Regulations and Curriculum for

Master of Technology (M. Tech.) in Machine Design

(Deemed to be University under Section 3 of UGC Act, 1956) (Placed under Category 'A' by MHRD, Govt. of India, Accredited with 'A+' Grade by NAAC) University Enclave, Medical Sciences Complex, Deralakatte, Mangalore – 575 018, Karnataka INDIA Tel: +91-824-2204300/01/02/03, Fax: 91-824-2204305 Website: www.nitte.edu.in E-mail: info@nitte.edu.in

REGULATIONS GOVERNING THE DEGREE OF MASTER OF TECHNOLOGY (M.Tech.)

UNDER OUTCOME BASED EDUCATION (OBE)

AND

CHOICE BASED CREDIT SYSTEM (CBCS) SCHEME

OF

NMAM INSTITUTE OF TECHNOLOGY, NITTE

(Effective from academic year 2022 -23)

VISION

To build a humane society through excellence in the education and healthcare

MISSION

To develop

Nitte (Deemed to be University) As a centre of excellence imparting quality education, Generating competent, skilled manpower to face the scientific and social challenges with a high degree of credibility, integrity, ethical standards and social concern

IVERSITY) NMAM INSTITUTE OF TECHNOLOGY

Off-campus Centre, Nitte (Deemed to be University) NITTE-574110, Karkala Taluk, Udupi District, Karnataka, India

Vision Statement

Pursuing Excellence, Empowering people, Partnering in Community Development

Mission Statement

To develop N.M.A.M. Institute of Technology, Nitte, as Centre of Excellence by imparting Quality Education to generate Competent, Skilled and Humane Manpower to face emerging Scientific, Technological, Managerial and Social Challenges with Credibility, Integrity, Ethics and Social Concern.

M. Tech. Regulations and Curriculum

Batch 2022 – 2024

With Scheme of Teaching & Examination

REGULATIONS: 2022 for M. Tech. Programs (Academic year 2022-23)

COMMON TO ALL M.Tech. DEGREE PROGRAMS CHOICE BASED CREDIT SYSTEM (CBCS)

Key Information

Program Title	Master of Technology, abbreviated as MTech. (Machine Design)
Short description	Two-year, four semester Choice Based Credit System (CBCS) type
	of Postgraduate Engineering Degree Program with English as
	medium of instruction.
Program Code	22ENGR17D2
Revision version	2022.02
	These regulations may be modified from time to time as mandated
	by the policies of the University. Revisions are to be recommended
	by the Board of Studies for Mechanical Engineering and
	approved by the Academic Council.
Effective from	12-09-2022
Approvals	• Approved in the 50 th meeting of Academic Council of NITTE
	(Deemed to be University), held on 30-05-2022 and vide
	Notification of NITTE (DU), N(DU)/REG/N-MCE/2022-23/76B
	dated 19-08-2022.
	• Notification of Nitte (DU), N(DU)/REG/AC/-SA/2022-23/909
	dated 24-04-2023.
Program offered at	NMAM Institute of Technology, Nitte Off Campus Centre, Nitte
	(Deemed to be University)
Grievance and	All disputes arising from this set of regulations shall be addressed to
dispute resolution	the Board of Management. The decision of the Board of
	Management is final and binding on all parties concerned. Further,
	any legal disputes arising out of this set of regulations shall be
	limited to jurisdiction of Courts of Mangalore only

Contents

1.	INTRODUCTION	3
2.	DEFINITIONS OF KEYWORDS	3
2.1	Program	4
2.2	Branch	4
2.3	Semester	4
2.4	Academic Year	4
2.5	Course	4
2.6	Credit	4
2.7	Audit Courses	4
2.8	Choice Based Credit System (CBCS)	4
2.9	Course Registration	4
2.10	Course Evaluation	5
2.11	Continuous Internal Evaluation (CIE)	5
2.12	Semester End Examinations (SEE)	5
2.13	Make Up Examination	5
2.14	Supplementary Examination	5
2.15	Credit Based System (CBS)	5
2.16	Credit Representation	5
2.17	Letter Grade	6
2.18	Grading	6
2.19	Grade Point (GP)	6
2.20	Passing Standards	6
2.21	Credit Point	6
2.22	Semester Grade Point Average (SGPA)	7
2.23	Cumulative Grade Point Average (CGPA)	7
2.24	Grade Card	7
2.25	University	7
3.	CLAUSE	7
22N	MT1.0_DURATION AND CREDITS OF THE PROGRAM OF STUDY	7
22N	MT2.0 ELIGIBILITY FOR ADMISSION	8
22N	MT3.0 REGISTRATION	10
22N	MT4.0COURSES	12

22NMT5.0 INTERNSHIP/MINI PROJECT	15
22NMT6.0 SEMINAR	16
22NMT7.0 PROJECT WORK	16
22NMT8.0 ATTENDANCE REQUIREMENT	20
22NMT9.0 ADD/ DROP/ AUDIT OPTIONS	21
22NMT10.0 ABSENCE DURING THE SEMESTER	21
22NMT11.0 WITHDRAWAL FROM THE PROGRAM	22
22NMT12.0 EVALUATION SYSTEM	23
22NMT13.0 LETTER GRADES AND GRADE POINTS	27
22NMT14.0 PROMOTION AND ELIGIBILITY	28
22NMT15.0 ELIGIBILITY FOR PASSING AND AWARD OF DEGREE	28
22NMT16.0 EVALUATION OF PERFORMANCE	29
22NMT17.0 DEGREE REQUIREMENTS	31
22NMT18.0 TERMINATION FROM THE PROGRAM/READMISSION	31
22NMT19.0 GRADUATION REQUIREMENTS AND CONVOCATION	31
22NMT20.0 AWARD OF CLASS, PRIZES, MEDALS & RANKS	32
22NMT21.0 CONDUCT AND DISCIPLINE	33
SCHEME AND SYLLABUS	35

1. INTRODUCTION:

- 1.1 The general regulations are common to all Degree of Master of Technology Program under Outcome Based Education (OBE) and Choice Based Credit System (CBCS) conducted by Nitte (Deemed to be University), at the NMAM Institute of Technology, Nitte off Campus Centre and shall be called "Nitte (DU) Regulations for M.Tech.- 2022".
- **1.2** The provisions contained in this set of regulations govern the policies and procedures on the Registration of students, imparting Instructions of course, conducting of the examination and evaluation and certification of students' performance and all amendments there to leading to the said degree program(s)
- 1.3 This set of Regulations, on approval by the Academic Council and Governing Council, shall supersede all the corresponding earlier sets of regulations of the M.Tech. Degree program (of Nitte (DU)) along with all the amendments thereto, and shall be binding on all students undergoing M.Tech. Degree Program (s) (Choice Based Credit System) conducted at the NMAMIT, Nitte with effect from its date of approval and is applicable for students admitted to 1st year after September 2022. This set of regulations may evolve and get modified or changed through appropriate approvals from the Academic Council / Governing Council from time to time, and shall be binding on all stake holders, (the Students, Faculty, Staff of Departments of NMAMIT, Nitte). The decision of the Academic Council/ Governing Council shall be final and binding.
- **1.4** In order to guarantee fairness and justice to the parties concerned in view of the periodic evolutionary refinements, any specific issues or matters of concern shall be addressed separately, by the appropriate authorities, as and when found necessary.
- **1.5** The Academic Council may consider any issues or matters of Concern relating to any or all the academic activities of the NMAMIT courses for appropriate action, irrespective of whether a reference is made here in this set of Regulations or otherwise.
- 1.6 The course shall be called Master of Technology program abbreviated as M.Tech. (subject of specialization) Choice Based Credit System.
- 2. **DEFINITIONS OF KEYWORDS:** The following are the definitions/descriptions that have been followed for the different terms used in the Regulations of M.Tech. Programs:

- **2.1 Program:** Is an educational program in a particular stream/branch of Engineering/branch of specialization leading to award of Degree. It involves events/activities, comprising of lectures/ tutorials/ laboratory work/ field work, outreach activities/ project work/ vocational training/ viva/ seminars/ Internship/ assignments/ presentations/ self-study etc., or a combination of some of these.
- **2.2 Branch:** Means Specialization or discipline of M. Tech Degree Program, like Electrical Vehicle Technology, Structural Engineering, Machine Design, etc.
- **2.3 Semester:** Refers to one of the two sessions of an academic year (vide: serial number 4), each session being of sixteen weeks duration (with working days greater than or equal to 90). The odd semester may be scheduled from August/September and even semester from February/March of the year.
- **2.4** Academic Year: Refers to the sessions of two consecutive semesters (odd followed by an even) including periods of vacation.
- 2.5 Course: Refers to usually referred to as 'subjects' and is a component of a program. All Courses need not carry the same credit weightage. The Courses should define learning objectives and learning outcomes. A Course may be designed to comprise lectures/ tutorials/ laboratory work/ field work/ outreach activities/ project work/ vocational training/ viva/ seminars/ term papers/ assignments/ presentations/ selfstudy etc. or a combination of some of these.
- **2.6 Credit:** Refers to a unit by which the Course work is measured. It determines the number of hours of instructions required per week. One credit is equivalent to one hour of lecture or two hours of laboratory/ practical Courses/ tutorials/ fieldwork per week etc.
- 2.7 Audit Courses: Means Knowledge/ Skill enhancing Courses without the benefit of credit for a Course.
- **2.8 Choice Based Credit System (CBCS):** Refers to customizing the Course work, through Core, Elective and soft skill Courses, to provide necessary support for the students to achieve their goals.
- **2.9 Course Registration:** Refers to formal registration for the Courses of a semester (Credits) by every student under the supervision of a Faculty Advisor (also called Mentor, Counsellor etc.,) in each Semester for the Institution to maintain proper record.

- 2.10 Course Evaluation: Means Continuous Internal Evaluation (CIE) and Semester End Examinations (SEE) to constitute the major evaluations prescribed for each Course. CIE and SEE to carry 50 % and 50 % respectively, to enable each Course to be evaluated for 100 marks, irrespective of its Credits.
- **2.11 Continuous Internal Evaluation (CIE):** Refers to evaluation of students' achievement in the learning process. CIE shall be by the Course Instructor and includes tests, homework, problem solving, group discussion, quiz, mini-project and seminar throughout the Semester, with weightage for the different components being fixed at the University level.
- **2.12 Semester End Examinations (SEE):** Refers to examination conducted at the University level covering the entire Course Syllabus. For this purpose, Syllabi to be modularized and SEE questions to be set from each module, with a choice confined to the concerned module only. SEE is also termed as university examination.
- **2.13 Make Up Examination:** Refers to examination conducted for the candidates who has a CIE>=35 marks and may have missed to attend the SEE covering the entire course syllabus. The standard of Make Up Examination is same as that of the SEE.
- 2.14 Supplementary Examination: Refers to the examination conducted to assist slow learners and/or failed students through make up courses for a duration of 8 weeks. This comprises of both the CIE & SEE and will be conducted after the completion of First year M.Tech. even semester.
- **2.15 Credit Based System (CBS):** Refers to quantification of Course work, after a student completes teaching learning process, followed by passing in both CIE and SEE. Under CBS, the requirement for awarding Degree is prescribed in terms of total number of credits to be earned by the students.
- **2.16 Credit Representation:** Refers to Credit Values for different academic activities considered, as per the Table.1. Credits for seminar, project phases, project viva-voce and internship shall be as specified in the Scheme of Teaching and Examination.

Table 1: Credit Values					
Theory/Lectures (L) (hours/week/Semester)	Tutorials (T) (hours/week/ Semester)	Laboratory /Practical (P) (hours/week/ Semester)	Credits (L: T:P)	Total Credits	
4	0	0	4:0:0	4	
3	0	0	3:0:0	3	
2	2	0	2:1:0	3	
2	0	2	2:0:1	3	
2	2	2	2:1:1	4	
0	0	2	0:0:1	1	
NOTE: Activities like, practical training, study tour and participation in Guest					

lectures not to carry any credits.

- **2.17 Letter Grade:** It is an index of the performance of students in a said Course. Grades are denoted by letters O, A+, A, B+, B, C and F.
- **2.18 Grading:** Grade refers to qualitative measure of achievement of a student in each Course, based on the percentage of marks secured in (CIE+SEE). Grading is done by Absolute Grading. The rubric attached to letter grades are as follows:

Letter	0	A+	A	B+	В	С	F
Grade							
Academic	Outstanding	Excellent	Very	Good	Above	Average	Fail
Level			Good		Average		

2.19 Grade Point (GP): Refers to a numerical weightage allotted to each letter grade on a 10-point scale as under.

Letter Grade and corresponding Grade Points on a typical 10 – Point scale							
Letter Grade	0	A+	А	B+	В	С	F
Grade Point	10	09	08	07	06	05	00

- **2.20 Passing Standards:** Refers to passing a Course only when getting GP greater than or equal to 05 (as per serial number 2.20).
- **2.21** Credit Point: Is the product of grade point (GP) and number of credits for a Course i.e., Credit points $CrP = GP \times Credits$ for the Course.

