

TEXTBOOKS:

- **1.** Majumdar S.R., "Pneumatic systems Principles and maintenance", Tata McGraw Hill, 2008.
- **2.** Anthony Esposito, "Fluid Power with Applications", Pearson Education 2009.

REFERENCE BOOKS:

- **1.** Majumdar S.R., "Oil Hydraulics", Tata McGraw-Hill, 2000.
- **2.** Harry L. Stevart D. B, "Practical guide to fluid power", Taraoeala sons and Port Ltd.Broadey, 2010.
- **3.** Michael J, Prinches and Ashby J. G, "Power Hydraulics", Prentice Hall, 2011.
- **4.** Dudelyt, A. Pease and John T. Pippenger, "Basic Fluid Power", Prentice Hall, 2011. **E Books / MOOCs/ NPTEL**

1. https://nptel.ac.in/courses/108/105/108105088/

- 2. https://plc
 - coep.vlabs.ac.in/List%20of%20experiments.html?domain=Electrical%20Engineering
 - http://vlabs.iitb.ac.in/vlabsdev/vlab_bootcamp/bootcamp/COEP_KNOWLEDGE_SEEKERS/labs/exp1/theory.html

Detailed Syllabus of additional Courses in NMAMIT, Nitte

	ENGINEERING MATHEMATICS -I								
Course Code:	MA1009-1	Credit	04						
Course Objectives:									
To build a strong foundation in differential calculus to solve engineering problems.									
Course Content:									
Definition of the limit a	and its calculation, continuity,	imits involving infinity.							
Tangent lines, rates of	change and derivatives, deri	vative function, basic rules of differ	entiation,						
product rule, quotient	rule and chain rule, implicit di	fferentiation,total differentiation,rela	ted rates,						
differentials and linear	approximations.								
Exponential functions	, inverse functions and lo	garithms, derivatives of exponen	tials and						
logarithms, inverse trige	onometric functions, indeterm	ninate forms.							
Taylor's theorem for a	function of one and two var	iables, maximum and minimum val	ues,mean						
value theorem, increa	asing and decreasing funct	ions critical numbers, concavity,	inflection						
points, first and second	derivative tests, curve tracing	optimization problems,anti derivati	ves.						
Definite integrals, e	valuation of definite integ	grals, Fundamental theorem of	calculus,						
integration using subs	titution rule. Application of in	tegration to find distances and area	IS.						
Text book:									
Essential calculus; Early	v transcendentals: James Stew	art (2007), Thomson Brooks/Cole.							

	ENGINEERING CHEMISTRY																
Co	ourse Code: CY1001-1 Credit 03																
		_															
Co ι	urse Objectives:																
1.	a) Know the basics of electrochemistry and its usage in the working of fuel cells and moder	n-day															
	batteries.																
	b) Gain knowledge of the harmful effects of corrosion on metal and techniques used in preve	nting															
	It, including metal finishing.																
2.	a) Get acquainted with the different types of industrially important polymers along with	their															
	characteristic properties.																
	b) Know the requirements of boiler feed water.																
3.	a) Get the knowledge on the different chemical fuels and related parameters.																
	b) Know the basics of liquid crystals.																
4	c) Understand the different routes of nonmaterial synthesis.	e ci co l															
4.	motheds	ssical															
5	Familiarize with the practical knowledge of chemistry enabling their skill development	t by															
5.	instrumental methods of analysis	lt Dy															
Flee	ctrochemical Cells & Battery Technology 8 Hours	-															
Intr	oduction Derivation of Nernst equation for single electrode potential EME of the cell	-															
Nur	merical problems. Construction and working of calomel electrode. Measurement of single																
elec	trode potential. Ion-selective electrode- definition, construction, and working of the glass																
elec	ctrode. Determination of pH using a glass electrode.																
Intr	oduction to battery, battery characteristics, Classification of batteries-primary, secondary, and																
rese	erve batteries. Construction, working, and applications of Lithium-ion battery, and Flow																
bat	teries- Construction, working and applications of Vanadium flow battery. Fuel cells-																
Intr	oduction, construction, working, and uses of Methanol-Oxygen fuel cells.																
Cor	rosion Science & Metal Finishing 7 Hours																
Cor	rosion - definition, Electro-chemical theory of corrosion, Factors affecting the rate of corrosion.																
Diff	erential metal corrosion- galvanic series, Differential aeration corrosion - Waterline and pitting																
cori	rosion. Stress corrosion. Corrosion Control: Protective coatings; Inorganic coating - Anodizing																
and	Phosphating. Metal coating - Galvanization and Tinning, cathodic protection.																
Intr	oduction to metal finishing, Polarization, decomposition potential, and over-voltage.																
Elec	ctroplating, effect of plating variables on the nature of electrodeposit, Electroplating of																
Chr	omium, Electroless plating - advantages, Electroless plating of copper on PCB.	_															
		_															
	UNIT-II	_															
Pol	ymers 7 Hours	-															
Det	inition, Classification, free radical mechanism of polymerization of vinyl chloride. Emulsion																
poly	ymerization. Glass transition temperature. Structure and property relationship.																
Syn	inesis, properties, and applications of PMIMA, Polycarbonate																
Elas	somers – Demicion, synthesis, and applications of Butyl rubber and Silicone rubbers.																
Adhe synth Conc Wate	sives- Synthesis and applesis, properties, and appl lucting polymers-definitic er Chemistry	oplic icati on, a	atio ions pplie	ns of co catic	of E arbc ons.	pox on fil Mec	y re ber. hani	esins ism	5. Po	olym	ner C uctior	Comp n in p	osite: olyac	s: Int cetyle 6 Ho	rodu ne. urs	ictio	n,
--	---	---------------------------------------	---	-------------------------------------	---------------------------------------	--	--	-------------------------------------	---------------------------------------	--	---	---	--	--	--	---------------------------------------	-------------------------------
Impu Oxyg corrc phos Elect	rities in water, Water ar en by Winkler's method, sion. External treatment - phate conditioning, collo ro dialysis and reverse osn	nalys Boil hot idal nosi:	sis - er fe : lim con s. Se	Det ed v e so ditio wag	term wate da p ning e tre	inat r, ar roce g, Ca eatm	ion nd b ess, 1 Igoi ient:	of oiler Ion- n co Prir	Harc r pro exch ndit nary	lnes obler iang ionii r, sec	s, de ms – e me ng. [conda	termi scale: thod. Desali ary, ar	inatic s and Inte natio nd ter	on of I slud rnal t on of rtiary	Diss ges, reatr seaw treat	solve boil nent vater mer	ed er t - r - nt.
Nand	omaterials													21	lour	S	
Intro	duction, classification c	of n	nano	mat	erial	s. S	Synt	hesi	s o	fn	anom	nateri	als l	by r	nicrc	wav	/e,
com	bustion, chemical vapour	depo	ositi	on, a	and s	sol- <u>c</u>	gel n	neth	ods	. Ар	plicat	tions	ot na	noma	ateria	als.	
							ттт										
Cher	nical Fuels				01	111-								6 Ho	urs		
Intro value prob and i	duction, definition, classi s. Determination of calor lems. Petroleum cracking ts harmful effects. Preven	ficat ific v -flui tion	ion value dize of k	of fu e of a d be nocl	uels. a sol ed c king	Calo id/li ataly , pov	orifio quic /tic wer	c va d fue crac alco	lue- el usi king hol	defii ing a I. Re and	nition a Bon form biod	n, Gro nb ca ation iesel.	oss, a lorim of p	nd N ieter. ietrol	et ca Num . Kno	llorii neric ockir	fic cal ng
Ligui	d Crystals				<u> </u>									4 Ho	urs		
Intro	duction, classification- Th	nerm	otro	, sig	and	Lvc	otro	oic v	vith	exai	mple	s. Tvr	bes o	f mes	hao	ases	5 -
nematic, chiral nematic, smectic, and columnar. The chemical constitution of liquid crystals. Electro-																	
optic effect of liquid crystals. Applications of liquid crystals in display systems.																	
Cour	se Outcomes: At the end	l of t	the c	cours	se st	ude	nt w	ill b	e ab	le to)						
1.	a) Understand the bas	ic c	omp	one	ents	of	elec	troc	hem	nical	cells	and	l the	reby	rela	te t	heir
	 b) Identify the different types of corrosion; techniques generally used for its prevention, and understand the metal surface modification techniques like electroplating and electroless 																
2.	 2. a) Analyze the different types of polymers, their synthetic routes, and applications. b) Understand the prime problems faced in boiler feed water, subsequent remedial measures undertaken and analyze the quality of water. c) Identify the synthetic approaches undertaken for designing papomaterials 																
3.	Identify the methodoloc	ies i	usec	l to a	anal	/ze a	as w	ell a	s im	prov	/ise o	n che	emica	al fuel	s.		
	Understand the applicat	ions	ofI	iquid	d crv	stals	s in o	disp	lay s	yste	ems.						
4.	Understand the differen	t ty	oes	of vo	olun	netri	c tit	ratio	ons f	for t	he es	stima	tion o	of co	mpo	sitio	n in
	materials for accurate re	sult	5.							-					1. 2.	-	
5.	Handling different type	es o	f in	strur	nen	ts fa	or a	nalv	sis	of r	nater	ials ı	ısina	sma	ll ai	lant	ities
	involved for quick and a	ccur	ate	resu	lts.			j					J				
Cour	se Outcomes Mapping v	with	Pro	gra	m O	utco	ome	s &	PSC)							
	Dreamon Outcomes	1	2	2	4	E	6	7	0	٥	10	11	10			1	
		Ŧ	2	2	4	5	0	/	0	2	10	1 11	12	1	r 30	↓ 2	-
		n	1											–	2	5	-
	CY1001-1.1	3		-	-	-	-	-	-	-	-	-	-	-	-	-	