- **2.22** Semester Grade Point Average (SGPA): Refers to a measure of academic performance of student/s in a semester. It is the ratio of total credit points secured by a student in various Courses of a semester and the total Course credits taken during that semester.
- **2.23** Cumulative Grade Point Average (CGPA): Is a measure of overall cumulative performance of a student over all semesters. The CGPA is the ratio of total credit points earned by a student in various Courses in all semesters and the sum of the total credits of all Courses in all the semesters. It is expressed up to two decimal places.
- **2.24 Grade Card:** Refers to a certificate showing the grades earned by a student. A grade card shall be issued to all the registered students after every semester. The grade card will display the program details (Course code, title, number of credits, grades secured) along with SGPA of that semester and CGPA earned till that semester.
- **2.25** University: Nitte (Deemed to be University), Mangalore. NMAM Institute of Technology is an off-campus centre of Nitte (DU) and located at Nitte.

3. CLAUS	SE					
CLAUSE	PARTICULARS					
22NMT1.0	DURATION AND CREDITS OF THE PROGRAM OF STUDY					
	There shall be one category of program: Full-time Program (FT)					
	Full-time Program: The Program shall extend over a period of four semesters					
	(2 years).					
	First Semester:					
	i) 16 weeks – Class Work according to the scheme.					
	ii) 4 weeks – Revision holidays and examinations					
	iii) 2 weeks – Vacation					
	Second Semester:					
	i) 16 weeks – Class Work according to the scheme					
	ii) 4 weeks – Revision holidays and examinations.					
	Summer Semester/Vacation					
	i) 4 weeks — Class work, Examination & Display of Grades					
	Third Semester: 20 weeks					
	i) 8 weeks — Industrial Training/Mini Project					
	ii) 12 weeks — Project Part-I					

	— Industrial Training/Mini Project evaluation, Seminar on Special					
	Topic Evaluation & Project Part-I Evaluation					
	Fourth Semester: 24 weeks					
	i) 22 weeks — Project Part-II					
	ii) 2 weeks – Submission, viva -v	oce				
	Prescribed Number of Credits for th	ne Program: 80				
	The number of credits to be completed	l for the award of Degree shall be 80.				
22NMT1.1	M.Tech Degree Programs are offered	in the following specialization and the				
	respective program hosting department	ts are listed below:				
	Program	<u>Department</u>				
	i) Computer Science & Engineering	Computer Science & Engineering				
	ii) Constructional Technology	Civil Engineering				
	iii) Structural Engineering	Civil Engineering				
	iv) VLSI Design & Embedded	Electronics and Communication				
	Systems	Engineering				
	v) Machine Design	Mechanical Engineering				
	vi) Energy Systems Engineering Mechanical Engineering					
	vii) Cyber security	Computer Science Engineering				
	viii) Electric Vehicle Technology	Electrical and Electronics Engineering				
	The provisions of these Regulations	shall be applicable to any new				
	specialization that may be introduced	from time to time and appended to the				
	above list.					
22NMT1.2	Maximum Duration for Program Completion:					
	A full-time candidate shall be allowed a maximum duration of 4 years from the					
	I semester of admission to become eligible for the award of master's degree,					
	failing which he/she may discontinue of register once again as a fresh candidate					
	to I semester of the program.					
22NMT2.0	ELIGIBILITY FOR ADMISSION					
	(As per the Government orders issued	from time to time):				
	Admission to I year/ I semester Maste	er of Technology Program shall be open				
	to all the candidates who have passed l	B.E./ B. Tech. Examinations (in relevant				
	field) or any other recognized Univer-	ersity/ Institution. AMIE in respective				

	branches shall be equivalent to B.E./ B. Tech. Programs for admission to
	M.Tech. The decision of the equivalence committee shall be the final in
	establishing the eligibility of candidates for a particular Program.
	For the foreign Degrees, Equivalence certificate from the Association of Indian
	Universities shall be a must.
22NMT2.1	Admission to M.Tech. Program shall be open to the candidates who have
	passed the prescribed qualifying examination with not less than 50% of the
	marks in the aggregate of all the years of the Degree examination. Rounding
	off percentage secured in qualifying examination is not permissible.
22NMT2.2	For admissions under GATE/ NUCAT qualification
	The candidates should be GATE qualified or should have appeared for the
	NUCAT Entrance Examination conducted by Nitte (Deemed to be University)
	[Nitte (DU)]
22NMT2.3	For admissions under Sponsored Quota:
	The candidates should be GATE qualified or should have appeared for the
	NUCAT Entrance Examination conducted by Nitte (DU)
22NMT2.4	The candidates, who are qualified in the GATE Examination for the
	appropriate branch of engineering, shall be given priority. They are exempted
	from taking NUCAT Entrance Examination.
	In case a GATE qualified Candidate appears for entrance examination and
	become qualified to claim a seat under entrance examination quota, he/she will
	be considered in the order of merit along with other candidates appeared for
	the entrance examination.
22NMT2.5	If sufficient number of GATE qualified candidates are not available, the
	remaining vacant seats shall be filled from amongst the candidates appeared
	for NUCAT Entrance Examination in the order of merit.
22NMT2.6	Engineering graduates other than the Karnataka candidates shall get their
	Eligibility verified from Nitte (DU) to seek admission to M.Tech. Program at
	NMAMIT, Nitte
22NMT2.7	Admission to vacant seats: Seats remaining vacant (unfilled), after the
	completion of admission process through GATE/NUCAT Entrance Exam, the
	remaining seats shall be filled by Candidates based on merit in the entrance
	test conducted at the Institution level. An admission Committee, consisting of

	the Principal, Head of the con	cerned Dep	partment and	the subject	experts, shall
	oversee admissions.				
22NMT3.0	REGISTRATION:				
	Every student after consultin	ng his Fac	ulty-Advisor	in parent	department is
	required to register for the a	pproved c	courses with	the Depar	tmental Post
	Graduate Committee (DPG	C) of Pare	ent Departme	nt at the co	ommencement
	of each Semester on the day	s fixed for	such registr	ation and n	otified in the
	academic calendar.				
22NMT3.1	Lower and Upper Limits f	or Course	Credits Reg	gistered in	a Semester.
	Course Credit Assignment:				
	All courses comprise of speci	fic Lecture	/ Tutorial/ Pr	actical (L-7	T-P) schedule.
	The course credits are fixed b	ased on the	e following n	orms.	
	Lecture/Tutorials/ Practical:				
	(i) a 1-hour Lectu	ire per weel	k is assigned	1.0 Credit.	
	(ii) a 2-hour Tutor	ial session	per week is a	assigned 1.0	Credit.
	(iii) a 2-hour Lab. s	session per	week is assig	gned 1.0 cre	edits
	For example, a theory course	se with L-7	Г-Р schedule	e of 3-2-0	hours will be
	assigned 4.0 credits.				
	A laboratory practical course with L-T-P schedule of 0-0-2 hours will be				
	assigned 1.0 credit.				
	Calculation of Contact Hou	rs / Week -	- A Typical	Example	
	Typical Academic Load (I	& II Semes	ster)		
	No. of Courses	LTP	Credits	Total	Contact
			Per course	Credits	Hours
					per Week
	2 Lecture Courses	4-0-0	04	08	08
	2 Lab Courses	0-0-2	01	02	04
	1 Research based Course	0-0-4	02	02	04
	3 Elective Courses	3-0-0	03	09	09
	1 Audit Course	2-0-0	0	0	02
	Total: 9 Courses			21	27
	A student must register, as ad	vised by Fa	culty Adviso	r, between a	a minimum of
	16 credits and up to a Max	kimum of	28 credits. I	However, the	he minimum/

	maximum Credit limit can be relaxed by the Dean (Academic) on the
	recommendations of the DPGC, only under extremely exceptional
	circumstances.
22NMT3.2	Mandatory Pre-Registration for higher semester:
	In order to facilitate proper planning of the academic activities of the Semester,
	it is necessary for the students to declare their intention to register for courses
	of higher semesters (2 nd and above) at least two weeks before the end of the
	current semester choosing the courses offered by each department in the next
	higher semester which is displayed on the Departmental Notice Board at least
	4 weeks prior to the last working day of the semester. Students who fail to
	register on or before the specified date will have to pay a late fee. Registration
	in absentia is allowed only in exceptional cases with the permission of the Dean
	(Academic).
	Registration to a higher semester is allowed only if the student fulfills the
	following conditions-
	i) Satisfied all the academic requirements to continue with the program of
	studies without termination.
	ii) Cleared all institute, hostel and library dues and fines, if any, of the
	previous semester.
	iii) Paid all required advance payments of the Institute and the hostel for the
	current semester.
	Has not been debarred from registering on any specific grounds by the Institute.
22NMT3.3	Course Pre-Requisites:
	In order for a student to register for some course(s), it may be required either
	to have completed satisfactorily or to have prior earned credits in some
	specified course(s). In such instances, the DPGC shall specify clearly, any such
	course pre-requisites, as part of the curriculum.
22NMT3.4	Students who do not register before the dead line day of registration may be
	permitted LATE Registration up to the notified day in academic calendar on
	payment of late fee.
22NMT3.5	REGISTRATION in ABSENTIA will be allowed only in exceptional cases on
	the recommendation of DPGC through the authorized representative of the
	student.

22NMT3.6	Medium of Instruction/Evaluation/etc. shall be English.
22NMT4.0	COURSES:
	The curriculum of the Program shall be any combination of following type of
	courses:
	i) Professional Core Courses (PCC) - relevant to the chosen
	specialization/ branch [May be split into Hard (no choice) and Soft (with
	choice), if required]. The core course is to be compulsorily studied by a
	student and is mandatory to complete the requirements of a program in a
	said discipline of study.
	ii) Professional Electives Courses (PEC) - relevant to the chosen
	specialization/ branch: these are the courses, which can be chosen from
	the pool of papers. It shall be supportive to the discipline/ providing
	extended scope/enabling an exposure to some other discipline / domain
	/ nurturing student skills.
	iii) Research Experience Through Practice-I and Research Experience
	Through Practice-II
	iv) Project Work
	v) Seminar
	vi) Audit Courses (AC):
	a) The Audit course can be any credit course offered by the program to
	which the candidate is admitted (other than the courses considered for
	completing the prescribed program credits) or other programs offered
	in the institution, where the student is studying.
	b) The students are required to register for one audit course during I and
	II semesters. Students who have registered to audit the courses,
	considered on par with students registered to the same course for credit,
	must satisfy attendance and CIE requirements. However, they need not
	have to appear for SEE.
	c) Registration for any audit course shall be completed at the beginning of I
	and II semesters. The Department should intimate the Controller of
	Examination about the registration at the beginning of the semester and
	obtain a formal approval for inclusion of the audit course/s in the Grade
	card issued to the students

	vii) Internship/ Mini Project: Pre	ferably a	at an industry/ R&D
	organization/IT company/ Governm	nent orga	nization of significant
	repute or at the Research Centre of	parent In	stitution for a specified
	period mentioned in Scheme of Teach	ning and E	xamination.
22NMT4.1	Program Structure:		
	The number of credits to be registered in a	semester i	s between 16 and 28
	Minimum Credit Requirement for the M.Te	ech. Degre	e is 80.
	The total course package for an M.Tech. De	gree Progr	am will typically consist
	of the following components.		
	Course type	Range %	Suggested Credits
	i) Program Core Courses	20 - 25	20
	ii) Program Elective Courses	18 - 20	15
	iii) Elective Courses (MOOCS)	4	03
	iv) Industrial Internship/Research	10	08
	Internship/Mini Project		
	v) Project	35	28
	vi) Seminar	2.5	02
	vii) Research Experience Through	5	04
	Practice		
	viii)Audit courses (two courses)	-	-
	Total credits		80
			1
	The Department Post Graduate Comm	ittee (DP	GC) will discuss and
	recommend the exact credits offered	for the p	rogram for the above
	components, the semester-wise distribution	among the	em, as well as the syllabi
	of all postgraduate courses offered by the d	epartment	from time to time before
	sending the same to the Board of Studies (H	BOS).	
	The BOS will consider the proposals the	from the	departments and make
	recommendations to the Academic Council	for consid	leration and approval.
	Mandatory Learning Courses:		
	These are courses that must be completed b	y the stude	ent at appropriate time as
	suggested by the Faculty Adviser or the DI	PGC. Cour	rses that come under the
	category are as following:		

Industrial Training:

This is a 08-credit course. A full-time student will complete the Industrial Training (or a Mini Project) at appropriate time stipulated by DPGC and register for it in the following Semester and shall also submit a bound copy of training report certified by the authority of Training Organization. The duration and the details, including the assessment scheme, shall be decided by the faculty advisor, with approval from DPGC.

Seminar:

This also carries 2-credits to be completed at appropriate time stipulated by DPGC. The student will make presentations on topics of academic interest, as suggested by DPGC.

Research Experience through Practice-I and Research Experience through Practice-II:

- Research Experience through Practice-I and II are 2-credit courses in the first and second semesters respectively.
- The student will work under a faculty supervisor approved by the DPGC and submits a research proposal at the end of the first semester which is evaluated jointly by the faculty supervisor and a co-examiner.
- Students shall be offered inputs like how to conduct a literature survey, how to identify a research problem, how to write a research paper, research report, research proposal, and systematic way of conducting research etc.
- Department specific/PG Program specific skill sets required for carrying out a research work may be offered to the students like software tools for system/device simulation and analysis, software/ hardware tools for signal acquisition, data processing, control simulation, Testing/measuring equipment used in research and Testing/measuring procedure.
- At the end of Research Experience through Practice-I in the first semester,
 M. Tech. students should be able to identify a research problem, with clear objectives and methodologies backed by extensive literature review.
- Two internal examiners will evaluate the Research Experience through Practice-I out of which one will be the guide and the other examiner will a faculty member who is having expertise in the research area of the student

	being evaluated. The research proposal report and the research proposal
	presentation are evaluated for 100 marks in the first semester.
	• The student will work on the proposed research in the second semester and
	submit a research paper at the end of the second semester which is evaluated
	jointly by the faculty supervisor and a co-examiner.
	• In the second semester, the students are expected to carry out Mathematical
	modelling / Design calculations / computer simulations / Preliminary
	experimentation / testing of the research problems identified during
	Research Experience through Practice-I carried out in the first semester. At
	the end of the second semester, students are expected to write a full research
	paper based on the Mathematical modelling/ Design calculations/computer
	simulations/Preliminary experimentation/testing carried out during second
	semester.
	The research paper submitted by the student and the presentation of the research
	work carried out is evaluated for 100 marks in the second semester.
22NMT5.0	INTERNSHIP/MINI PROJECT:
	The student shall undergo Internship/Mini Project as per the Scheme of
	The student shall undergo Internship/Mini Project as per the Scheme of Teaching and Examination.
	The student shall undergo Internship/Mini Project as per the Scheme of Teaching and Examination.1. The internship can be carried out in any industry/R&D
	 The student shall undergo Internship/Mini Project as per the Scheme of Teaching and Examination. 1. The internship can be carried out in any industry/R&D Organization/Research Institute/Institute of national repute/R&D Centre
	 The student shall undergo Internship/Mini Project as per the Scheme of Teaching and Examination. 1. The internship can be carried out in any industry/R&D Organization/Research Institute/Institute of national repute/R&D Centre of Parent Institute.
	 The student shall undergo Internship/Mini Project as per the Scheme of Teaching and Examination. 1. The internship can be carried out in any industry/R&D Organization/Research Institute/Institute of national repute/R&D Centre of Parent Institute. 2. The Department/college shall nominate a faculty to facilitate, guide and
	 The student shall undergo Internship/Mini Project as per the Scheme of Teaching and Examination. 1. The internship can be carried out in any industry/R&D Organization/Research Institute/Institute of national repute/R&D Centre of Parent Institute. 2. The Department/college shall nominate a faculty to facilitate, guide and supervise students under internship.
	 The student shall undergo Internship/Mini Project as per the Scheme of Teaching and Examination. 1. The internship can be carried out in any industry/R&D Organization/Research Institute/Institute of national repute/R&D Centre of Parent Institute. 2. The Department/college shall nominate a faculty to facilitate, guide and supervise students under internship. 3. The students shall report the progress of the internship/Mini Project to the
	 The student shall undergo Internship/Mini Project as per the Scheme of Teaching and Examination. 1. The internship can be carried out in any industry/R&D Organization/Research Institute/Institute of national repute/R&D Centre of Parent Institute. 2. The Department/college shall nominate a faculty to facilitate, guide and supervise students under internship. 3. The students shall report the progress of the internship/Mini Project to the internal guide in regular intervals and seek his/her advice.
	 The student shall undergo Internship/Mini Project as per the Scheme of Teaching and Examination. 1. The internship can be carried out in any industry/R&D Organization/Research Institute/Institute of national repute/R&D Centre of Parent Institute. 2. The Department/college shall nominate a faculty to facilitate, guide and supervise students under internship. 3. The students shall report the progress of the internship/Mini Project to the internal guide in regular intervals and seek his/her advice. 4. The Internship shall be completed during the period specified in Scheme
	 The student shall undergo Internship/Mini Project as per the Scheme of Teaching and Examination. 1. The internship can be carried out in any industry/R&D Organization/Research Institute/Institute of national repute/R&D Centre of Parent Institute. 2. The Department/college shall nominate a faculty to facilitate, guide and supervise students under internship. 3. The students shall report the progress of the internship/Mini Project to the internal guide in regular intervals and seek his/her advice. 4. The Internship shall be completed during the period specified in Scheme of Teaching and Examination.
	 The student shall undergo Internship/Mini Project as per the Scheme of Teaching and Examination. 1. The internship can be carried out in any industry/R&D Organization/Research Institute/Institute of national repute/R&D Centre of Parent Institute. 2. The Department/college shall nominate a faculty to facilitate, guide and supervise students under internship. 3. The students shall report the progress of the internship/Mini Project to the internal guide in regular intervals and seek his/her advice. 4. The Internship shall be completed during the period specified in Scheme of Teaching and Examination. 5. After completion of Internship/mini project, students shall submit a report
	 The student shall undergo Internship/Mini Project as per the Scheme of Teaching and Examination. The internship can be carried out in any industry/R&D Organization/Research Institute/Institute of national repute/R&D Centre of Parent Institute. The Department/college shall nominate a faculty to facilitate, guide and supervise students under internship. The students shall report the progress of the internship/Mini Project to the internal guide in regular intervals and seek his/her advice. The Internship shall be completed during the period specified in Scheme of Teaching and Examination. After completion of Internship/mini project, students shall submit a report to the Head of the Department with the approval of both internal and
	 The student shall undergo Internship/Mini Project as per the Scheme of Teaching and Examination. The internship can be carried out in any industry/R&D Organization/Research Institute/Institute of national repute/R&D Centre of Parent Institute. The Department/college shall nominate a faculty to facilitate, guide and supervise students under internship. The students shall report the progress of the internship/Mini Project to the internal guide in regular intervals and seek his/her advice. The Internship shall be completed during the period specified in Scheme of Teaching and Examination. After completion of Internship/mini project, students shall submit a report to the Head of the Department with the approval of both internal and external guides and with the approval of internal guide if the

	6. The Internship/Mini Project will be evaluated jointly by two internal
	examiners appointed by the Head of the Department/Controller of
	Examination.
	7. The Internship/Mini Project report and the presentation by the student will
	be evaluated for 50 marks each immediately after completion of the
	Internship/Mini Project.
	The students are permitted to carry out the internship anywhere in India or
	Abroad. The Institution will not provide any kind of Financial Assistance to
	any student for Internship/Mini Project and for the conduct of Viva-Voce on
	internship.
22NMT5.1	Failing to undergo Internship/Mini Project:
	Securing a pass grade in Internship/Mini Project is mandatory as a partial
	requirement for the award of Degree.
	Internship/Mini Project Securing a pass grade in Internship/Mini Project is
	mandatory. If any student fails to undergo/complete the Internship/Mini
	Project, he/she shall be considered as fail in that Course.
22NMT6.0	SEMINAR:
	Securing a pass grade in Seminar is mandatory as a partial requirement for the
	award of Degree.
	i) Each candidate shall deliver seminar as per the Scheme of Teaching and
	Examination on the topics chosen from the relevant fields for about 30
	minutes.
	The Head of the Department shall make arrangements for conducting seminars
	through concerned faculty members of the department. The Panel of Examiners
	constituted for the purpose by the Head of the Department shall award the CIE
	marks for the seminar.
22NMT7.0	PROJECT WORK:
	Securing a pass grade in Project Work is mandatory as a partial requirement
	for the award of Degree.
	Project work shall be on individual basis.

Project Part-I and Part-II:

Project Part-I: (In third Semester)

The duration of the Project Part-I is of 12 weeks as notified in the academic calendar. The evaluation of the Project Part-I will be done during the end of third semester.

Each department will prepare the Panel of Examiners in advance and also prepare the Project Part-I evaluation schedule indicating the names of the students, their USN, Title of the Project, Name of the Examiners, and time and Venue of the evaluation which will be submitted to the Controller of Examination Office in advance.

Project Part-I evaluation will be done by two internal Examiners, one of them will be the Guide and other is preferably one of the experts in the area of PG Project being evaluated.

The mark distribution of Project Phase-I evaluation is: 100 marks for report and 100 marks for presentation jointly awarded by the both the examiners.

Project Part-II: (In the fourth Semester)

The total duration of Project Part-II is of 22 weeks as notified in the academic calendar. There will be two Continuous Internal Evaluation of Project Part-II in fourth semester followed by Semester End Evaluation of the Project Phase-II, namely, Project Progress Evaluation-I (PPE-I), Project Progress Evaluation -II(PPE-II) and SEE.

The same Panel of Examiners which was formed during Project Part-I evaluation is to be continued for the Project Progress Evaluation in the fourth semester.

PPE-I and PPE-II will be scheduled as per the academic calendar and will be evaluated for 100 marks each (50 marks for report and 50 marks for presentation jointly conducted by the two internal examiners).

Each department will prepare the Panel of Examiners in advance and also prepare the Project Part-II Project Progress Evaluation Schedule indicating the names of the students, their USN, Title of the Project, Name of the Examiners, and time and Venue of the evaluation as per the format which will be submitted to the Controller of Examination Office in advance.

	For the Off-Campus projects, the Internal Guide should visit the organization
	in which the M.Tech Student is carrying out his Project at least once during the
	project term.
	The candidate shall submit a soft copy of the dissertation work to the Institute.
	The soft copy of the dissertation should contain the entire Dissertation in
	monolithic form as a PDF file (not separate chapters).
	The Guide, after checking the report for completeness shall check the report
	for Plagiarism content. The allowable plagiarism index is less than or equal to
	25%. If the check indicates a plagiarism index greater than 25%, the guide
	should advice the student to resubmit the dissertation after modifying the
	report. The report has to be once again checked for the plagiarism content and
	the signed hard copy of the Plagiarism Report along with the two hard copies
	of the dissertation is to be submitted to the Head of the Institution through the
	Head of the Department. The dissertation will be evaluated by two examiners,
	one of the examiners shall be the Guide of the candidate and the other examiner
	shall be an external expert in the area of the dissertation being evaluated.
	The guide shall submit panel of two approved external examiners to the office
	of the Controller of Examination through the head of the Department. The
	Controller of Examination will randomly select one of the external examiners
	and invites him/her formally for the evaluation of the dissertation and Viva-
	Voce examination giving sufficient time for the external examiner for reading
	the dissertation.
22NMT7.1	The dissertation will be evaluated by two examiners, one of the examiners shall
	be the guide of the candidate and the other examiner shall be preferably an
	external expert in the area of the dissertation being evaluated. The evaluation
	of the dissertation shall be made independently by each examiner.
22NMT7.2	Examiners shall evaluate the dissertation normally within a period of not more
	than two weeks from the date of receipt of dissertation through email.
22NMT7.3	The examiners shall independently submit the marks for the dissertation during
	the viva-voce examination date
22NMT7.4	Sum of the marks awarded by the two examiners shall be the final evaluation
	marks for the Dissertation.

22NMT7.5	(a) Viva-voce examination of the candidate shall be conducted, if the
	dissertation work and the reports are accepted by the external examiner.
	(b) If the external examiner finds that the dissertation work is not up to the
	expected standard and the minimum passing marks cannot be awarded, the
	dissertation shall not be accepted for SEE.
	(c) If the dissertation is rejected during the Project Part II, then the Second
	Examiner (external) will be appointed by the COE against whom the
	candidate has to re-present the same dissertation. The decision of the
	Second Examiner (external) will be final.
	If the second examiner (external) accepts the dissertation, then the viva-voce
	examination of the candidate shall be conducted as per the norms. If the second
	examiner (external) rejects the dissertation, then the student has to take an
	extension for a minimum period of 3 months and re-work on the project. After
	the completion of the extension period, viva-voce examination of the candidate
	shall be conducted as per the norms, if the dissertation work is accepted by the
	external examiner.
22NMT7.6	The candidate, whose dissertation is rejected, can rework on the same topic or
	choose another topic of dissertation under the same Guide or new Guide if
	necessary. In such an event, the report shall be submitted within four years from
	the date of admission to the Program.
22NMT7.7	Viva-voce examination of the candidate shall be conducted jointly by the
	external examiner and internal examiner/ guide at a mutually convenient date.
22NMT7.8	The relative weightages for the evaluation of dissertation and the performance
	at the viva-voce shall be as per the scheme of teaching and examination.
22NMT7.9	The marks awarded by both the Examiners at the viva-voce Examination shall
	be sent jointly to the office of Controller of Examination immediately after the
	examination.
22NMT7.10	Examination fee as fixed from time to time by the Institute for evaluation of
	dissertation report and conduct of viva-voce shall be remitted to the Institute as
	per the instructions of Dean-Academics, from time to time.
22NMT7.11	The candidates who fail to submit the dissertation work within the stipulated
	time have to apply for the extension of the Project duration through the Guide

	and the head of the department to the Office of the Controller of Examination.	
	Such candidate is not eligible to be considered for the award of rank.	
22NMT8.0	ATTENDANCE REQUIREMENT:	
	1. Each semester is considered as a unit and the candidate has to put in a	
	minimum attendance of 85% in each subject with a provision of	
	condoning 10% of the attendance by Principal for reasons such as medical	
	grounds, participation in University level sports, cultural activities,	
	seminars, workshops and paper presentation etc.	
	2. The basis for the calculation of the attendance shall be the period of term	
	prescribed by the institution in its calendar of events. For the first	
	semester students, the same is reckoned from the date of admission to the	
	course	
	3. The students shall be informed about their attendance position in the first	
	week of every month by the College so that the students shall be cautioned	
	to make up the shortage.	
	4. The head of the department shall notify regularly, the list of such	
	candidates who fall short of attendance. The list of the candidates falling	
	short of attendance shall be sent to the Principal with a copy to Controller	
	of Examinations.	
	5. A candidate having shortage of attendance (<75%) in any course(s)	
	registered shall not be allowed to appear for SEE of such course(s). Such	
	students will be awarded 'N' grade in these courses.	
	6. He/she shall have to repeat those course(s) with 'N' grade and shall re-	
	register for the same course(s) core or elective, as the case may be when	
	the particular course is offered next either in a main (odd/even) or summer	
	semester.	
	7. If a candidate, for any reason, discontinues the course in the middle he/she	
	may be permitted to register to continue the course along with subsequent	
	batch, subject to the condition that he/she shall complete the class work,	
	lab work and seminar including the submission of dissertation within	
	maximum stipulated period. Such candidate is not eligible to be	
	considered for the award of rank.	