	CY1001-1.2	3	2	-	-	-	-	-	-	-	-	-	-	-	-	-	
	CY1001-1.3	3	3	-	-	-	-	-	-	-	-	-	-	-	-	-	
	CY1001-1.4	2	1	-	-	-	-	-	-	-	-	-	-	-	-	-	
	CY1001-1.5	2	1	-	-	-	-	-	-	-	-	-	-	-	-	-	
	1: Low 2: Medium 3: High																
TEX	FBOOKS:																
1.	P. C. Jain & Monica Jain.,	"Eng	gine	ering	g Ch	emis	stry"	, Dh	anpa	atRa	i Pub	licatio	ons, N	lew D	elhi,	2015	•
2.	R. V. Gadag & A Nityar	nand	la Sł	netty	ν., "Ε	ngir	neer	ing	cher	nistı	ry", Ik	< Inte	ernatio	onal	Publi	ishing	J
	House Private Ltd. New	Delh	ni, 20)16.													
3.	P. W. Atkins, "Physical Cl	hem	istry	", Ox	kford	d Pu	blica	atior	ns, Ei	ghtl	h edit	tion, 2	2006.				
REFE	EFERENCE BOOKS:																
1.	B. S. Jai Prakash, R. Venu	gopa	al, Si	vakı	imar	aiał	n & F	Push	pa Iy	/eng	gar., "	Chem	nistry	for Ei	ngine	eering	J
	Students", Subhash Pub	licat	ions	, Bar	ngalo	ore,	2010	5.									
2.	B. R. Puri, L. R. Sharma 8	ιМ.	S. F	Patha	ania.	, "Pr	inci	oles	of P	hysi	cal C	hemi	stry",	S. Ch	and	& Co.	•
	Pvt. Ltd., New Delhi, 199	8.															
3.	G. W. Gray and P. A. Wir	isor,	"Liq	uid	crys	tals	and	plas	tic c	ryst	als", \	/ol-I,	Ellis H	Horw	ood	Series	5
	in Physical Chemistry, N	ew Y	ork.	201	0, (p	o.No	.106	-142	2).								
4.	M. G. Fontana, "Corrosic	on Er	ngin	eerir	ng",	Mc (Grav	/ Hil	l Pul	olica	tions	, 200	6.				
5.	J. Bassett, R. C. Denny,	G. H	. Jef	fery,	"Vo	ogel	s te	xtbc	ok (of q	uanti	tative	e inor	ganio	: ana	lysis",	,
	4thEd, Longman ELBS.																
6.	Laboratory manual in E	ngin	eeri	ng C	Chen	nistr	y Si	idha	rani,	, Dh	anpa	trai F	Publis	hing	Com	pany	,
	New Delhi.																
E Bo	oks / MOOCs/ NPTEL																
1.	http://bcs.whfreeman.co	m/v	ollh	ardts	scho	re5e	e/de	fault	t.asp								
2.	https://www.ttu.ee/publi	c/m	/Me	haar	nikat	ead	uskc	nd/	Insti	tuuc	did/M	laterja	aliteh	nika_			
	instituut/MTX9100/Lectu	ure1	1_Sy	nthe	esis.p	odf.											
3.	http://nptel.ac.in/course	s/11	310	8051	./mc	bdul	e1/le	ectu	re1.r	odf							

ENGINEERING CHEMISTRY LAB								
Cours	e Code: CY1001-1 Credit 01							
Suggested List of Experiments								
1.	Determination of Total Hardness of a sample of water using disodium salt of EDTA.							
2.	Determination of percentage of copper in brass using standard sodium thiosulphate							
	solution.							
3.	Determination of nitrogen ammonia in each sample of fertilizer using a standard							
	hydrochloric acid solution.							
4.	Determination of manganese dioxide in Pyrolusite using standard potassium							
	permanganate solution.							
5.	Determination of Iron in the given sample of Hematite ore solution using potassium							
	dichromate crystals by external indicator method.							
6.	Determination of Chemical Oxygen Demand (COD) of the given industrial waste Water							
	sample.							
7.	Potentiometric estimation of FAS using standard K ₂ Cr ₂ O ₇ solution.							
8.	Colorimetric determination of iron.							
9.	Conductometric estimation of an Acid mixture using standard NaOH solution.							
10.	Determination of pKa of a weak acid using pH meter.							
11.	Determination of the viscosity coefficient of a given liquid using Ostwald's viscometer.							
12.	Flame photometric estimation of sodium in the given sample of water.							

ELEMENTS	ELEMENTS OF CIVIL ENGINEERING AND ENGINEERING MECHANICS									
Course Code:	CV1003-1	Credit	04							

Solve the engineering problems in case of equilibrium conditions. Calculate the reaction forces of various supports of different structures. Solve the problems involving dry friction. Determine the centroid, centre of gravity and moment of inertia of various surfaces and solids. Explain the concepts of work-energy method and its applications to translation and plane motion.

Course Content:

Scope and importance of different fields of Civil Engineering.

Introduction to Engineering Mechanics: Basic idealizations - Definition of force, Characteristics of a force, Force systems and classification; Axioms of Mechanics. Concept of free body diagram.

Resolution of forces, Composition of forces - Definition of Resultant; Resultant of coplanar concurrent force system.

Moment of a force, couple, characteristics of couple, Equivalent force - couple system; Varignon's theorem, Resultant of coplanar - non-concurrent force system.

Equilibrium of forces - Definition of Equilibrant; Conditions of static equilibrium for different force systems. Equilibrium of coplanar concurrent force system.

Equilibrium of coplanar non concurrent force systems: Simple, Hinged and fixed supports, Point, udl and uvl loads, support reactions for statically determinate beams.

Friction - Types of friction, Laws of dry friction, Limiting friction, Angle of friction, angle of repose, Ladder friction.

Centroid of plane figures; Locating the centroid of rectangular, triangular, semicircular, quarter of a circular area and sector of a circular area using method of integration, Centroid of simple built up sections.

Moment of inertia of an area, polar moment of inertia, Radius of gyration, Perpendicular axis theorem and Parallel axis theorem; Moment of Inertia of rectangular, triangular, semicircular and quarter of a circular area from the method of integration; Moment of inertia of composite areas. Kinetics of rigid bodies, Dynamic equilibrium, D'Alembert's principle, Work-energy and Impulse

momentum principle, Impact of elastic bodies (direct central impact). **Text book:**

- 1. Ferdinand L. Singer "Engineering Mechanics"
- 2. Bhavikatti J.L,"Engineering Mechanics", S.S., Vikas Publishing House Pvt. Ltd., New Delhi.

Reference Book:

- 1. Ferdinand P.Beer and E. Russel Johnson,"Mechanics for Engineers: Statics and dynamics" McGraw-Hill Book Company,New York.
- 2. Timoshenko and Young, "Engineering Mechanics" McGraw-Hill Book Company, New Delhi
- 3. Merium J.L,Kraige L.G, Engineering Mechanics Vol.I & II Wiley Publishers.
- 4. McLEAN and Nelson,"Engineering Mechanics" (Schaum's outline Series),McGraw-Hill Book Company, New Delhi.

	PROBLEM SOL	VING THROUGH	PROGRAMMING	
Co	ourse Code:	CS1001-1	Credit 04	
•				
C οι	urse Objectives:			
1.	Make students learn basics of Com	puter System, Prir	ciples of Problem solving, and the bas	sics
	of C programming language includ	ling the basic stru	cture, data types and keywords used	to
	design & develop programming ski	lls.		
2.	Outline the usage of Input Output s	statements, Opera	tors and Evaluating expressions in C.	
3.	Apply the concepts of decision ma	aking and looping	in problem solving to demonstrate	its
	usage using simple programs.			
4.	Apply the concepts of Arrays, User-	-defined functions	and code reusability in problem solv	ing
	along with parameter passing and r	eturning with the	help of user defined functions.	
5.	Demonstrate the usage of Strings, S	Structures, Pointer	s, and File handling that are essential	for
	understanding the concepts with si	mple examples.		
		UNIT-I		
Intr	roduction To Computer System		15 Hot	urs
Intr	oduction to Computer generations ar	nd types, CPU, Prim	nary Memory, Secondary Memory, Port	ts and
Cor	nnections.			
Pro	blem solving, Program Development	steps, Introductio	n to Algorithms and Flowcharts.	
Intr	roduction To C Programming Lang	uage		
Evo	olution & Characteristics of C Languag	je, Structure of a C	Program, C Compilation Model.	
Cha	aracters set, C tokens, Keywords and i	dentifiers, Constar	nts, Data Types and Variables.	
Оре	erators And Expressions			
Arit	hmetic operators, Relational operato	ors, Logical operat	cors, Assignment operators, Incremen	nt and
Dec	crement operators, conditional operat	tor, Bitwise operat	ors, Special Operators.	
Arit	hmetic expressions, Operator preced	ence and associati	vity, Type conversions in expressions,	
Eva	luation of expressions.			
Ma	naging Input and Output Operation	ns		
For	matted Input and Output functions, L	Informatted Input	and Output functions.	
		UNIT-II		
Dec	cision Making and Branching		15 Ho	urs
Dec	cision making with if statement, Sim	ple if Statement,	the ifelse statement, Nesting of if	ielse
stat	tements, Theelseif ladder, the swi	tch statement, th	ne go to statement, break and cor	ntinue
stat	tements.			
Dec	cision Making and Looping			
The	e <i>while</i> statement, the <i>do…while</i> state	ment, the <i>for</i> state	ment, Jumps in Loops.	
Arr	ays			
Arra	ays (1-D, 2-D) Initialization and Decla	ration.		

User-Defined Functions

Need for the User-defined Functions, Element of User-defined Functions, Argument Passing – call by value, call by reference, Category of Functions.

Examples: Linear Search, Binary Search, Bubble sort, Selection Sort, Trace and Transpose, Matrix Multiplication.

UNIT-III

10 Hours

Declaring and Initializing strings, String manipulation functions.

Structures

Strings

Defining a Structure, Declaration and Accessing the Structured Variable.

POINTERS AND FILE HANDLING:

Introduction, Declaration, Accessing of variables using Pointers, Basic file operations: Open, Close, Read, Write.

	Suggested List of Experiments						
	PART A						
1.	Write a C program to find the roots of a quadratic equation ax ² +bx+c=0						
2.	Write a C program to find the sum of all the digits and occurrence of a digit in the number.						
3.	Write a C program to find the GCD and LCM of given two numbers using Euclid's method.						
4.	Write a C program to print the prime numbers in a given range.						
5.	Write a C program to find if a given string is a palindrome or not.						
6.	Write a C program to input N real numbers in 1-D array. Compute mean, variance and Standard						
	Deviation.						
	[Mean= sum/N, Variance = Σ (Xi-mean) 2 /N, STD Deviation= √variance.]						
7.	Write a C program to read N integers into an array A and find the sum of elements using pointers.						
8.	Write a C program to copy contents of one file to another file.						
	PART B						
1.	Write a C program to perform a binary search for a given key integer in a single dimensional						
	array of numbers in ascending order and report success or failure in the form of a suitable						
	message.						
2.	Write a C program to input N integer numbers into a single dimension array, sort them in to						
	ascending order using selection sort technique, and then to print both the given array and the						
	sorted array with suitable headings.						
3.	Write a C program to transpose a matrix of order M x N and find the trace of the resultant matrix.						
4.	Write a C program using functions to read two matrices A (M x N) and B (P x Q) and to compute						
	the product of A and B if the matrices are compatible for multiplication.						
5.	Write a C program using functions readmat(), rowsum (), colsum (), totsum () and printmat()						
	to read the values into a two dimensional array A, find the sum of all the elements of a row, sum						
	of all the elements of a column, find the total sum of all the elements of the two dimensional						
	array A and print the results.						
6.	Write a C program to perform a linear search for a given key integer in a single dimensional array						
	of numbers and report success or failure in the form of a suitable message using functions.						