22NMT9.0	ADD/ DROP/ AUDIT OPTIONS:
	1. ADD-option: A student has the option to ADD courses for registration
	till the date specified for late registration.
	2. DROP-option: A student has the option to DROP courses from
	registration until one week after the mid-semester examination.
	AUDIT-option: A student can register for auditing a course, or a course can
	even be converted from credit to audit or from audit to credit, with the consent
	of faculty advisor and course instructor until one week after the mid-semester
	exam. However, CORE courses shall not be made available for audit. It is not
	mandatory for the student to go through the regular process of evaluation in an
	audit course. However, the student has to keep the minimum attendance
	requirement, as stipulated by the corresponding DPGC for getting the 'U' grade
	awarded in a course, failing which that course will not be listed in the Grade
	Card.
22NMT10.0	ABSENCE DURING THE SEMESTER:
	Leave of Absence
	(a) If the period of leave is more than two days and less than three weeks, prior
	application for leave shall have to be submitted to the Head of the
	Department concerned, with the recommendation of the Faculty-Advisor
	stating fully the reasons for the leave request along with supporting
	documents.
	It will be the responsibility of the student to intimate the course instructors,
	Head of the Department and also Chief Warden of the hostel, regarding his
	absence before availing leave.
22NMT10.1	Absence during Mid-Semester Examinations:
	A student who has been absent from a Mid-Semester Examination (MSE) due
	to illness and other contingencies may give a request for additional MSE within
	two working days of such absence to the office of the respective Head of the
	Department (HOD) with necessary supporting documents and certification
	from authorized personnel. The HOD may consider such requests depending
	on the merits of the case, may permit the additional Mid-Semester Examination
	for the concerned student.

22NMT10.2	Absence during Semester End Examination:
	In case of absence for a Semester End Examination, on medical grounds or
	other special circumstances the student can apply for 'I' grade in that course
	with necessary supporting documents and certifications by authorized
	personnel to the Controller of Examination through Chairman of The
	Department. The Controller of Examination may consider the request
	depending on the merits of the case and permit the make-up Semester End
	Examination for the concerned student. The student may subsequently
	complete all course requirements within the date stipulated by DPGC (which
	may be extended till first week of next semester under special circumstances)
	and T grade will then be converted to an appropriate letter grade. If such an
	application for the 'I' grade is not made by the student, then a letter grade will
	be awarded based on his in-semester performance.
22NMT11.0	WITHDRAWAL FROM THE PROGRAM:
	Temporary Withdrawal: A student who has been admitted to a Post Graduate
	Degree program of the College may be permitted to withdraw temporarily, for
	a period of one semester or more on the grounds of prolonged illness or grave
	calamity in the family etc. The student should abide by the applicable rules and
	regulations of the college/University at the time of Temporary Withdrawal.
22NMT11.1	Permanent Withdrawal:
	Any student who withdraws admission before the closing date of admission
	for the Academic Session is eligible for the refund of the deposits only. Fees
	once paid will not be refunded on any account.
	Once the admission for the year is closed, the following conditions govern
	withdrawal of admissions:
	a) A student who wants to leave the College for good, will be permitted to do
	so (and can take Transfer Certificate from the College, if needed), only after
	remitting the Tuition fees as applicable for all the remaining semesters and
	clearing all other dues, if any.
	b) Those students who have received any scholarship, stipend or other forms
	of assistance from the College shall repay all such amounts in addition to those
	mentioned in (a) above.

	The decision of the Principal of the Institute regarding withdrawal of a student
	is final and binding.
22NMT12.0	EVALUATION SYSTEM:
	Continuous Internal Evaluation (CIE) and Semester End Evaluation
	(SEE)
22NMT12.1	For all the theory and laboratory courses, the CIE marks shall be 50.
	For Research Experience through Practice-I, Research Experience through
	Practice-II, Seminar, Industrial Training/Mini Project, the CIE marks shall be
	100.
	For Project Phase-I, the CIE Marks shall be 200
	For Project Phase-II, the CIE Marks shall be 200 and for SEE 200
22NMT12.2	CIE Marks for courses shall be based on
	a) Tests MSE-I and MSE-II (for 30 Marks): MSE in a theory course, for 30
	marks, shall be based on two tests covering the entire syllabus.
	Assignments, Quizzes, Simulations, Experimentations, Mini project, oral
	examinations, field work etc., (for 20 Marks) conducted in respective courses.
22NMT12.3	a) An additional MSE may be conducted for those students absent for valid
	reasons/ with prior permission.
	b) For those students who could not score minimum required CIE marks
	(25 marks), an additional MSE may be conducted, however the maximum CIE
	marks shall be restricted to 25 out of 50.
22NMT12.4	The candidates shall write the Tests in Blue Book/s. The Blue book/s and other
	documents relating to award of CIE marks shall be preserved by the Head of
	the Department for at least six months after the announcement of University
	results and made available for verification at the directions of the Controller of
	Examination.
22NMT12.5	Every page of the CIE marks list shall bear the signatures of the concerned
	Teacher and Head of the Department.
22NMT12.6	The CIE marks list shall be displayed on the Notice Board and corrections, if
	any, shall be incorporated before submitting to the office of the Controller of
	Examination (COE).
22NMT12.7	The CIE marks shall be sent to the office of the COE well in advance before
	the commencement of Semester End Examinations. No corrections of the CIE

	marks shall be entertained after the submission of marks list to the Office of
	the COE.
22NMT12.8	Candidates obtaining less than 50% of the CIE marks in any course (Theory
	/Laboratory/ Seminar/ Internship/ Project) shall not be eligible to appear for the
	Semester end examination in that course/s. In such cases, the Head of the
	Department shall arrange for the improvement of CIE marks in the course/
	Laboratory when offered in the subsequent semester subject to the maximum
	duration allowed for completion of a M.Tech. program.
22NMT12.9	Semester End Evaluation: There shall be a Semester End Examination at the
	end of each semester.
22NMT12.10	There shall be double valuation of theory papers. The theory Answer booklets
	shall be valued independently by two examiners appointed by the Controller of
	Examination.
22NMT12.11	If the difference between the marks awarded by the two examiners is not more
	than 15 per cent of the maximum marks, the marks awarded to the candidate
	shall be the average of two evaluations.
22NMT12.12	If the difference between the marks awarded by the two examiners is more than
	15 per cent of the maximum marks, the answer booklet shall be evaluated by a
	third Examiner appointed by the Controller of Examination. The average of the
	marks of nearest two valuations shall be considered as the marks secured by
	the candidate. In case, if one of the three marks falls exactly midway between
	the other two, then the highest two marks shall be taken for averaging.
22NMT12.13	Summer Semester: Summer semester is primarily to assist weak and/or
	students having N/F grade in courses, for a duration of 4 weeks after the
	completion of regular even SEE. The institute may also offer Add-on/ Audit
	Courses during this semester.
22NMT12.14	Each candidate shall obtain not less than 50% of the maximum marks
	(25 marks) prescribed for the CIE of each subject, including seminars. CIE
	Marks shall be based on assignments, tests, oral examinations and seminar
	(minimum of two are compulsory) conducted in respective subjects. The
	candidates obtaining less than 50% of the CIE marks in any subject shall not
	be eligible to appear for the SEE in that subject(s). Only in such cases, the
	Controller of Examination may arrange for reregistering the subject(s) in

	subsequent semester or may refer to DPGC for necessary remedial measures.
	The candidates shall write the Internal Assessment Test in Blue Books, and this
	shall be maintained by the Head of the Department for at least six months after
	the announcement of result and is available for verification. The CIE marks
	sheet shall bear the signature of the concerned Teacher and the Chairman of the
	Department. The CIE marks list shall be displayed on the Notice Board and
	corrections, if any, shall be incorporated before sending to the Controller of
	Examinations.
22NMT12.15	The Academic Performance Evaluation of a student shall be according to a
	Letter Grading System, based on the Class Performance Distribution.
	The Letter grades O, A+, A, B+, B, C and F indicate the level of academic
	achievement, assessed on a decimal (0-10) scale. The Letter grade awarded to
	a student in a course, for which he has registered shall be based on his
	performance in quizzes, tutorials, assignments etc., as applicable, in addition
	to two mid-semester examination and one semester end examination. The
	distribution of weightage among these components may be as follows:
	Semester End Examination (SEE)50%
	Continuous Internal Evaluation (CIE)
	(i) Quizzes, Tutorials, Assignments etc., 20%
	(ii) Mid-semester Examination: 30%
	Any variation, other than the above distribution, requires the approval of the
	pertinent DPGC and Academic Council.
	The letter grade awarded to a student in a 0-0-P (Practical) course, is based on
	an appropriate continuous evaluation scheme that the course instructor shall
	evolve, with the approval of the pertinent DPGC.
	The course Instructor shall announce in the class, and/or display in the display
	boards or at the website, the details of the Evaluation Scheme, including the
	distribution of the weightage for each of the components, and method of
	conversion from the raw scores to the letter-grades; within the first week of the
	semester in which the course is offered, so that there are no ambiguities in
	communicating the same to all the students concerned.

22NMT12.16	The Transitional Grades 'I', 'W' and 'X' would be awarded in the following	
	cases. These would be converted into one or the other of the letter grades (O-	
	F) after the student completes the course requirements.	
	Grade "I": To a student having attendance $\ge 85\%$ and CIE $\ge 70\%$, in a course,	
	but remained absent from SEE for valid & convincing reasons acceptable to	
	the College, like:	
	i. Illness or accident, which disabled him/her from attending SEE.	
	ii. A calamity in the family at the time of SEE, which required the student	
	to be away from the College.	
	iii. However, the committee chaired by the Principal is authorized to relax	
	the requirement of CIE \geq 70% if the student is hospitalized or advised	
	long term rest after discharge from the hospital by the Doctor.	
	iv. Students who remain absent for Semester End Examinations due to valid	
	reasons and those who are absent due to health reasons are required to	
	submit the necessary documents along with their request to the	
	Controller of Examinations to write Make up Examinations within 2	
	working days of that examination for which he or she is absent, failing	
	which they will not be given permission.	
	• Grade "W": To a student having satisfactory attendance at classes but	
	withdrawing from that course before the prescribed date in a semester as	
	per Faculty Advice.	
	• Grade "X": To a student having attendance $\ge 85\%$ and CIE $\ge 70\%$, in a	
	course but SEE performance could result in a 'F' grade in the course. (No	
	"F" grade awarded in this case, but student's performance record will be	
	maintained separately).	
22NMT12.17	The Make Up Examination facility would be available to students who may	
	have missed to attend the SEE of one or more courses in a semester for valid	
	reasons and given the 'I' grade. Also, students having the 'X' grade shall also	
	be eligible to take advantage of this facility. The makeup examination would	
	be held as per dates notified in the Academic Calendar. However, it should be	
	made possible to hold a make-up examination at any other time in the semester	
	with the permission of the Academic Council of the College. In all these cases,	
	the standard of SEE would be the same as the normal SEE.	