7.	Write a C program to ente	er the	e info	orma	atior	n like	e nai	ne, I	regis	ster	numl	ber, n	narks	in 6	subje	ects o	fΝ
	students into an array of s	truc	ture	s, an	d fir	nd th	ne av	/era	ge 8	ι dis	play	grade	e bas	ed or	n ave	rage	for
	each student.								-		-	-				-	
	A	vera	ge			Gra	ade										
	80-100		Dis	tinc	tion												
	60-79			First Class													
	40-59			Second Class													
	<	10				Fai											
8.	3. Write a C program, to implement a bubble				ble	e sort technique using function to sort aiven N integers											ers
	in ascending/ descending	orde	er as	per	use	r's p	refe	renc	e.	5				0		5	
	· · · · · · · · · · · · · · · · · · ·																
Cou	rse Outcomes: At the end o	of the	e col	urse	stuc	dent	will	be a	ble	to							
1.	Describe the basics of c	omp	uter	· sys	tem	, bas	sics	of C	: an	d th	e pro	ocess	of p	roble	m-so	olving	J
	aspects using algorithmi	c sol	utio	n for	· a g	iven	pro	blen	n.		-		-			-	
2.	Apply the knowledge of	expr	essic	on so	olvin	g to	eva	luat	e sin	nple	expr	essio	ns an	d inp	out/o	utput	t
	statements to develop a	C pr	ogra	am.		-											
3.	Develop the C program	using	g coi	ntrol	stat	teme	ents	sucl	n as	brar	nchin	g and	d lool	oing	const	tructs	5
	for a given problem.																
4.	Apply the knowledge of a	ode	re-u	ısabi	ility,	para	met	er p	assi	ng a	nd re	turni	ng va	lues t	o de	velop)
	a maintainable C program	n us	ing t	these	e co	ncep	ots ir	ncluo	ding	arra	iys ar	nd fur	nctior	าร.			
5	Identify and describe the	Identify and describe the use of strings, structures, pointers, and file handing mechanisms in															
5.	-			-				/ P ~		5, ui	ia in		- J				
5.	a C program.							/ 60		5, ai			<u>9</u>				
Cou	a C program. rse Outcomes Mapping wi	th P	rogi	ram	Out	com	nes 8	, פי א PS	50	<i>5,</i> a							·
Cou	a C program. rse Outcomes Mapping wi Program Outcomes→	th P	rogi 2	ram	Out 4	com	nes a	ን թ ያ PS 7	50 8	9	10	11	12		PSO	Ļ	1
Cour	a C program. rse Outcomes Mapping wi Program Outcomes→ Course Outcomes	th P	rogi 2	ram 3	Out 4	com	nes 8	32 PS	50 8	9	10	11	12	1	PSO 2	↓ 3	
Coui	a C program. rse Outcomes Mapping wi Program Outcomes→ Course Outcomes CS1001-1.1	th P 1 3	rogi 2	ram 3	Out 4	com 5	nes 8 6	ን PS ያ PS 7 -	50 8	9	10	11		1	PSO 2	↓ 3 -	
Coui	a C program. rse Outcomes Mapping wi Program Outcomes→ Course Outcomes CS1001-1.1 CS1001-1.2	th P 1 3 2	rogi 2 - 3	ram 3 -	Out 4 - -	com 5 -	nes 8 6 -	32 PS 7 -	50 8 - -	9 - -	10 - -	- -	- -	1	PSO 2 3	3 -	
Coui	a C program. rse Outcomes Mapping wi Program Outcomes→ Course Outcomes CS1001-1.1 CS1001-1.2 CS1001-1.3	th P 1 3 2 2	rogi 2 - 3 3	ram 3 -	Out 4	5	nes 8	3 PS 7 - -	50 8 - - -	9 - - -	10 - - -	- - -	- - -	1	PSO 2 3 3	3 - -	
Coui	a C program. rse Outcomes Mapping wi Program Outcomes→ Course Outcomes CS1001-1.1 CS1001-1.2 CS1001-1.3 CS1001-1.4	th P 1 3 2 2 2	rogi 2 - 3 3 2	ram 3 - - 3	Out 4	5	nes 8 6 - - -	7 7 - -	50 8 - - -	9 - - -	10 - - - -	- - -	- - - -	1 - - -	PSO 2 3 3 3	3 - - -	-
	a C program. rse Outcomes Mapping wi Program Outcomes→ Course Outcomes CS1001-1.1 CS1001-1.2 CS1001-1.3 CS1001-1.4 CS1001-1.5	th P 1 3 2 2 2 2 2	rogi 2 3 3 2 3	ram 3 - - 3 -	Out 4	5	nes 8	7 7 - - - - -	SO 8 - - - - -	9 - - - -	10 - - - -	- - - -	- - - - -	1 - - - -	PSO 2 3 3 3 3 3	3 - - - -	
Coui	a C program. rse Outcomes Mapping wi Program Outcomes→ Course Outcomes CS1001-1.1 CS1001-1.2 CS1001-1.3 CS1001-1.4 CS1001-1.5	th P 1 3 2 2 2 2 2 2	2 - 3 2 3 2 3	ram 3 - - 3 -	Out 4	5	nes 8 6 - - - -	2 PS 7 - - - -	50 8 - - - - -	9 - - - -	- - - - -	11 - - - 1: Lc	12 - - - - - - - - - - - - - - - - - - -	1 - - - - Med	PSO 2 3 3 3 3	3 - - - - 3: Hi	
Coui	a C program. rse Outcomes Mapping wi Program Outcomes→ Course Outcomes CS1001-1.1 CS1001-1.2 CS1001-1.3 CS1001-1.4 CS1001-1.5 TBOOKS:	th P 1 3 2 2 2 2 2	2 - 3 2 3 3 3	ram 3 - - 3 -	Out 4	5 - - - -	nes 8 6 - - - -	× PS 7 - - - -	50 8 - - - -	9 - - - -	- - - - -	11 - - - 1: Lc	12 - - - - - - - - - - - - - - - - - - -	1 - - - Med	PSO 2 3 3 3 3 3	3 - - - - 3: Hi	igh
Coui	a C program. rse Outcomes Mapping wi Program Outcomes→ Course Outcomes CS1001-1.1 CS1001-1.2 CS1001-1.3 CS1001-1.4 CS1001-1.5 TBOOKS: 1. E. Balaguruswamy, "Pr	th P 1 3 2 2 2 2 2 2 2	rogi 2 - 3 3 2 3 mmm	ram 3 - - 3 -	Out 4 - - - - - -	5 - - - - -	nes { 6	7 - - - - - - -	50 8 - - - - - - - -	9 - - - - - - - - - -	10 Hill, 5	11 - - - 1: Lc	12 - - - - - - - - - - - - - - - - - - -	1 - - - - Med	PSO 2 3 3 3 3 1 ium	3 - - - - 3: Hi	- - - - - - - - - - - - - - - - - - -
Coui ↓ ↓ TEX	a C program. rse Outcomes Mapping wi Program Outcomes→ Course Outcomes CS1001-1.1 CS1001-1.2 CS1001-1.3 CS1001-1.4 CS1001-1.5 TBOOKS: 1. E. Balaguruswamy, "Pr 2. Jacqueline A. Jones &	th P 1 3 2 2 2 2 2 2 2 2 5 0gra Keith	rogi 2 - 3 3 2 3 mmi Ha	ram 3 - - 3 - - - - - - - - - - - - - - -	Out 4 - - - - - - - - - - - - - - - - - -	5 - - - - - - - - - - - - - - - - - - -	nes { 6	7 - - - - - - - - - -	50 8 - - - - - - - - - - - - - - - - -	9 - - - - - - - - - - - - - - - - - - -	- - - - - Hill, 2 Proble	11 - - - 1: Lo Brd E	12 - - - - - - - - - - - - - - - - - - -	1 - - - Med	PSO 2 3 3 3 iium 4.	↓ 3 - - - 3: Hi	igh
Coui ↓ ↓ TEX1	a C program. rse Outcomes Mapping wi Program Outcomes→ Course Outcomes CS1001-1.1 CS1001-1.2 CS1001-1.3 CS1001-1.4 CS1001-1.4 CS1001-1.5 TBOOKS: 1. E. Balaguruswamy, "Pr 2. Jacqueline A. Jones & ERENCE BOOKS:	th P 1 3 2 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2 - 3 3 2 3 mmi Ha	ram 3 - 3 - ing i rrow	Out 4 - - - - - - , "C	5 - - - - - - NSI (Prog	nes { 6	7 - - - - - - - - - - - - - - - - - - -	50 8 - - - - - - - - - - - - - - - - - -	9 - - - - - - - - - - - - - - - - - - -	10 Hill, 2 Proble	11 - - - 1: Lo 3rd E em So	12 - - - - - - - - - - - - - - - - - - -	1 - - - Med n,200- 0", Pe	PSO 2 3 3 3 ium 4. arso	3 - - - 3: Hi	igh
Coui ↓ ↓ TEXT	a C program. rse Outcomes Mapping wi Program Outcomes→ Course Outcomes CS1001-1.1 CS1001-1.2 CS1001-1.3 CS1001-1.4 CS1001-1.4 CS1001-1.5 TBOOKS: 1. E. Balaguruswamy, "Pr 2. Jacqueline A. Jones & ERENCE BOOKS: 1. Kernighan & Ritchie, T	th P 1 3 2 2 2 2 2 2 2 2 2 2 5 5 7 6 6 1 6 7 6 7 6 7 6 7 7 7 7 7 7 7 7 7	rogi 2 3 3 2 3 mmi Ha	ram 3 - - 3 - - ing i rrow	Out 4 - - - - - - - - - - - - -	5 - - - - - - - - - - - - - - - - - - -	nes { 6	3 PS PS PS 	SO 8 - - - - - - - - - - - - - - - - - -	9 - - - - - - - - - - - - - - - - - - -	10 - - - - Hill, Proble Hall;	11 - - - 1: Lc Brd E em So	12 - - - - - - - - - - - - - - - - - - -	1 - - - Med n, 2004 g", Pe	PSO 2 3 3 3 iium 4. arso	↓ - - - 3: Hi	igh
Coui	a C program. rse Outcomes Mapping wi Program Outcomes→ Course Outcomes CS1001-1.1 CS1001-1.2 CS1001-1.3 CS1001-1.4 CS1001-1.4 CS1001-1.5 TBOOKS: 1. E. Balaguruswamy, "Pr 2. Jacqueline A. Jones & ERENCE BOOKS: 1. Kernighan & Ritchie, T 2. Rajiv Khanna, Compu	th P 1 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 3 3 2 3 mmi Ha Pro Conc	ram 3 - - 3 - ing i rrow grar cepts	Out 4 - - - - n AN , "C nmin s an	5 - - - - - Prog ng (<i>J</i> c	es a former form	3 2 P 5 7 - - - - - - - - - - - - -	SO 8 - - - - - - - - - - - - - - - - - -	9 - - - - - - - - - - - - - - - - - - -	10 - - - - Hill, Proble Hall; New	11 - - - - 1: Lo and E em So 2ndl	12 - - - - - - - - - - - - -	1 - - - Med n, 2004 g", Pe n, 19 rnatio	PSO 2 3 3 3 ium 4. arso 98. onal	3 - - - 3: Hi n,	igh
Coui ↓ ↓ TEXT	a C program. rse Outcomes Mapping wi Program Outcomes→ Course Outcomes CS1001-1.1 CS1001-1.2 CS1001-1.3 CS1001-1.4 CS1001-1.4 CS1001-1.5 TBOOKS: 1. E. Balaguruswamy, "Pr 2. Jacqueline A. Jones & ERENCE BOOKS: 1. Kernighan & Ritchie, T 2. Rajiv Khanna, Compu Publishers, 1st Edition,	th P 1 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 5 6 6 6 7 6 7	rogi 2 3 3 2 3 mmi Ha Pro Conce 6.	ram 3 - - 3 - 3 - - ing i rrow grar	Out 4	SICON - - - - - - - - - - - - -	es { 6	7 7 - - - - - - - - - - - - -	SO 8 - - - - - - - - - - - - - - - - - -	9 - - - - - - - - - - - - - - - - - - -	10 - - - - - Proble Hall; New	11 - - - 1: Lc - - - - - - - - - - - - - - - - - - -	12 - - - - - - - - - - - - - - - - - - -	1 - - - Med n, 2004 g", Pe	PSO 2 3 3 3 iium 4. arso 98. onal	3 - - - 3: Hi n,	igh
Coui ↓ ↓ TEXT	a C program. rse Outcomes Mapping wi Program Outcomes→ Course Outcomes CS1001-1.1 CS1001-1.2 CS1001-1.3 CS1001-1.4 CS1001-1.4 CS1001-1.5 TBOOKS: 1. E. Balaguruswamy, "Pr 2. Jacqueline A. Jones & ERENCE BOOKS: 1. Kernighan & Ritchie, T 2. Rajiv Khanna, Compu Publishers, 1st Edition, 3. Yashwant Kanetkar, Le	th P 1 3 2 3 4 5 2 2 2 2 2 2 2 2 2 2 3 3 3 2 2 2 2 2 3 3	2 - - - - - - - - -	ram 3 - - 3 - ing i rrow gran cepts	Out - - - - - - - - -	5 - - - - - - - - - - - - - - - - - - -	es a 6 - - - - - - - - - - - - - - - - - -	3 2 P 5 3 2 P 5 7 - - - - - - - - - - - - -	SO 8 - - - - - - - - - - - - - - - - - -	9 - - - - - - - - - - - - - - - - - - -	- - - - Hill, Proble Hall; New	11	12 - - - - - - - - - - - - -	1 - - - Med n, 19 rnatio	PSO 2 3 3 3 ium 4. arsoi 98. onal	3 - - - 3: Hi n, Pvt	igh Ltd
Coui ↓ ↓ TEXT REFE	a C program. rse Outcomes Mapping wi Program Outcomes→ Course Outcomes CS1001-1.1 CS1001-1.2 CS1001-1.3 CS1001-1.3 CS1001-1.4 CS1001-1.4 CS1001-1.5 TBOOKS: 1. E. Balaguruswamy, "Pr 2. Jacqueline A. Jones & ERENCE BOOKS: 1. Kernighan & Ritchie, T 2. Rajiv Khanna, Compu Publishers, 1st Edition, 3. Yashwant Kanetkar, Lo oks / MOOCs/ NPTEL	th P 3 2	2 3 3 2 3 mmi ha Fro Conc 6. C, 5	ram 3 - - 3 - - - - - - - - - - - - - - -	Out 4 - - - - - - - - - - - - -	5 - - - - - - - - - - - - - - - - - - -	es { 6	- - - <th>SO 8 - - - - - - - - - - - - - - - - - -</th> <th>9 - - - - - - - - - - - - -</th> <th>10 - - - - Proble Hall; New</th> <th>11 - - - 1: Lc Brd E em So 2ndl Age Delh</th> <th>12 - - - - - - - - - - - - -</th> <th>1 - - - Med n, 200- g", Pe n, 19 rnatio</th> <th>PSO 2 3 3 3 iium 4. arso 98. onal</th> <th>3 - - - 3: Hi n,</th> <th>igh</th>	SO 8 - - - - - - - - - - - - - - - - - -	9 - - - - - - - - - - - - -	10 - - - - Proble Hall; New	11 - - - 1: Lc Brd E em So 2ndl Age Delh	12 - - - - - - - - - - - - -	1 - - - Med n, 200- g", Pe n, 19 rnatio	PSO 2 3 3 3 iium 4. arso 98. onal	3 - - - 3: Hi n,	igh
Coui ↓ ↓ TEX1 REFE	a C program. rse Outcomes Mapping wi Program Outcomes→ Course Outcomes CS1001-1.1 CS1001-1.2 CS1001-1.3 CS1001-1.4 CS1001-1.4 CS1001-1.5 TBOOKS: 1. E. Balaguruswamy, "Pr 2. Jacqueline A. Jones & ERENCE BOOKS: 1. Kernighan & Ritchie, T 2. Rajiv Khanna, Compu Publishers, 1st Edition, 3. Yashwant Kanetkar, Le oks / MOOCs/ NPTEL 1. http://www.lysator.liu.	th P 1 3 2 3 3 2 2 2 2 2 3 4 5 5 5 1 3 1 3 2 2 2 2 2 3 3	rogi 2 - 3 3 2 3 mmi Ha Conc 6. Conc 6. Conc 6.	ram 3 - - 3 - - 3 - - - - - - - - - - - - -	Out 4 - - - - - - - - -	5 - - - - - - - - - - - - - - - - - - -	es a 6 - - - - - - - - - - - - - - - - - -	32 PS 32 PS 32 PS 32 PS 32 PS 33 PS 34 PS 35 PS 35 PS 36 PS 37 PS 37 PS 38 PS 39 PS 39 PS 30 PS 30 PS 30 PS 30 PS	50 8 - - - - - - - - - - - - -	9 - - - - - - - - - - - - - - - - - - -	10 - - - Hill, Proble Hall; New	11 - - - 1: Lc and E em So 2ndl Age Delh	12 - - - - - - - - - - - - -	1 - - - Med n, 19 rnatio	PSO 2 3 3 3 iium 4. arso 98. onal	↓ 3 - - - 3: Hi n, Pvt ↓	igh

3.	C programming Tutorial by Mark Burgers http://markburgess.org/CTutorial/C-Tut-4.02.pdf
4.	http://nptel.ac.in/courses/106105085/4
5.	https://www.lynda.com/C-training-tutorials/1249-0.html

ENGINEERING MATHEMATICS II									
Course Code:	MA1010 -1	Credit	04						
Course Objectives: To build strong fou tools of mathematic Course Content:	ndation in differential and the solution in differential and the solution that they can solve the solution trip function.	nd integral calculus. To equip the students their engineering problems.	5 with the						
parts, by substitutio Arc length, area, vol	n, by partial fractions, by ume.	r trigonometric substitutions. Improper integ	grals.						
Sequences, Series - Power series, repres Taylor's formula.	 integral and comparise enting functions as pow 	on test, Cauchy's root test, D'alembert's ver series, Taylor and McLaren's series, Appl	ratio test. ication of						
Calculus with param Text book: 1. Essential ca ISBN-13:978	etric curves, polar co-ord Iculus; Early transcender -0-495-01428-7	linates, polar curves, lengths and areas of po ntals: James Stewart (2007), Thomson Bro	lar curves, ooks/Cole,						

	COMPUTER AIDED ENGINEERING GRAPHICS & PRACTICE								
Co	ourse Code: ME1008-1 Credits 03								
Cou	urse Objectives:								
	 To impart and inculcate understanding of the theory of projection and concell dimensioning, conventions and projection of points and lines in different quadre projection system. To know and understand the projection of different plane surfaces. To impart the knowledge on understanding and drawing of different solid objects in depositions To develop the lateral surfaces of solid objects and its use in sheet metal development 	pts like rants of different							
-		11							
Orth	thographic Projection 10	Hours							
Orth emp Proje incli	hographic Projection: Planes of Projection, First angle projection, reference line. Conv ployed for drawing, Projection of points located in first, second, third and fourth qua pjection of Lines (First angle projection only), True and apparent lengths, true and a linations.	ventions adrants, pparent							
Droi	Diaction of Plane surfaces	Hours							
Proj posi	jection of plane surface: Triangle, Square, Rectangle, Pentagon, Hexagon and Circle in d sitions.	different							
	UNIT-III								
Proj Proje	pjection of Solids ojection of right regular solids: Prisms, Pyramids, Cones, and Cylinders in different positions UNIT-IV	Hours s.							
Dev	velopment of Lateral surfaces of solids 12	Hours							
Deve frust	velopment of lateral surfaces of: Right regular Prisms, Pyramids, Cylinders and cones ar stums.	nd their							
Ison	metric projection and Isometric view 10	Hours							
Ison of si	metric scale, Difference between Isometric projection, and isometric view: To draw Isometr simple solids and machine components using their orthographic projections.	ic views							
TEX	XTBOOKS:								
1.	Engineering Drawing by N. D. Bhat & V. M. Panchal, Pramod R. Ingle, 53 Ed., Charotar Pul House, Gujarat, 2014.	blishing							
	Engineering Drawing by K R Gopalakrishna, Subhas publishers, Bangalore, 32 rd edition,	2012.							
	FEKENCE BUOKS: A Toyt book of Engineering Graphics and Drafting by D.S. Citt. 11th Ed 2000, S. K. Ka	ntaria e							
1.	A Text book of Engineering Graphics and Draiting by P. S. Gitt, 11th Ed.2009, S. K. Ka								
2.	A Text book of Engineering Drawing by K. L. Narayanan & Kannaiah P, Radiant Publishing 9 th Edition, 2012.	j House,							
3.	A Primer on computer aided Engineering Drawing, Published by VTU, Belgaum, 8 th editio	n, 2011.							
4.	Engineering Drawing and Computer Graphics, Shah, Pearson, 2010.								
5.	Textbook on Engineering Drawing, Narayana, Scitech Publishers, 1 December 2011								
6.	Engineering Graphics, Agarwal & Agarwal, TMH, Second edition, 2013								

7.	Publications of Bureau of Indian Standards
	a) IS 10711 – 2001: Technical products documentation – Size and lay out of drawing sheets.
	b) IS 9609 (Parts 0 & 1) – 2001: Technical products documentation – Lettering.
	c) IS 10714 (Part 20) – 2001 & SP 46 – 2003: Lines for technical drawings.
	d) IS 11669 – 1986 & SP 46 – 2003: Dimensioning of Technical Drawings.
	e) IS 15021 (Parts 1 to 4) – 2001: Technical drawings – Projection Methods.

	ENGINEERING PHYS	ICS	
Course Code:	PH1001-1	Credit:	04

1	To introduce the conce	nto of wowo mo	chanics to study	the properties	of sub stamic particles
⊥ .	To introduce the conce	pis of wave me	chamics to study	r the properties	of sub-atomic particles.

2. To study the concepts of crystalline solids and X-rays.

3. To explain the concepts of semiconductors and semiconductor devices

4. To explain the properties of superconductors and their applications.

5. To explain the principle, working and applications of lasers & optical fibers.

UNIT-I

Wave mechanics08 HoursIntroduction to wave mechanics. Matter waves – de Broglie's relation, characteristics of matter waves.Wave function, properties and physical significance of a wave function, probability density and
normalization of wave function, Schrödinger wave equation (time dependent & independent).Application of Schrödinger wave equation –particle in a potential well of infinite depth, Eigen
functions, probability densities and energy Eigen values for a particle in an infinite potential well.
Numerical examples.

Crystallography & X-rays

Crystallography: Introduction to crystallography - space lattice, unit cell, primitive cell, lattice parameters. Crystal systems and Bravais lattice. Direction and planes in a crystal, Miller indices – method of finding the Miller indices. Interplanar spacing – derivation. Co-ordination number, number of atoms per unit cell and atomic packing factor - simple cubic, body centered cubic, and face centered cubic lattices.

X rays: X-rays – generation and properties. Continuous and characteristic X-rays. Bragg's law and Bragg's spectrometer, Applications. Numerical examples.

UNIT-II

Semiconductors

Semiconductors: Band structure - classification of solids. Semiconductors - intrinsic and extrinsic semiconductors, carrier generation. Direct and indirect band gap semiconductors. Fermi - Dirac Statistics, Fermi factor, Fermi energy level in intrinsic and extrinsic semiconductors and effect of temperature on Fermi level, intrinsic effect - maximum device temperature. Conductivity of intrinsic and extrinsic semiconductors - derivation. Effect of temperature on conductivity of intrinsic and extrinsic semiconductor. Hall effect - derivation of Hall coefficient, carrier concentration and mobility. Applications of Hall effect. Numerical examples.

Semiconductor devices: light emitting diode, photodiode, and solar cell.

Superconductors

04 Hours

11 Hours

07 Hours

Introduction to superconductors, characteristic properties. Type-I and Type-II superconductors. BCS theory (qualitative). Applications of superconductors. Numerical examples.

Lasers	

05 Hours

Lasers: Introduction to lasers. Absorption and emission of radiation, Einstein's coefficients. Condition for laser action, population inversion and metastable states. Requisites of a laser system – active medium, pumping mechanism and optical resonant cavity. Three level and four level lasers. Principle, construction and working of Nd:YAG laser, He-Ne laser and semiconductor laser. Applications.

Optical fibers

05 Hours

Optical fibers: Introduction to optical fibers. Propagation mechanism in optical fibers - angle of acceptance, acceptance cone and numerical aperture – derivation. Fractional index change and V-number. Types of optical fibers and modes of propagation. Attenuation. Applications. Numerical examples.