1

22NMT12.18	All the 'W' grades	awarded to the	students would be	e eligible for conversion to
	the appropriate le	tter grades only	after the concern	ned students re-register for
	these courses in a	main/summer s	semester and fulfi	l the passing standards for
	their CIE and (CI	E+SEE).		
22NMT12.19	The suggested pas	sing standards a	re CIE to have >=	50% and CIE+SEE to have
	a grade better or at	t least equal to C	For maintaining	high standards, the students
	scoring less than :	50% in CIE are a	advised to withdra	aw and to reregister for the
	course when offer	ed next. The let	ter grade 'W' to b	e entered in the grade card
	against the subjec	t and not to be ta	aken into account	while calculating SGPA &
	CGPA			
22NMT12.20	Rules for grace n	narks		
	Grace marks up t	o 1% of the max	ximum total mark	as of the courses for which
	he/she is eligible	and have regis	stered (non-credit	courses excluded) in the
	examination or 1	0 marks which	ever is less shall	be awarded to the failed
	course(s), (with a	restriction of a n	naximum of 5 mai	rks per course) provided on
	the award of such	grace marks the	candidate passes	in that course(s)
22NMT13.0	LETTER GRAD	ES AND GRAI	DE POINTS:	
	The Institute adop	ots absolute grad	ing system where	in the marks are converted
	to grades, and eve	ry semester resu	lt will be declared	with semester grade point
	average (SGPA) a	and Cumulative	Grade Point Ave	rage (CGPA). The CGPA
	will be calculated	for every semes	ter, except for the	first semester.
	The grading syste	em with the lett	er grades and the	e assigned range of marks
	under absolute gra	ading system are	as given below:	
	Letter Grade	Grade- Points	Raw Scores	Level of Academic
			%	Achievement
	0	10	≥90	Out standing
	A+	09	80-89	Excellent
	А	08	70-79	Very Good

		B+	07	60-69	Good		
		В	06	55-59	Above average		
		С	05	50-54	Average		
		F	00	<50	Fail		
		U			Audited		
	Α	student obtainin	g Grade F in a C	ourse shall be con	sidered fail and is require	ed	
	to	to reappear in subsequent SEE. Whatever the letter grade secured by the					
	sti	student during his /her reappearance shall be retained. However, the number of					
	at	attempts taken to clear a Course shall be indicated in the grade cards/					
	tra	anscripts.					
	E	arned Credits:					
	Tł	nis refers to the o	credits assigned	to the course in w	hich a student has obtain	ed	
	an	y one of the lett	er grades O, A+	A, B+, B and C			
22NMT14.0	P	PROMOTION AND ELIGIBILITY:					
22NMT14.1	Promotion:						
	a)) All students an	re promoted to t	heir next semeste	r or year of their program	m,	
		irrespective of the academic performance.					
	H	owever, for sub	mission for M.	Tech. Major Proj	ect report in 4 th semeste	er,	
	student should have completed all the courses up to 3 rd semester						
22NMT14.2	T	he mandatory	non-credit cou	rses, if any, shall	not be considered for t	he	
	av	vard of class, ca	lculation of SG	PA and CGPA. H	lowever, a pass grade (P	P)	
	in	the above cours	es is mandatory	for the award of I	Degree.		
22NMT15.0	E	LIGIBILITY F	OR PASSING	AND AWARD C	DF DEGREE:		
22NMT15.1	1.	A student who	obtains any grad	de O to C shall be	considered as passed ar	ıd	
		if a student see	cures F grade in	any of the head	of passing, he/she has	to	
		reappear in that	t head for SEE				
	2.	A student shall	be declared su	CCDA > 5.00	nd of the program for the	ne	
		award of Degre	E grade	ning CGPA <u>></u> 5.00	, with none of the cours	es	
	In	case, the CGP	A falls below 5	.00, the student s	hall be permitted to apr	bear	
	ag	ain for SEE for	required number	r of courses (other	than seminar and practic	cal)	
	an	d times, subject	t to the provisio	n of University, t	o make up CGPA≥5.0. 7	Гhe	
	sti	udent should re	ject the SEE read	sults of previous	attempt and obtain writ	tten	
	pe	ermission form t	he Controller of	Examinations to	reappear to the subsequ	ient	

	SEE.
22NMT15.2	For a pass in a theory course, the student shall secure a minimum of 40% of the
	maximum marks prescribed in the Semester End Examination and 50% of
	marks in CIE and 50% in the aggregate of CIE and SEE marks. The minimum
	passing grade in a course is C.
22NMT15.3	For a pass in Internship/ Practical/ Project/ Dissertation/ Viva-voce
	examination, a student shall secure a minimum of 50% of the maximum marks
	prescribed for the SEE in Internship/ Practical/ Project/ Dissertation/ Viva-
	voce. The minimum passing grade in a course is C.
22NMT15.4	For a pass, a candidate shall obtain a minimum of 50% of maximum marks in
	Seminar.
22NMT15.5	IV Semester full time candidates having backlog courses are permitted to
	upload the dissertation report and to appear for SEE. The IV semester grade
	card shall be released only when the candidate completes all the backlog
	courses and become eligible for the award of Degree.
22NMT15.6	Eligibility for Award of Degree:
	A student shall be declared to have completed the Degree of Master of
	Technology, provided the student has undergone the stipulated course work as
	per the regulations and has earned the prescribed credits, as per the scheme of
	teaching and examination of the program
22NMT16.0	EVALUATION OF PERFORMANCE:
	Computation of SGPA and CGPA
	SGPA and CGPA: The credit index can be used further for calculating the
	Semester Grade Point Average (SGPA) and the Cumulative Grade Point
	Average (CGPA), both being important academic performance indices of the
	student. While SGPA is equal to the credit index for a semester divided by the
	total number of credits registered by the student in that semester, CGPA gives
	the sum total of credit indices of all the previous semesters divided by the total
	number of credits registered in all these semesters. Both the equations together
	facilitate the declaration of academic performance of a student, at the end of a
	semester and at the end of successive semesters respectively SGPA is computed as follows:

	$\Sigma[(Course Credits) \times (Grade Point)]$ $SGPA = \frac{(\text{for all courses with letter grades including F grades in that semester})}{\Sigma[Course Credits]}$
	(for all courses with letter grades including F grades in that semester)
	CGPA is computed as follows:
	$CGPA = \frac{\sum [(Course Credits) \times (Grade Point)]}{\sum [Course Credits]}$ (for all courses excluding those with F grades until that semester) (for all courses excluding those with F grades until that semester)
22NMT16.1	Communication of Grades:
	• The SGPA and CGPA respectively, facilitate the declaration of academic
	performance of a student at the end of a semester and at the end of successive
	semesters. Both of them would be normally calculated to the second decimal
	position, so that the CGPA, in particular, can be made use of in rank ordering
	the students' performance in the Institute.
	If two students get the same CGPA, the tie could be resolved by considering
	the number of times a student has obtained higher SGPA, But, if it is still not
	resolved, the number of times a student has obtained higher grades like O, A,
	B etc. could be taken into account.
22NMT16.2	Challenge evaluation
	If a student is not satisfied with the marks allotted to him/her in the semester
	end examinations, he/she could apply for challenge evaluation within the
	prescribed time specified. In such cases the answer papers will be valued by
	the DPGC committee and marks secured by the students in the challenge
	evaluation will be final.
22NMT16.3	Grade Card: Based on the secured letter grades, grade points, SGPA and
	CGPA, a grade card for each semester shall be issued. On specific request on
	paying prescribed fee, a transcript indicating the performance in all semesters
	may be issued.

22NMT16.4	Conversions of Grades into Percentage and Class Equivalence
	Conversion formula for the conversion of CGPA into percentage is given
	below:
	Percentage of marks secured, $P = CGPA$ Earned $\times 10$
	Illustration: for CGPA of 8.18:
	$P = CGPA Earned 8.18 \times 10 = 81.8 \%$
22NMT17.0	DEGREE REQUIREMENTS:
	The Degree requirements of a student for the M.Tech Degree program are as
	follows:
	1. College Requirements:
	i) Minimum Earned Credit Requirement for M.Tech. Degree is 80
	ii) Satisfactory completion of all Mandatory Learning courses
	2. Program Requirements:
	i) Minimum Earned Credit Requirements on all core courses,
	ii) Elective Courses and major project as specified by the DPGC.
	The maximum duration for a student for complying to the Degree requirements
	is 8 semesters from the date of first registration for his first semester.
22NMT18.0	TERMINATION FROM THE PROGRAM/READMISSION:
	A student shall be required to leave the College without the award of the
	Degree, under the following circumstances:
	ii) Failing to complete the degree requirements in double the duration of the
	program
	Based on disciplinary action suggested by the Academic Council/Governing
	Council.
22NMT19.0	GRADUATION REQUIREMENTS AND CONVOCATION:
	1. A student shall be declared to be eligible for the award of the Degree if he
	has
	a) Fulfilled Degree Requirements
	b) No Dues to the College, Departments, Hostels, Library Central Computer
	Centre and any other center
	c) No disciplinary action pending against him.
	2. The award of the Degree must be recommended by the Academic council
	and approved by Governing Council of Nitte (DU)

	Convocation: Degr	ee will be awarded in per	rson for the students who have								
	graduated during th	e preceding academic yea	r. Degrees will be awarded in								
	absentia to such stud	dents who are unable to at	tend the Convocation. Students								
	are required to apply	y for the Convocation alon	g with the prescribed fees, after								
	having satisfactoril	y completed all the De	gree requirements within the								
	specified date in o	order to arrange for the	award of the Degree during								
	convocation.										
22NMT20.0	AWARD OF CLAS	SS, PRIZES, MEDALS &	z RANKS:								
	• Award of Class:	Sometimes, it would be ne	ecessary to provide equivalence								
	of SGPA and CC	GPA with the percentages	and/or Class awarded as in the								
	conventional sys	tem of declaring the resul	ts of University examinations.								
	This can be done by prescribing certain specific thresholds in these										
	averages for Distinction, First Class and Second Class as described below.										
	Percentage Equivalence of Grade Points (For a 10-Point Scale)										
	GPA Percentage of Class										
	Marks*										
	$\begin{array}{ c c c c c } \geq 7.00 & \geq 70\% & \text{Distinction} \\ \hline \geq 6.00 & \geq 60\% & \text{First Class} \end{array}$										
	5.0 ≥ GPA <6.00	$50 \ge$ Percentage < 60%	Second Class								
	Percentage * = (GPA) x 10										
	• For the award of Prizes, Medals and ranks: The conditions stipulated by										
	the Donor may be considered as per the statutes framed by the Universityfor										
	such awards.										
	• An attempt mea	ans the appearance/regist	ration of a candidate for an								
	examination in c	one or more courses either	r in part or failing a particular								
	examination.										
	\circ A candidate who	fails/remaining absent (after	er submitting exam application)								
	in the main example	nination and passes one of	or more subjects/courses or all								
	subjects/courses	in the supplementary,	Make-up examination such								
	candidates shall l	be considered as taken mor	e than an attempt.								
	• Merit Certificate	s and University Medals/ v	will be awarded on the basis of								
	overall CGPA, g	governed by the specific	selection criteria that may be								
	formulated by the	e University for such Meda	lls / Awards								

	• Only those candidates who have completed the Program and fulfilled all the
	requirements in the minimum number of years prescribed (i.e., 2 years) and
	who have passed each semester in the first attempt are eligible for the award
	of Merit Certificates and /or Ranks and University Medals.
	Candidates with W, N, I, X & F grades and who passes the courses in the
	subsequent/supplementary/make up examinations are not eligible for the award
	of Gold Medal or Merit Certificate.
22NMT21.0	CONDUCT AND DISCIPLINE:
	1. Students shall conduct themselves within and outside the premises of the
	Institute, in a manner befitting the students of an Institution of National
	Importance
	2. As per the order of Honorable Supreme Court of India, ragging in any
	form is considered as a criminal offence and is banned, any form of
	ragging will be severely dealt with.
	3. The following acts of omission/ or commission shall constitute gross
	Violation of the code of conduct and are liable to invoke disciplinary
	measures:
	a) Ragging
	b) Lack of courtesy and decorum; indecent behavior anywhere within or
	outside the campus.
	c) Willful damage or stealthy removal of any property /belongings of the
	Institute /Hostel or of fellow students/ citizens
	d) Possession, consumption or distribution of alcoholic drinks or any kind of
	hallucinogenic drugs.
	e) Mutilation or unauthorized possession of Library books.
	f) Noisy and unseemly behavior, disturbing studies of fellow Students.
	g) Hacking in computer systems (such as entering into other Person's area
	without prior permission, manipulation and/or Damage of computer
	hardware and software or any other Cybercrime etc.,).
	h) Plagiarism of any nature.
	i) Any other act of gross indiscipline as decided by the University from time
	to time.
	j) Smoking in College Campus and supari chewing.

k)	Unauthorized fund raising and promoting sales
4.	Commensurate with the gravity of offense, the punishment may be:
	reprimand, expulsion from the hostel, debarment from an examination,
	disallowing the use of certain facilities of the College, rustication for a
	specified period or even outright expulsion from the College, or even
	handing over the case to appropriate law enforcement authorities or the
	judiciary, as required by the circumstances.
	i) For an offence committed in
	a) A hostel
	b) A department or in a classroom
	c) Elsewhere,
	the Chief Warden, the Head of the Department and the Dean
	(Students Welfare), respectively, shall have the authority to
	reprimand or impose fine.
	ii) All cases involving punishment shall be reported to the Principal.
5.	Cases of adoption of unfair means and/or any malpractice in an
	examination shall be reported to the Controller of Examination.
0	Note: Students are required to be inside the examination hall 20 minutes
	before the commencement of examination. This is applicable for all
	examinations (Semester end/Supplementary/makeup) henceforth. Students
	will not be allowed inside the examination hall after the commencement,
	under any circumstances.