	Suggested List of Experiments (Any 10 Experiments)
1	Energy band gap of a semiconductor by four-probe technique.
2	Hall effect – Determination of the carrier concentration in a semiconductor
3	Transistor characteristics – Common emitter mode.
4	Semiconductor laser - Determination of wavelength by diffraction.
5	Zener diode characteristics – study of current-voltage characteristics
6	Solar cell – study of its characteristics.
7	Photo electric effect – Determination of the work function of the material of the emitter of a
	photocell.
8	Charging and discharging of a capacitor – Determination of capacitance value, half time and
	time constant.
9	Velocity of ultrasonic waves using ultrasonic interferometer
10	Series and parallel resonance circuits.
11	LED characteristics.
Cou	Irse Outcomes: At the end of the course student will be able to
1.	Comprehend various properties of sub-atomic particles on the basis of wave mechanics.

- 2. Understand the concepts of crystalline solids, and X-rays.
- 3. Understand the concepts of semiconductors and working of semiconductor devices.
- 4. Understand the characteristics of superconductors and its applications.
- 5. Understand the principle, working and applications of lasers & optical fibers.

Course Outcomes Mapping with Program Outcomes & PSO

Program Outcomes $ ightarrow$	1	2	3	4	5	6	7	8	9	10	11	12		PSO	↓
↓ Course Outcomes													1	2	3
PH1001-1.1	3	3	-	-	-	-	-	-	-	-	-	-	-	-	-
PH1001-1.2	3	3	-	-	-	-	-	-	-	-	-	-	-	-	-
PH1001-1.3	3	3	-	-	-	-	-	-	-	-	-	-	-	-	_
PH1001-1.4	3	3	-	-	-	-	-	-	-	-	-	-	-	-	-
PH1001-1.5	3	3	-	-	-	-	-	-	-	-	-	-	-	-	-

TE	EXTBOOKS:						
1.	G. K. Shivakumar, "Engineering Physics", Prism Engineering Education Series, Prism books Pvt						
	Ltd., Bangalore, 2010-11 edition (Reprint 2013-14).						
2.	S. P. Basavaraju, "Engineering Physics", Subhas Stores, Bangalore, latest editions.						
3.	Arthur Beiser et.al., "Concepts of Modern Physics", Tata McGraaw Hill Education Private Limited,						
	Special Indian Edition, 2009.						

Credit	03
	Credit

Music has its own place in the making of Indian Culture. It has contributed extensively to the colours of Indian culture and tradition. The study of this paper enables the students to understand various aspects of Indian Music and forms of Indian Music.

Course Content:

The course contents involve the discussion on historical overview, growth of various music form and royal patronage, discussion on various classifications - classic (Hindustani and Carnatic), folk music and its regional diversities and forms (bihu, bauls, bhangra, dandiya, ganasangeet, uttarakhandi,lavani, popular, qawwali, rabindra sangeet, rajasthani) modern music forms (Indian popular music -filmy music, rock and metal music, dance music, western music, Dasa Sahitya, Musicians - both vocalist and instrumentalists, eminent contributions and scholars of Indian music, various forms of musical instruments, basic dimensions of music - raga, laya, bhava and tala.

ENGINEERING ETHICS	ENGIN	IEERING	ETHICS
--------------------	-------	---------	---------------

Course Code: HU1511-1	Credit	03
-----------------------	--------	----

Understand the need for professional ethics, responsibility in engineering. Discuss the range of ethical issues in an engineering career. Understand the important codes of ethics as developed by engineering organizations in engineering ethics. Understand the social and value dimensions of technology, role of engineers in organization and environment. Know about honesty and dishonesty in the engineering profession and understand the code of ethics developed by different professional engineering societies.

Course Content:

Why professional ethics - what is a profession, engineering and professionalism, two models of professionalism, three types of ethics or morality, negative face of engineering ethics, positive face of engineering cases, case studies.

Responsibility in engineering - introduction, engineering standards, the standard of care, blameresponsi bility and causation, liability, design standards, the range of standards of practice, the problem of many hands, impediments to responsible action,

Professionalism and code of ethics - introduction, is engineering a profession, codes of ethics Understanding ethical problems

Ethical problem solving techniques Risk, safety and accidents.

The social and value dimensions of technology - thinking about technology and society, technological optimism and technological pessimism, computer technology: privacy and social policy, how shall we design, ethical issues in design.

Engineers in organization - introduction, professional responsibilities, professional rights, whistleblowing, Engineers and environment - introduction, environmental codes, the progressive attitude towards environment, going beyond law,respect for nature, should engineers have environmental obligations?

Trust and reliability - introduction, honesty,forms of dishonesty,why is dishonesty wrong, dishonesty on campus, dishonesty in engineering research and testing,confidentiality,intellectual property,expert witnessing,informing the public, conflicts of interest.

Doing the right thing

Codes of ethics of Professional Engineering Societies.

Textbooks

- 1. Charles E Harris, Michael S. Pritchard & Michael J. Rabins, Engineering Ethics Concepts and Cases, Fourth Edition, WADSWORTH CENGAGE Learning, 2009, ISBN-13: 978-0-495-50279-1 ISBN-10:0-495-50279-0
- 2. Charles B. Fledderman, Engineering Ethics, Fourth Edition, Pearson, 2012, 15BN-13: 978-0-13-214521-3 (alk. paper) ISBN-10: 0-13-214521-9 (alk. paper)

INDIAN CULTURE-YAKSHAGANA						
Course Code:	HU1509-1	Credit	03			

At the end of the course, participants will be able to gain basic understanding of Thenku Thittu Yakshagana. Perform basic movements. Understand speech/dialogue, rhythm, Entry and improvisation skills.

Course Content:

Introduction: The first step deals with a brief introduction of the Thenku Thittu Yakshagana and the differences between Thenku and Badagu Thittu.

Basic movement: The next step is to teach the basic movements of Thenku Thittu Yakshagana.

Pravesha: The entry of different characters will be different and there are several variations in the entries. This will be taught to students.

Performance: The final part of the course is the performance. A Prasanga will be chosen and taught to the participants and they will perform the same in front of a live audience.

Suggested Reading/Resources

- 1. Arthayana: Yakshagana TalamaddalArthagarike: Ondu Vishleshane: Dr.Ramananda Banari
- 2. KoraIara: Yakshagana Vimarsha Sankalana: Dr.M.Prabhakara Joshi
- 3. Vaagartha Gawrava:(Dr.Joshi Abhinandana Guchaha):Ga. Na. Bhat

	DIGITAL LOGIC DESIGN							
Cour	se Code:	EC1003-1	Credits	03				
Cours	e Objectives:							
1.	To understand basic concepts numb	oer systems						
2.	To simply the logical expressions us	ing Boolean alg	ebra					
3.	To understand the design of combin	national logic ci	rcuits					
4.	4. To know the basic concepts of flip flips							
5.	5. To understand the design of sequential logic circuits							
	UNIT-I							
Introduction to Digital Logic and Number Systems 15 Hours								
Numb	er System and Conversions: Binary, C	Octal and Hexad	lecimal. Complements o	f binary numbers,				
binary	codes, Boolean Algebra and logic ga	tes: Boolean Th	eorems, Boolean functio	ons, Canonical and				
standa	ard forms. Gate level minimization:	Karnaugh map	- 3, 4 variables, incor	npletely specified				
function	ons, Introduction to Min/Max term	n equations, N	AND and NOR impler	nentation. Binary				
arithm	etic: addition, subtraction, 1's comple	ement and 2's c	omplement arithmetic					
		UNIT-II						
Comb	inational and Sequential Logic circ	uits		15 Hours				
Comb	inational Logic: Binary Adder-Subtra	ctor, Decimal A	dder, Comparators, De	coders, encoders,				
Synch	ronous sequential Logic: Latches Elin	Elone- SR Elin-	Elons D Elin flon IK flir	n flons. T flin flon				
Chara	steristic equations and Conversions	Shift Registers	порз, от пр пор, эк пц	5 nops, 1 nip nop,				
Chara								
Count	ers and Synchronous Machine mod	dels		10 Hours				
Synch	ronous seguential Logic: Ripple c	counters. Synch	nronous counters. Ana	alvsis of clocked				
svnch	ronous sequential circuits. Memory: R	AM, ROM						
		, -						
TEXTE	BOOKS:							
1.	Morris Mano, "Digital Design", Pren	tice Hall of India	a, 3rd Edition.					
REFER	ENCE BOOKS:							
1.	John M Yarbrough, "Digital Logic Ap	oplications and	Design", Thomson Learr	ning, 2001.				
2.	D. P. Kothari and J. S Dhillon, "Digit	al Circuits and I	Design", Pearson, 201					
3.	John M Yarbrough, "Digital Logic Ap	oplications and	Design", Thomson Learr	ning, 2001.				
4.	4. Donald D. Givone, "Digital Principles and Design", McGraw Hill, 2002.							

	DIGITAL LOGIC DESIGN LABORATORY								
Cou	urse Code: EC100	4-1	Credits	01					
Cour	rse Objectives:								
1.	. To realize the basic gates								
2.	2. To realize the combinational circuits using basics and universal gates								
3.	3. To know the working of flipflops								
4.	I. To realize counters and shift registers								
	List of Experiments								
1	1. Verification of Logic gates								
2	2. Realization of Combinational logic circuits	using basic gates and	l universal gate	S					
3	3. Code Convertors- Binary to Gray, Excess-	to BCD							
4	4. Realizations of adders and subtractors usi	ng Multiplexers							
5	5. Realizations of adders and subtractors usi	ng Decoders							
6	6. Realization of Magnitude Comparators								
7	7. Verification of Flip Flops *								
8	8. Realization of ripple counters using T flip	flops *							
9	9. Design of shift register using D- flip flop*								
1	10. Design of synchronous counters using D t	lip flops*							
Note	e:								
* Stu	udents are encouraged to perform experiment	s using HDL.							
TEXT	TBOOKS:								
1.	Morris Mano, "Digital Design", Prentice Hall o	of India, 3rd Edition.							
REFE									
1.	John M Yarbrough, "Digital Logic Application	s and Design", Thoms	on Learning, 20	001.					
2.	D. P. Kothari and J. S Dhillon, "Digital Circuit	and Design", Pearson	, 201						
3.	John M Yarbrough, "Digital Logic Application	s and Design", Thoms	on Learning, 20	001.					
4.	Donald D. Givone, "Digital Principles and De	sign", McGraw Hill, 200)2.						