University Enclave, Medical Sciences Complex, Deralakatte, Mangaluru – 575 018, Karnataka India Tel: +91-824-2204300 | E-mail: <u>info@nitte.edu.in</u>

Scheme & Syllabus for M. Tech. (Machine Design)

DEPARTMENT OF MECHANICAL ENGINEERING 2022-24

Institution Vision

Pursuing Excellence, Empowering people, Partnering in Community Development.

Institution Mission

To develop NMAM Institute of Technology, Nitte, as Center of Excellence by imparting Quality Education to generate Competent, Skilled and Humane Manpower to face emerging Scientific, Technological, Managerial and Social Challenges with Credibility, Integrity, Ethics and Social Concern.

Department Vision

To produce Mechanical engineers of the highest quality who are professionally competent and highly qualified to suit the needs of industries and organizations by promoting excellence in teaching, learning and research.

Department Mission

The Dept. of Mechanical Engineering is committed to

- Provide high quality education to the students, to fulfill the requirements of a 'Global Engineer'
- Constantly strive to improve the teaching-learning methods, in order to deliver good academic programs
- Respond to the fast evolving scientific and technological challenges in a highly competitive world
- > Inculcate, ethics, integrity, honesty, credibility, social and environmental consciousness

Program Educational Objectives (PEO)

- 1. PEO-1: To prepare students to pursue a career in design in academic, R & D and industrial organizations at national and international level.
- 2. PEO-2: To prepare students to pursue higher studies and research and generate necessary knowledge to enrich the domain and involve in a process of lifelong learning.
- 3. PEO-3: To contribute to the society by solving domain and societal problems through the knowledge and skills acquired professionally, ethically with concern for the society and environment and fulfilling sustainable development goals.

Program Outcomes (PO)

At the end of M.Tech in Machine Design Program Students will have

- 1. PO1: An ability to independently carry out research /investigation and development work to solve practical problems
- **2.** PO2: An ability to write and present a substantial technical report/document
- **3.** PO3: Students should be able to demonstrate a degree of mastery over machine design.

Note: Program may add up to three additional POs.

- **4.** PO4: An ability to use the in depth knowledge of machine design to address and solve complex engineering problems in the real world through proper design of experiments, analysis and interpretation of data and synthesis of information.
- **5.** PO5: An ability to effectively use modern IT tools including prediction and modelling of complex engineering problems and understanding their limitations.
- **6.** PO6: An ability to understand the impact of the solutions suggested to different problems on the society and environment and adopt practices which are relevant and professional.

Program Specific Outcomes (PSO)

- 1. PSO-1: Design Mechanical systems using interrelationship among force, stress, vibration and failure analysis
- 2. PSO-2: Develop advanced analysis tools for evaluating performance of mechanical systems to enhance the capability of the designer

*Regulations and curriculum for M. Tech Machine Design*PSO-3 The students will have good research skills with fair synthesis and analysis of data which makes them lifelong learner

SI. No	Name of Faculty	Qualification	Designation
1.	Dr. Srinivasa Pai P	PhD	Professor & Head
2.	Dr. Muralidhara	PhD	Professor
3.	Dr. Kumar H S	PhD	Associate Professor
4.	Dr. Nithin Kumar	PhD	Associate Professor
5.	Dr. Veeresh R K	PhD	Associate Professor
6.	Dr. Dilip Kumar K	M Tech	Assistant Professor
7.	Mr. Ravikiran Kamath	M Tech	Assistant Professor
8.	Mr. Divijesh P	M Tech	Assistant Professor
9.	Mr. Melwyn Rajesh Castelino	M Tech	Assistant Professor

M. Tech. in Machine Design CREDIT DISTRIBUTION

No.	Course Category	Suggested Credits
1.	Professional Courses (PCC) - core	16
2.	Professional Courses (PEC) - elective	18
3.	Research Methodology & IPR/RETP	04
4.	Labs	04
5.	Project Work (UCC) (Phase 1 & 2)	08+20
6.	Audit Courses (2 Nos)	00
7.	Seminar on Current Topic (UCC)	02
8.	Internship (UCC)	08
	Total Credits to be earned:	80

M.Tech. (MMD): Scheme of Teaching and Examinations 2022-24

Outcome Based Education (OBE) and Choice Based Credit System (CBCS)

(Effective from the academic year 2022 - 23)

			<u> </u>	
1	SL	Year	Sch	Ieme
		i Gui		

			IS	SEMEST	ER							
SI.	Course	Course Code	Course Title	sut	Teaching Hours / Week Examination					its		
No	Туре			Teaching Departme	Lecture	Tutorial	Practical/ Drawin	Duration in hours	CIEMarks	SEEMarks	Total Marks	Cred
					L	Т	Р					
1	PCC	22MMD101	Computational Methods In Engineering	Mech	4	0	0	3	50	50	100	4
2	PCC	22MMD102	Finite Element Methods and its Applications	Mech	4	0	0	3	50	50	100	4
3	RETP	22MMD103	Research Experience Through Practice -I	Mech	Four contact hours /week for carrying out Research and Interaction between the faculty and students		-	100	0	100	2	
4	PCC	22MMD104	Modeling and Analysis Lab	Mech	0	0	2	3	50	50	100	1
5	PCC	22MMD105	Hydraulics and Pneumatics Lab	Mech	0	0	2	3	50	50	100	1
6	PEC	22MMD11X	Elective – I	Mech	3	0	0	3	50	50	100	3
7	PEC	22MMD12X	Elective - II	Mech	3	0	0	3	50	50	100	3
8	PEC	22MMD13X	Elective - III	Mech	3	0	0	3	50	50	100	3
9	AUDIT	22MMDAU1X	Audit Course-I	Mech	2	0	0	0	0	0	0	U
				Total	19	0	4	21	450	350	800	21

			II	SEMEST	ER							
Sl.	Course	Course Code	Course Title	g	Teac	hing Hou	rs /Week	Examination				its
No	Туре			Teaching Departme	Lecture	Tutorial	Practical/ Drawin	Duration in hours	CIEMarks	SEEMarks	Total Marks	Cred
					L	Т	Р					-
1	PCC	22MMD201	Theory of Vibrations	Mech	4	0	0	3	50	50	100	4
2	PCC	22MMD202	Fatigue of Materials	Mech	4	0	0	3	50	50	100	4
3	RETP	22MMD203	Research Experience Through Practice -II	Mech	Fou /weel Resear betwe	or contact k for carry rch and In een the fac students	hours ving out teraction ulty and S	-	100	0	100	2
4	PCC	22MMD204	Design Engineering Lab	Mech	0	0	2	3	50	50	100	1
5	PCC	22MMD205	Programming Lab	Mech	0	0	2	3	50	50	100	1
6	PEC	22MMD21X	Elective – IV	Mech	3	0	0	3	50	50	100	3
7	PEC	22MMD22X	Elective – V	Mech	3	0	0	3	50	50	100	3
8	PEC	22MMD23X	Elective - VI	Mech	3	0	0	3	50	50	100	3
9	AUDIT	22MMDAU2X	Audit Course-II	Mech	2	0	0	0	0	0	0	U

					Total	19	0	4	21	450	350	800	21
--	--	--	--	--	-------	----	---	---	----	-----	-----	-----	----

Note: PCC: Professional Core Course, PEC: Professional Elective Course, AUDIT (AU): Non-credit Audit course, RETP: Research Experience Through Practice.

L –Lecture, T – Tutorial, P- Practical/ Drawing, CIE: Continuous Internal Evaluation, SEE: Semester End Examination.

Established under Section 3 of UGC Act 1956 Accredited with 'A+' Grade by NAAC

NMAM INSTITUTE OF TECHNOLOGY

Off-Campus Centre, Nitte - 574 110, Karkala

M.Tech. (MMD): Scheme of Teaching and Examinations 2022-24

Outcome Based Education (OBE) and Choice Based Credit System (CBCS)

(Effective from the academic year 2022 - 23)

2nd Year Scheme

	III SEMESTER											
Sl.	Sl. Course Course Title Course Title Examination .											
No	Туре	Code		Teaching Departme	Theory Lecture	J Tutorial	Drawin	Duration in hours	CIEMarks	SEEMarks	Total Marks	Cred
1	1 UCC 22MMD301 Industry Internship/ Research Internship/Mini Project Mech 8 Weeks Full Time [32Hrs/week] 3 100 0 100 8											
	a luga cantagan a luga c											
2	2 UCC 22MMD302 Seminar on Special Topic Mech 0 0 2 3 100 0 100 2											
2	<u>UCC</u> 22MMD303 Project Part -1 Mech 12 Weeks Full Time [min 3 200 0 200 8											
3	3 30 Hrs/week]											
	Total 0 0 2 9 400 0 18											
Not	e: L –Lectu	re, T – Tutoria	l, P- Practical/ Drawing, S – Self S	Study Con	ponent,	CIE: Coi	ntinuous In	ternal E	valuatic	n, SEE:	Semeste	r End
Exa	Examination.											
Inte	rnship: CIE	Evaluation is for	or 100 Marks where 50 Marks is for	Report and	l 50 Mar	ks for the	Presentation					
Pro	ject Part-1:	CIE Evaluation	is for 200 Marks where 100 Marks is	for Repor	t and 100) Marks fo	or the Presen	itation				

			IV	SEMEST	ER							
Sl.	Course	Course	Course Title	š	Teachi	ng Hou	rs /Week	Examination				its
No	Туре	Code		Teaching Departme	Theory Lecture	Tutorial	Practical/ Drawin	Duration in hours	CIEMarks	EEMarks	otal Marks	Credi
					L	Т	Р	п	0	S	Ť	
1	UCC	22MMD401	Project Part -2	Mech	22 Weeks Full Time [min 36 Hrs/week]		3	200	200	400	20	
				Total	0	0	0	3	200	200	400	20
Note:	Note: L – Lecture, T – Tutorial, P- Practical/ Drawing, S – Self Study Component, CIE: Continuous Internal Evaluation, SEE: Semester End											
Exam	Examination.											
Proje	ct Part-2:	CIE Evaluation	is for 200 Marks having Project Prog	gress Evalu	ation (PPE	E)-1 and	PPE-2 each	for 100	Marks.			

M.Tech. (MMD): Scheme of Teaching and Examinations 2022-24

Outcome Based Education (OBE) and Choice Based Credit System (CBCS) (Effective from the academic year 2022 - 23)

List of Domain Specific Skill Development Audit Course (AUDIT)				
Course Code	Course Title			
22MMDAU1-1	Automotive Safety			
22MMDAU2-1	Design Optimization			

List of Electives [PEC]						
	Elective - I		Elective - II			
Code	Course Title	Code	Course Title			
22MMD111	Design of Hydraulic & Pneumatic	22MMD121	Continuum Mechanics			
	Systems					
22MMD112	Industrial process equipment design	22MMD122	Computer Graphics			
22MMD113	Mechanism design	22MMD123	Computer Applications in Design			
	Elective - III	Elective - IV				
Code	Course Title	Code	Course Title			
22MMD131	Automobile System Design	22MMD211	Biomechanics			
22MMD132	Creative Engineering	22MMD212	Experimental Stress Analysis			
22MMD133	Mechatronics System Design	22MMD213	Smart Materials & Structures			
	Elective - V		Elective – VI			
Code	Course Title	Code	Course Title			
22MMD221	Design and Control of Robotic	22MMD231	Composite Materials Technology			
	Manipulator					
22MMD222	Design for Manufacturing	22MMD232	Design of wheeled mobile robots			
22MMD223	Fracture Mechanics	22MMD233	Digital Manufacturing			
		22MMD234**	Aircraft Design			

** Elective course 22MMD234 may be registered under NPTEL

Professional Core Courses

	COMPUTATIONAL METHODS IN ENGINEERING						
Соц	Irse Code:	22MMD101	Course Type	PCC			
Tea	ching Hours/Week (L: T: P)	4:0:0	Credits	04			
Tota	al Teaching Hours	50+0+0	CIE + SEE Marks	50+50			
	Tooching Dono	rtmant: Maahani					
Cour	reaching Depa	rtment: Mechani	cai Engineering				
Cour							
1.	1. To prepare students to understand rank and determinant of matrices, linear equations, Eigenvalues and eigenvectors						
2.	To prepare students to learn vario	us numerical met	nods to solve system of line	ar equations.			
3.	To prepare students to develop th and PDE's.	ne mathematical	models of machine design	using ODE's			
4.	To prepare students to analyze an equations.	nd solve separation	on of variables related to he	eat and wave			
5.	To prepare students to understand hypothesis and designing the exp	d statistical and p eriments using RI	robabilistic concepts requir 3D.	ed to test the			
		UNIT-I					
Matri	x Algebra			10 Hours			
Alget	ora of matrices, rank and determinar tions using Gauss elimination and G	nt of matrices, solution in the second se	ution of systems of linear al lods. Eigenvalues and eige	gebraic nvectors.			
Diffo	rential Equations and its Applicat	UNIT-II					
Linea	r ordinary differential equations (DDEs) variation	of parameters Sturm-Liou	ville problem			
Partia order	al differential equations (PDEs) - Cla PDEs with constant coefficients. Me	ssification of seco	nd order PDEs, General so n of variables for Laplace, H	lution of higher leat and Wave			
equa	tions						
Tran	sformation techniques			10 Hours			
Lapla	ice transformation, Fourier transformation	ms, z - transform	ation to solve differential	and difference			
equa		UNIT-IV					
Num	erical Methods			10 Hours			
Nume Raph	Numerical solution of algebraic and transcendental equations- iteration method and Newton - Raphson method, Numerical solutions of ODEs and PDEs. Numerical differentiation and integration						
Sami	aling theory	UNIT-V					
Testi	ng of hypothesis: Chi square test ar	nd F-test Analysi	s of Variance (ANOVA). or				
class	ification, Design of experiments, RB	D					
Cour	se Outcomes: At the end of the cou	urse student will b	e able to				
1.	Determine rank and determina	ant of matrices	, linear equations, Eiger	values and			
2.	Apply various numerical methods	to solve system o	f linear equations.				
3.	Develop the mathematical models	of machine desig	on using ODE's and PDE's.				
4.	4. Analyze and solve separation of variables related to heat and wave equations.						

lΝ

5.	Apply statistical and probabilistic concepts required to test the hypothesis and designing the experiments using RBD											
Cours	se Outcomes	Mapping with Program (Jutc	ome	s &	P3()					
		Program Outcomes→	1	2	3	4	5	6		PSO.	ļ]
	↓ Co	urse Outcomes							1	2	3	
		22MMD101.1	1	1	2	2	3	2	2	2	3	1
		22MMD101.2	1	1	2	3	3	2	2	2	3	
		22MMD101.3	1	1	3	3	2	2	2	2	3	
		22MMD101.4	1	1	3	2	1	2	2	2	3	
		22MMD101.5	3	3	3	2	3	3	2	2	3	
	1: Low 2: Medium 3: High											
DEEE												
REFE	ERENCE BOOKS:											
1.	Numerical n	hethods for Scientific and	Engo	g coi	nput	atio	n M	K Ja	ain, S	5.R.K	lyen	gar, R K. Jain
2	Theory of or	dinany differential equation		oddi	ato	n E		inco	n N	McG	row	Hill publiching
۷.	Company T	MH Edition 9th Reprint 1	987	Juun	igio	□∟.,	Lev	1150	II IN.,	NICG		i ili publisi ili g
3.	^(Differential)	Equations and Calculus of	f Var	iatio	ns'.	Elsa	olts	L. N	IIR P	ublica	ation	s. 3rd Edition.
	1977	,			- 1	- 3	-	,				,
4.	Higher Engi	neering Mathematics B.S.	Grev	wal ł	Khan	na F	Publi	ishe	rs 20	17		
5.	Probability a	and Statistics for Engineer	s an	d So	cienti	sts	R.E,	Wa	lpole	, R.H	.Myr	es, S.L.Myres
	and Keying	Ye Pearson 2012										
6.	Probability a M.B Wilev 2	and Statistics in Engineerir 008	ig Wi	illian	ו W.I	H., C	Doug	las	С.М.,	Dav	id M.	G.and Connie
7.	Advanced E	ingineering Mathematics C	. Ra	v W	vlie a	and I	Loui	s C I	Barre	ett Mo	Grav	v-Hill 1995
		<u> </u>		<u>,</u>	,							

1

FINITE ELEMENT METHODS AND ITS APPLICATIONS

Cou	rse Code:	22MMD102	Course Type	PCC				
Teac	ching Hours/Week (L: T: P)	4:0:0	Credits	04				
Tota	I Teaching Hours	50+0+0	CIE + SEE Marks	50+50				
	Teaching Depa	rtment: Mechani	cal Engineering					
Cours	se Objectives:		<u> </u>					
-								
1.	Formulate and perform one dimensional structural analysis using line elements and truss elements.							
2.	Formulate and perform two dime	nsional structural	analysis using triangular	elements and				
	structural analyses for axisymmet	should be able to tric bodies using a	tormulate and perform two exisymmetric triangular and	d quadrilateral				
3.	Perform three dimensional analys	es of mechanical	systems using standard so	oftware.				
4.	Students should be able to formula	ate and perform o	ne dimensional structural a	nalyses using				
_	beam element.							
5.	Formulate and perform one dime Students should be able to formulate consistent mass matrix and lumper	nsional and two d ulate and perform ed mass matrix an	imensional heat transfer a one dimensional modal a d different forms of solutio	inalysis. analysis using n.				
		UNIT-I						
Deala	10 Hours							
Advar Discre eleme of mir	Advantages and limitations of FEM, Steps involved in FEM, Applications of FEM and FEM Packages. Discretization: Element shapes and behavior – Choice of element types – size and number of elements - Element shape and distortion - Location of nodes - Mesh Quality Parameters, Principle							
		UNIT-II						
				10 Hours				
Interpolation Models and FE Analysis of 2D Problems Interpolation polynomials- Linear, quadratic and cubic. Simplex complex and multiplex elements, Convergence Criteria -2D PASCAL's triangle. 2-D Problems: CST and quadrilateral elements-Shape functions in NCS, Strain displacement matrix and Jacobian for triangular element. (no derivation), Iso parametric, Sub parametric and Super parametric elements. Numerical integration.								
Two-I	Dimonsional Elements-Analysis	UNII-III of Plano Elasticit	Problems	6 Hours				
Three	-Noded Triangular Element (TRIA 3	B), Four-Noded Qi IA 6 QUAD8)	uadrilateral Element (QUA	D4),Shape				
Axi-s	ymmetric Solid Elements-Analys	sis of Bodies of	of Revolution under ax	i- 4 Hours				
symn	netric loading							
Axisyı Eleme	mmetric Triangular and Quadrilater ents.	al Ring Elements	. Shape functions for High	ner Order				
Throc	UNIT-IV							
Basic	Equations and Potential Energy F	unctional. Four-N	oded Tetrahedral Element	(TET4), Eight-				
Node	d Hexahedral Elements (HEXA8), Hexahedral elements Lagrange f	Tetrahedral elem	ents, Hexahedral elemen	ts: Serendipity ments				
Beam	Elements- Analysis of Beams ar	nd Frames		5 Hours				
1-D B	eam Element, 2-D Beam Element,	Problems.						
	n Loot Tropotor and Fluid Masks	UNII-V		E Herre				
	in meat i ranster and Fluid Mecha	inics problems		S HOULS				

Finite element solution for one dimensional heat conduction with convective boundaries. Formulation of element characteristics and simple numerical problems. Formulation for 2-D and 3-D heat conduction problems with convective boundaries. Introduction to thermo-elastic contact problems. Finite element applications in potential flows; Formulation based on Potential function and stream function

Algorithmic Approach for problem solving	
--	--

5 Hours

Algorithmic approach for Finite element formulation of element characteristics, Assembly and incorporation of boundary conditions. Guidelines for code development.

Course Outcomes: At the end of the course student will be able to

	apply the
direct stiffness, Rayleigh-Ritz, Galerkin method to solve static structural problems	5.

2. Analyze bar and truss elements by applying suitable boundary conditions to **compute** displacements, stresses and support reactions.

- 3. **Derive** basic equations of two dimensional elements and axi-symmetric element.
- 4. Derive basic equations of Four-Noded Tetrahedral Element (TET4) and Eight-Noded Hexahedral Element (HEXA8). Compute deflection and slope in beams subjected to Point load and UDL, determine slope and deflection of beam element.
- 5. Derive basic equations of heat transfer and Estimate the temperature distribution in composite wall and pin fin using finite element formulation for 1D steady state heat transfer problems; Develop finite element formulations for fluid flow problems.

Course Outcomes Mapping with Program Outcomes & PSO

Program Outcomes→	1	2	3	4	5	6		PSO.	Ļ
↓ Course Outcomes							1	2	3
22MMD102.1	1	1	3	1	1	1	2	2	3
22MMD102.2	1	1	3	1	1	1	2	2	3
22MMD102.3	2	1	3	1	1	1	2	2	3
22MMD102.4	2	1	3	1	1	1	2	2	3
22MMD102.5	2	1	3	1	1	1	2	2	3
1: Low 2: Medium 3: High									

FEXT	BOOKS:
1.	Singiresu S.Rao, Finite element Method in Engineering, 5ed, Elsevier, 201
•	

- **2.** Chandrupatla T.R. **Finite Elements in engineering -**2nd Edition, PHI,2007.
- **3.** Lakshminarayana H.V. **"Finite Elements Analysis"**-Procedures in Engineering, Universities Press, 2004

REFERENCE BOOKS:

- **1.** Rao S.S. "Finite Elements Method in Engineering"-4thEdition, Elsevier,2006
- 2. Seshu P, Textbook of Finite Element Analysis, PHI. 2004 2. Reddy, J.N.,
- 3. Finite Element Method in Engineering, Tata McGraw Hill, 2017 3. Zeincowicz,
- 4. The Finite Element Method 4 Vol set, 4th Edition, Elsevier 2007

E Books / MOOCs/ NPTEL

- 1. http://nptel.ac.in/courses/112104116/
 - 2. http://nptel.ac.in/keyword_search_result.php?word=finite+element%20method
 - 3. http://nptel.ac.in/keyword_search_result.php?word=Finite+Element%20analysis

2.

MODELING AND ANALYSIS LAB

Cour	rse Code:	22MMD103	Course Type:	PCC Lab		
Teac	hing Hours/Week (L: T: P)	0:0:2	Credits:	01		
Tota	I Teaching Hours:	0+0+26	CIE + SEE Marks	50+50		
Tota		0+0+20				
_	Teaching Depa	rtment: Mecha	anical Engineering			
Cours	se Objectives:					
-						
1.	To acquire basic understanding or FEA using MATLab	f Modeling and	Analysis software and dev	elop program for		
2.	To understand the different kinds	of analysis ar	d apply the basic principle	es to find out the		
	stress and other related parame	ters of bars, p	ates, beams loaded with	different loading		
	conditions.					
		ist of Experim	ents			
1001:1	MATLAB/ANSYS/Creo.			40.11.5.5.5		
	U		a like Extrude 8 Develve is	13 Hours		
<u>ا.</u>	Introduction to Pro/E and Work	Ing with feature	s like Extrude & Revolve In	1 SKETCH MODE		
<u> </u>	Model solids with features like	Hole, Round, C	Detete Move and Mirror			
3. 1	Model solids with leatures like	Pallelli, Copy,	iable section Sween etc)			
4. 5	Advanced modelling tools (Swe	Concrating edit	ting and modifying drawing	ns in Pro/E		
<u> </u>	Introduction to developing proc	acherating, eu	lement analysis in MATLA			
0.		NIT – II		13 Hours		
1	Introduction to EEA software			Torriours		
2	Solution of problems of Trusse	s using ANSV	3			
2.	Solution of problems of Beams	and Frames u	sing ANSYS			
<u>ع</u> .	Solution of problems involving	triangular elem	ent etc. using ANSVS			
	Nonlinear plastic Deformation	and buckling A	nalveis			
5.	Analysis of Composite materia		Tarysis			
	Analysis of composite materia	15				
/. o	Solution of 3D analysis problem		<u>~</u>			
0.			5			
Cours	e Outcomes: At the end of the co	urse student wi	Il he able to			
ooure						
1	Develop programs for modeling t	ha synthetic c	inves and surfaces. Develo	on finito element		
••	code to solve problems involving	Trusses Beam	is and Frames	sp mille cicilient		
2.	2. Solve structural problems using finite element software and Execute mini project involving					
	both modeling and analysis.					
				L		
Cours	Course Outcomes Mapping with Program Outcomes & PSO					
	Program Outcom	es→ 1 2	3 4 5 6 PSO ⊥			
	↓ Course Outcomes			3		
	22MDE103.1	2 1	2 1 3 1 1 2	3		
	22MDE103.2	2 1	2 1 3 1 1 2	3		
	1: Lo	ow 2: Medium	3: High			

REFERE	REFERENCE BOOKS:					
1.	Huei-Huang Lee, Finite Element Simulations with ANSYS® Workbench 2020					
2.	Xiaolin Chen, Yijun Liu, Finite Element Modeling and Simulation with ANSYS® Workbench					
3.	Mary Kathryn Thompson (Author), John M. Thompson (Author), ANSYS® Mechanical					
	APDL for Finite Element Analysis					
4.	Saeed Moaveni, Finite Element Analysis: Theory and Application with ANSYS					
5.	William Palm III, A Concise Introduction to Matlab, McGraw-Hill, 2008					
6.	Roger Toogood Ph.D. Creo Parametric 3.0 Advanced Tutorial, 2015					