	ENGINEERING ECONOMICS						
Co ι	urse Cod	le:	MG1507-1	Credits	03		
Cou	rse Obje	ctives:					
	1.	Analyse the time value o	f money.				
	2.	Evaluate the worth of cre	ations, by comp	paring the alternatives visa, v	is the		
		cost (cost- benefit analys	sis).				
	3.	Take decisions with the li	imited resources	s, the relevant course of action	on, with		
		the help of suitable tools	•				
	4. Determine the cost involved in each operations, a product should undergo						
	with an aim to fix suitable selling price for the product.						
	5.	Know the different termine	nology of Econo	mics and to prepare ledgers	5,		
		journals, balance sheets a	and profit and lo	oss accounts.			
			UNIT-I				
					15 Hours		
Basic	cs of e	conomic theory, principles	of economics	, nature and scope, app	proaches and		
meth	nodologi	es, microeconomic approache	es (price theory)	- theory of consumer behave	viour, product		
prici	ng, mark	et structures.					
			UNIT-II		15		
Mag				achusia theory of potional in	15 Hours		
wac	roeconol	investment interest and prot	ai equilibrium ai	halysis, theory of hational inc	come and its		
COIII	ponents,	investment, interest, and pro-		ness cycle and economic gro	ovviti,		
					10 Hours		
\M/olf	are ecor	pomics modern economic n	olicies impact	of privatization and globali	zation global		
ecor		licies	olicies, impact v	or privatization and globali.	zation, giobai		
ccor	ionne po						
REF	ERENCE	BOOKS:					
1.	'Econor	nics' by Paul A Samuelson &	William D Nord	dhaus. Tata McGraw Hill. Ne	w Delhi, 19th		
	Edition,	2010,					
2.	'Macroe	economics' by R. Glenn Hubba	ard & Anthony F	Patric O' Brien, Pearson Prent	ice Hall, 2009		
3.	'Microe	economics' – Theory and App	lications by Will	iam J Baumol & Allan S Blin	der, Cengage		
	Learnin	g India Private Limited, New D	Delhi, 2010		5.5		
4.	'Microe	economics' by Robert S. Pindy	ok, Daniel L Rut	oinfeld & Prem. L. Mehta, Pea	arson Prentice		
	Hall Edi	tion, 2009, 7th Edition					
5.	'Princip	oles of Economics' by William	Boyes & Micha	el Melvin, Cengage Learning	J India Private		
	Limited	, New Delhi, 2003					
6.	'Econo	mics' by Joseph E Stigliz & Ca	rl E Walsh, Viva I	Norton Student Edition, Viva	Books Private		
	Limited	, New Delhi, 4th Edition, 201	0,				

	ENGINEERING MATHEMATICS -III									
Course Code: MA2011-1 Credit 04										

Differential equation is an integral part of any engineering curriculum. Most of the engineering problems are modeled as differential equations. This course is expected to help the students to solve the differential equations. Numerical approach to the solution of differential equation is also discussed.

Course Content:

Differential Equations:

Order and degree of a differential equation, Solutions of differential equations of first order and first degree. Variables separable, homogeneous, exact, linear equations and reducible to above types. Illustrative examples from Engineering field. Orthogonal trajectories of Cartesian and polar curves.

Second and higher order linear differential equations with constant coefficients. Method of undetermined coefficients. Method of variation of parameters, Solution of Cauchy's homogeneous linear equations. Applications to engineering problems

Partial differential equations:. Formation of partial differential equations by elimination of arbitrary constants and arbitrary functions. Derivation of one dimensional heat and wave equations, D' Alembert's solution of wave equation, Solution of equation of the type Pp+Qq = R, Solution of PDEs by the method of separation of variables, method of transformation.

Numerical methods:

Finite difference expressions for first and second order derivatives (ordinary and partial). Numerical solution of ordinary differential equations. Classification of second order partial differential equations. Numerical solutions of Laplace and Poisson equations by standard five point formulae and heat and wave equations by explicit method.

Text book:

- 1. A First Course in Differential Equations by E.D. Rainville
- 2. Kreysizg: "Advanced Engineering Mathematics", John Wiley and Sons VI-Edition

	Engineering Mat	hematics V		
Course Code:	MA2013-1	Credit	04	

The topics of this subject include the results of vector algebra which are useful to the students in their branches of engineering. Functions of two variables and their differentiation will enable the students to study functions of several variables. The topics on double and triple integral are meant to enable the students to compute physical quantities using methods of calculus. The concept of line integrals and surface integrals are of fundamental importance in all branches of engineering. Three dimensional coordinate systems, vectors, dot and cross products, equations of lines and planes, cylinders and quadratic surfaces, vector function and space curves, Motion in space-velocity and acceleration.

Functions of several variables and their limits and continuity, partial differentiation, Tangents lines, linear approximation and differentials, the chain rule. maxima minima functions of two or more variables, Lagrange's method of multipliers.

Double integral over rectangle regions, Double integral over general regions, Double integral over polar coordinates, Applications of Double integrals, Triple integrals, Triple integrals in cylindrical and polar coordinates, Change of variables in multiple integrals (Jacobians).

Vector fields, Directional derivatives and gradients, divergence and curl and associated identities. line integrals, the fundamental theorem for line integrals, Green's theorem, Parametric surfaces and their areas, Surface integrals, Stoke's theorem, The divergence theorem.

Text book:

1. Thomas/Finney: Calculus and Analytic Geometry, 6th Edition, Narosa Publishing House.

	STATICS								
Со	urse Code: CV1004-1 Credits 03								
	Course Objectives:								
1.	<i>1.</i> To develop the analytical skills to solve coplanar concurrent and non-concurrent force								
	system and analyze cylinders and strings using equilibrium conditions.								
2.	2. To identify different types of supports, loadings and analyze determinate beams								
3.	3. To develop the student's ability to find out the center of gravity and moment of inertia								
	and their applications.								
4.	To analyse the structures trusses, frames and moments of inertia of masses by the method								
	of virtual work.								
	09 Hours								
Basi	c idealizations - Definition of force, Characteristics of a force, forces in plane, forces in space,								
Forc	e systems and classification; Axioms of Mechanics. Concept of free body diagram.								
Reso	olution of forces, Composition of forces - Definition of Resultant; Resultant of coplanar								
cond	current force system.								
Mor	nent of a force, couple, characteristics of couple, Equivalent force - couple system;								
Vari	gnon's theorem, Resultant of coplanar - non-concurrent force system.								
Equi	librium of forces - Definition of Equilibrant; Conditions of static equilibrium for different force								
syste	ems. Equilibrium in two and three dimensions.								
	UNIT-II								
	11 Hours								
Equi	librium of coplanar non concurrent force systems: Simple, Hinged and fixed supports, Point, udl								
and	uvl loads, support reactions for statically determinate beams.								
Cent	roid of plane figures; Locating the centroid of rectangular, triangular, semicircular, quarter of a								
circu	lar area and sector of a circular areas using method of integration, Centroid of simple built up								
sect	ons.								
Mor	nent of inertia of an area, polar moment of inertia, Radius of gyration, Perpendicular axis theorem								
and	Parallel axis theorem; Moment of Inertia of rectangular, triangular, semicircular and quarter of a								
circu	Ilar area from the method of integration; Moment of inertia of composite areas.								
	UNIT-III								
	10 Hours								
Ana	ysis of structures: trusses, frames and machines, internal forces in beams and cables, moments								
of in	ertia of masses, method of virtual work.								
TEX	TBOOKS:								
1.	Ferdinand L. Singer "Engineering Mechanics"								
2.	Irving H. Shames (2012), Engineering Mechanics – Statics and Dynamics, 4th Edition, Prentice-								
	Hall of India Private limited. ISBN: 978-8-131-72883-3								
REF	ERENCE BOOKS:								
1.	Ferdinand P. Beer and E. Russel Johnson, "Mechanics for Engineers: Statics and dynamics"								
	McGraw-Hill Book Company, New York.								
2.	Timoshenko and Young, "Engineering Mechanics" McGraw-Hill Book Company, New Delhi.								

3.	Merium J.L, Kraige L.G, Engineering Mechanics Vol.I & II Wiley Publishers.
4.	McLEAN and Nelson, "Engineering Mechanics" (Schaum's outline Series), McGraw-Hill Book
	Company, New Delhi.

STATISTICS & PROBABILITY THEORY									
Cou	Course Code:MA2001-1Courses03								
Cour	Course Objectives:								
1.	1. Understand the basic principles of probability, Bayes theorem, understand the definitions of discrete, continuous, and joint random variables, compute the mean, variance and covariance of random variables.								
2.	Define the binomial, uniform, principles in problem solving site	Poisson, exponential and uations.	normal random variables use these						
3.	Understand the concepts of stati moments and their use in studyi	stical population and samp ng various characteristics o	ole, variables and attributes. Learn about of data and various distributions.						
		UNIT-I							
PRO	BABILITY THEORY		16 Hours						
Finite sample space, probability, conditional probability and independence, Bayes' theorem. One dimensional random variable: discrete and continuous random variable, probability functions, cumulative distribution function, expectation and variance. Two-dimensional random variable: joint pdf, marginal pdf's , covariance (CO1) Distributions: Binomial, Poisson, Uniform, Normal and exponential distributions.									
Mom	ent generating function- propert	ies and simple problems.(C	.02)						
			14 Hours						
Dand	om Sample, Sample mean, camp	le variance, campling dist	ribution of mean Control limit theorem						
samp distri Estim	bin Sample, Sample mean, sample ling distributions of proportions bution of variance. lation: Point estimation, interval e	and sums. Student's t-dist	vals for means and variance. (CO3)						
CUR	/E FITTING AND REGRESSION								
Least Corre	square principle, fitting of straig elation, Rank correlation, Coefficie	ht lines, polynomials and exection end of correlation, Linear reg	xponential curves. gression. (CO4)						
		UNIT-III							
STOC	CHASTIC PROCESS		10 Hours						
Stochastic processes, stochastic matrices, fixed points, regular stochastic matrices, Markov chains, transition probabilities, Birth-death process, Queuing theory – M/M/1 Model, simple problems.(CO5)									
Cour	se Outcomes: At the end of the o	course student will be able	to						
1.	1. Apply the concepts of probability, including discrete and continuous random variables, probability distributions, conditioning, independence, expectations, and variances.								
2.	Define and explain the different areas of their application.	statistical distributions (e.	g., Normal, Binomial, Poisson) and the						

3. Explain the concept of correlation and the difference between positive and negative correlation.																		
	Compute the correlation coefficient, r , Explain and apply the least square errors method numerically								ally									
	and algebraically to find the curve of best fit.																	
4.	Able to apply the central limit theorem to sampling distribution. Translate real-world problems into																	
	probab	ility models.																
5.	5. Identify and apply the most appropriate stochastic process technique for a given applied problem.									em.								
	Calcula	Calculate probabilities of absorption and expected hitting times for discrete time Markov chains																
	with ab	osorbing states.			_													
Co ι	urse Out	comes Mapping with Pro	ogra	am	Out	con	nes	&	PSO)								
		Program Outcomes→	1	2	3	4	5	6	7	8	9	10	11	12	PS	0	l	
		Course Outcomes	_	_	0			C	-						1	2	1	
		MA2001-1.1	3	2	-	-	-	-	-	-	-	-	-	-	-	-	1	
		MA2001-1.2	2	2	-	-	-	-	-	-	-	-	-	-	-	-	l	
		MA2001-1.3	3	1	-	-	-	-	-	-	-	-	-	-	-	-	l	
		MA2001-1.4	3	2	-	-	-	-	-	-	-	-	-	-	-	-	l	
		MA2001-1.5	3	2	-	-	-	-	-	-	-	-	-	-	-	-	I	
1: L	.ow 2: M	edium 3: High																
TEX	ТВООК	5:																
1.	Paul L M	eyer, "Introductory Probat	oility	/ an	d St	tatis	tica	l Ap	plic	catio	ons'	', Ado	dison	-Wes	ley	Publ	ishing	
	Company	, 2 nd Edition (Reprint), 197	70.															
2.	Hogg an	d Craig, "Introduction to r	natł	nem	atic	al S	tati	stics	5″, P	ears	son	Educ	atior	ı, Nev	w De	elhi,	6 th Editi	on.
REF	ERENCE	BOOKS:																
1.	Schaum (Outlines, "Probability and	Sta	tisti	cs",	Mc	Gra	wΗ	lill, 3	3 rd e	editi	on, 2	010.					
2.	T. Veerar	ajan, "Engineering Mather	mat	ics",	Mc	Gra	w-H	till,	Nev	v De	elhi,	2008	3.					
3.	B. V. Ram	ana, "Higher Engineering	Ma	the	mat	ics",	, Tat	ta N	1c G	iraw	/ _H	lill, N	lew D)elhi,	2010	Э.		
ΕB	ooks / N	IOOCs/ NPTEL																
1.	https://n	ptel.ac.in/courses/110107	114															
2.	https://n	ptel.ac.in/courses/111105	<u>090</u>															
3.	https://n	ptel.ac.in/courses/111102	098															

FLUID MECHANICS							
Course Code:ME1105-1Credits02							
Teaching Department: Mechanical Engineering							
Course Objectives: To cover fundamental principles of Fluid mechanics, to understand and and	alyze						
the applications of the same in engineering practice, also a glance over basics of Turbo machin	nery is						
also made, so as to bring the idea of power absorbing and power generating turbo machines.							
UNIT-I							
10 H	lours						
Properties of fluids: Introductory concepts and definitions, properties of fluids and its classification	tion.						
Fluid Statics: Pascal's law of pressure, pressure variation in static fluid, manometers. Fluid kiner	natics:						
Fluid flow concepts, lines flow, Types of functions for 2-D flow, relationship between them, flow	V						
nets, Vorticity. Fluid Dynamics: Conservation of mass momentum and energy equation. Euler's							
equation, Bernoulli's equation for real fluids. Reynolds transport theorem. Fluid flow measurer	nents:						
Venturimeter, Orificemeter, Pitot tube, V and Rectangular notches. Flow through pipes: friction	al						
losses in pipe flow, Darcy- Weisbach equation, Chezy's equation for loss of head due to friction	n in						
pipes, hydraulic gradient and total energy line.							
UNIT-II							
	lours						
Dimensional analysis: Introduction-derived quantities, dimensions of physical quantities,							
dimensional homogeneity, Buckingham's π theorem, Raleigh's method, dimensionless number	`S,						
similitude, types of similarities. Laminar and viscous flow effects: Reynolds number, critical Rey	nolds						
number, laminar flow through circular pipe, Hagen poiseulle's equation, laminar flow between							
parallel and stationary plates.							
Flow past immersed bodies: Drag, Lift, expressions for lift and drag, pressure drag and friction	drag,						
boundary layer concept, displacement thickness, momentum thickness and energy thickness.							
US F	iours						
Introduction to compressible flow. Velocity of sound in a fluid, Mach humber, propagation pro-	essure						
wave in compressible fluid. Introduction to turbo machinery: Parts, classification of turbo machines,							
energy transfer in turbo machines, Euler's equation.							
ΤΕΧΤΒΟΟΚS·							
1 Fluid Mechanics by Yunus A Cengel, John M. Tata Mc Graw Hill 2006							

Engineering Physics – III								
Course Code:	PH1002-1	Credit	03					

This course is designed to provide students with a working knowledge of the elementary physics principles mentioned above, as well as their applications, and to enhance their conceptual understanding of physical laws. Students will attend two lectures and one hour activity period per

week. Course evaluation is based on a combination of regular homework sets and/or quizzes, reports from the activity period, midterm and final exams and other evaluative tools. The course is an important prerequisite for later work in many science and engineering disciplines.

Course Content:

Calculus-based introduction to the basic concepts of wave motion, geometrical optics, interference phenomena, photons, wave mechanics, and the structure of matter, including such topics as: electromagnetic waves: Poynting Vector, polarization and reflection, geometrical optics: mirrors, refraction, lenses, optical instruments, interference and diffraction, photons and matter waves, energy quantization, structure of matter: hydrogen atom, conduction of electrons in solids, and nuclear physics and nuclear energy.

Text book:

- 1 Fundamentals of Physics (Parts 4 & amp; 5) by David Halliday, Robert Resnick and Jearl Walker 8 thEdition, John Wiley and Sons, Inc
- 2. University Physics by Young and Freedman, 11th edition, Pearson Education Inc

ENGINEERING MATHEMATICS IV									
Cours	se Code:	MA2012-1							
Teach	ning Hours/Week (L:T:P:S)	3:0:0:0	Credits	03					
Total	Teaching Hours	40	CIE + SEE Marks	50+50					
	Teaching I	Department: Ma	thematics						
Course	Objective: Linear algebra is one of the i	mportant branch	es of mathematics which finds a	applications in					
all bran	ches of engineering. This course is desi	gned to equip th	e students with the basics of line	ear algebra.					
		UNIT-I							
Introdu	uction to matrices, elementary transfo	ormations, rank o	of a matrix, systems of linear						
equatio	ons, echelon form of matrices, vector e	quation, matrix e	quation, solution sets of linear	15Hours					
system	is, linear independence								
		UNIT-II							
Introdu	uction to linear transformation, The mat	rix of a linear trar	nsformation, matrix operations,						
the inv	erse of a matrix, characterization of inve	ertible matrices, \	ector spaces, subspaces of Rn,	15 Hours					
linear o	combination of vectors, basis, dimensic	n							
		UNIT-III							
Introdu	action to determinants, properties of	determinants, Cr	amer's rule, eigenvectors and						
Eigen 🗤	values, diagonalization, Eigen vectors ar	nd linear transfor	mations, inner product, length	10					
and or	thogonality. Orthogonal sets, orthogon	al projections, Th	e Gram-Schmidt Process	10 Hours					
ТЕХТВ	TEXTBOOKS:								
1.	Linear algebra and its applications by Da	vid C. Lay							
2.	2. Linear algebra by Gilbert Strang								