HYDRAULICS AND PNEUMATICS LAB

		001000101	0									
Cou	rse Code:	22MMD104	Course Type:									
Tead	:hing Hours/Week (L: 1: P:)	0:0:2	Credits:	01								
lota	I leaching Hours:	0+0+26	CIE + SEE Marks:	50+50								
Teaching Department: Mechanical Engineering												
Course Objectives:												
I												
1.	1. To study the design of basic hydraulic, electro-hydraulic and PLC Controlled hydraulic											
2	CITCUITS	nnoumatics old	octro- pnoumatics and P									
Ζ.	pneumatics circuits	priedinatics, ele										
				L								
		List of Experime	nts									
		UNIT – I		13Hours								
1.	. Design a hydraulic circuit for a	a lifting device to l	ift heavy loads, which is e	quipped with two								
	the same speed even when t	he device is subi	ected with one sided load	The circuit must								
	contain a flow divider and two	non-return valve	s to									
2.	. Design a hydraulic circuit for p	plastic injection mo	oulding machine which is in	nitially filled using								
	a low working pressure (low	force). The plastic	c is then moulded at high	pressure (higher								
	torce). The working pressure	is switched over	a roller lever actuated 2/2	2-way valve atter								
	pressure relief valves.		he necessary pressures									
3.	. Design an electro-hydraulic	circuit for a bend	ing device equipped with	a double acting								
	cylinder which is used to pro-	duce U shaped sl	neet metal workpieces. Th	ne start signal for								
	this operation is provided to a	single solenoid va	lve by a push button. A se	cond push button								
	is pressed to initiate the return	n stroke of the cyl	inder. The advanced retur	n stroke must be								
4	Design an electro-hydraulic c	ircuit to push cart	oons from one conveyor to	another using a								
-	double acting cylinder. The c	artoon boxes are	fed continuously using a	start button by to								
	and fro motion of the double a	cting cylinder. The	e motion can be stopped by	y a separate stop								
	push button. The speed of for	ward and reverse	motion can be adjustable.	Cylinder position								
5	Design a PLC hydraulic circu	it for a sorting dev	vice used to sort heavy ste	el worknieces hv								
5.	the press of a push button. Th	e piston rod of a d	ouble acting cylinder push	es theworkpieces								
	to the adjacent conveyor be	lt. The piston rod	retracts to the home pos	sition								
	when the push button is relea	ised.	<u></u>									
6.	Design a PLC hydraulic circui	of packing conve	I he four crates arriving o	n a conveyor belt								
	and lowering of the lifting ta	able are controlle	d by a cylinder. The adv	vanced stroke is								
	controlled by pressing of any	one of two push	buttons. The speed of ad	lvanced stroke is								
	adjustable.											
-		JNII – II	motol atomninge Threed	13Hours								
1.	Design prieumatic circuit to a	valve metal star	metal stampings. I nrougi ppings lying in random pos	sitions are sorted								
	out and transferred to a seco	and conveyor belt.	The forward motion of th	e piston rod of a								
	single acting cylinder (1A) ta	kes t = 0.4 secon	ds. When the push buttor	is released, the								
	piston rod travels to the retrac	cted end position.	A pressure gauge is fitted	before and after								
2	the one-way flow control valve	e. A a wolding mask	ing for thermonication T	No double cotine								
۷.	cvlinders (1A) and (2A) press	s a weiging mach	ctrically heated bars and.	in doing so, ioin								

	and 4 mm. The seams may be of any length. The piston force of both cylinders is limited via a pressure regulator. Value set p = 4 bar (=400 kPa). By actuating a push button, two double-acting cylinders are made to advance in parallel with their exhaust air restricted. To assist regulation, pressure gauges have been fitted between the cylinders and the oneway flow control valves. The end positions of the cylinders are interrogated. After a time of t = 1.5 seconds, the bar moves back to the initial position. The return stroke may be instantly initiated by means of a second push button.											
3.	Design an electro-pneumatic circuit for opening and closing device. Using a special device, the valve in a pipeline is to be opened and closed. The valve is opened by pressing the pushbutton switch. When the pushbutton is released, the valve is closed.											
4.	Design an electro-pneumatic circuit for clamping device. Parts are to be clamped using a clamping device. By pressing a pushbutton switch the moveable clamping jaw is pushed forward and the part is clamped. By pressing another pushbutton switch the clamping jaw is returned to its start position											
5.	Design a PLC pneumatic circuit for a stamping device. Parts are to be stamped with a stamping device. By pressing two pushbutton switches the die is pushed down and the part is stamped. When the stamping pressure has been achieved, the die is returned to its start position											
6.	Design a PLC pneumatic circuit for h material is to be sealed by applicat switch the heating rail is advanced ar strip. After the adhesion pressure ha position.	neat tion nd th as be	sea of h e pa een r	ling o eat a ckag reach	devid and jing i ned, e ab	ce. l pres mate the	Jsing ssure erial heat	g a h e. By is he ing ra	ot-pres pres ated a ail is	essin ssing along retur	g die, pack a pushbutt the adhesi ned to its st	ing ton ve art
Course	Outcomes. At the end of the course s	siuu										
1.	Design the basic hydraulic, electro-hyd lifferent real word applications.	rauli	ic an	d PL	.C C	ontr	ollec	l hyd	raulic	circ	uits for	
2. [Design the basic pneumatics, electro- por different real word applications	onel	ımat	ics a	nd F	PLC	Con	trolle	d pne	euma	itics circuits	
Course	Outcomes Mapping with Program C	Outc	ome	es &	PSC)						
	Program Outcomes→	1	2	3	4	5	6		PSO.	Ļ]	
	↓ Course Outcomes							1	2	3	1	
	22MMD104.1	1	1	3		1		1	1	1		
	22MMD104.2	1	2	3		1		1	1	1		
1: Low 2: Medium 3: High												
TEXT B	OOKS:		<u> </u>									
1.	Festo-Didactic Hydraulics workbook	bas	sic le	evel								
2.	Festo-Didactic Electro-Hydraulics w	orkb	ook	basi	IC Ie	vel						
3.	Festo-Didactic Pneumatics workboo	K Da		level								
4.	4. Festo-Didactic Electro-Pneumatics workbook basic level											
REFER	ENCE BOOKS:				<u> </u>	1.		004		41.		
1.	1. Festo-Didactic Programmable logic controllers Basic level 1P301 - Lextbook											

RESEARCH EXPERIENCE THROUGH PRACTICE -1												
Course Code:	22MMD	105	Cour	se Ty	ре	I	RETP					
Teaching Hours/Week (L: T: P)	0:0:4		Credi	its		2	2					
Total Teaching Hours	0+0+52		CIE				100					
Teaching Department: Any												
Course Objectives: The research purp	oses are	artificit										
1. To foresee future problems through	1 To foresee future problems through pursuit of truth as a "global centre of excellence for											
intellectual creativity".												
2. To respond to current social demands, and to contribute to the creation and development of												
scientific technologies with the ain	n of realiz	ing an a	ffluents	societ	y and natura	al envi	ronment for					
numanity.	to create	معدماله	nt educ	ration	al resources	and a	n excellent					
educational environment through	frontline r	esearch	ies	auon	arresources							
4. To Understand professional writ	ing and o	commur	ication	conte	exts and ge	enres,	analyzing					
quantifiable data discovered by res	searching	, and co	nstructi	ing fin	ished profes	ssiona	l workplace					
documents.												
Individual BC Students are to be allette	d to the i	ndividu	al facu	ultum	ombors ba	sod or	student's					
area of research interest specializat	ion of fa	culty n	iai iacu nembei	nty m rs in	the heainr	seu or ning c	of the first					
semester.				10 m	the begin	ing c						
	MODU	LE -1										
Defining the research problem - Selec	ting the	problen	n - Neo	cessit	y of definin	ig the	problem -					
- Survey of literature - Primary and seco	iem - imp ndarv soj	ortance	of liter	ature	review in de	etining	a problem					
web as a source - searching the web - lo	lentifvina	dap are	eas fror	n liter	ature reviev	w - De	velopment					
of working hypothesis, systematic way	of conduc	cting res	search,	write	a review /	resea	rch paper,					
research proposal, preparation of research	ch report.											
	MODU	LE-2		· · · · ·								
Introduction various simulation too	ois related	to Mac	nine De	esign								
 Introduction to typesetting tool (La 	atex).											
At the end of the course students	should s	ubmit a	resear	ch pro	oposal and	should	present					
the idea.					•		•					
The Research proposal report prepared b	ased on th	ne work	carried	outby	y the PG Stu	ident is	sevaluated					
for 50 marks and 20 minutes presentation	n on the r	esearch	work o	carried	d out will be	evalu	ated for 50					
Course Outcomes: At the end of the cou	irse stude	ent will k	e able	to								
1. Identify and define the problem sta	atement b	ased or	the lite	eratur	e reviewed.							
2. Formulate the objectives specific t	to the defi	ned pro	blem st	ateme	ent.							
3. Develop the methodology for achieved	eving the	objectiv	es.									
Course Outcomes Mapping with Program Outcomes & PSO												
Program Outcome	es → 1	2 3	4 5	6		2						
	2	3 1		1		J 1						
22MMD105.2 3 3 1 1 1 1 1 1												
22MMD105.3	3	$\frac{3}{3}$ 1		<u> </u>	1 1	1						
1: Low 2: Medium 3: High												

REFERENCE BOOKS:

1. The Undergraduate Research Hand book. Gina Wisker · 2018

E Books / MOOCs/ NPTEL

1. https://elearn.nptel.ac.in/shop/nptel/introduction-to-research/

2. https://onlinecourses.nptel.ac.in/noc22_ge08/preview

THEORY OF VIBRATIONS

Cou	rse Code:	22MMD201	Course Type	PCC						
Teac	hing Hours/Week (I · T· P)	4.0.0	Credits	04						
Tota	Teaching Hours	50+0+0		50+50						
	Teaching Depa	rtment: Mechani	cal Engineering							
Cours	se Objectives:									
				<u> </u>						
1.	1. Recall the basic theory and concepts of mechanical vibrations with regard to single degree of freedom systems considering free, damped and forced vibrations and analyze two degree of freedom systems and use these concepts to solve problems									
2.	Learn the significance of transie problems related to it and get fam methods of achieving the same.	nt vibrations and iliarized with vibra	apply mathematical con tion control and know abo	cepts to solve out the different						
3.	Know about the concepts of nor measurements are important and	nlinear vibrations solve problems r	and its applications and elated to the same.	how vibration						
4.	Apply mathematical techniques t modal analysis and condition mor	to analyze rando nitoring in vibratio	m vibrations and apprecian signal analysis.	ate the use of						
5.	Learn the mathematical technique frequencies of continuous system how to solve Eigen value problem	ues to determine is and study their is in vibrations.	the equations of motion free/ forced vibration beha	n and natural avior and know						
		UNIT-I								
Revie	w of Mechanical Vibrations			10 Hours						
single and m	dof systems, Force and motion is noted to be a solution of single of the systems of the solution is noted and shapes.	olation, Two dof s	stems - natural frequenc	ced vibration of by determination						
		UNIT-II								
Trans	sient vibrations of single degree-	of freedom syste	ms	5 Hours						
Impul: specti Vibra	se excitation, Laplace transforms rum, Finite difference numerical cor	formulation, step mputation.	input, pulse excitation, s	5 Hours						
Introd	uction vibration isolation theory vib	pration isolation fo	r harmonic excitation for d	lifferent types of						
found	ations, undamped dynamic vibratio ers	n absorbers, type	s of vibration absorbers, ty	pes of vibration						
		UNIT-III								
Non I	inear vibrations			5 Hours						
Introduction, sources of nonlinearity, qualitative analysis of non linear systems, phase plane, conservative systems, Stability of equilibrium, Method of Isoclinics, Perturbation method, Method of Iteration, Self-excited oscillations										
Vibra	tion measurement and applicatio	ons		5 Hours						
Introd Signa	uction, Transducers, Vibration pick I analysis	ups, Frequency r	neasuring instruments, Vil	bration exciters,						
UNIT IV										
Rand	Kandom vibrations 5 Hours									
Random phenomena, Time averaging and expected value, Frequency response function, Probability distribution, Correlation, Power spectrum and power spectral density, Fourier Transforms and response										
Modal analysis and Condition Monitoring5 Hours										
Introduction, Dynamic testing of Machines and Structures, Experimental Modal analysis, Machine Condition Monitoring & Diagnosis										

5 Hours

5 Hours

UNIT V

Continuous systems

Transverse vibration of a string or cable, Lateral vibration of beams, Longitudinal vibration of rods, vibration of membranes.

Eigen value problems

Solution of the eigen value problem, solution of the characteristic equation, orthogonality of normal modes, repeated eigen values, expansion theorem, unrestrained systems, free vibration of damped systems

Course Outcomes: At the end of the course student will be able to

- 1. Explain the basic concepts of mechanical vibrations related to undamped, damped and forced vibrations and **solve** problems related to these along with two-degree freedom systems.
- 2. Apply the basic concepts of transient vibrations to **solve** problems. **Describe** vibration control through absorbers and dampers and **solve** problems related to vibration isolation and absorbers.
- **3. Describe** the concepts of nonlinear vibrations and its applications. **Solve** problems related to vibration measurement.
- 4. Solve problems involving statistical parameters, frequency spectrum, probability density and use of Fourier transform in random vibrations. Explain modal analysis and machine condition monitoring techniques.
- **5. Derive** solutions for vibrations of string, beams, rods and membranes. **Determine** eigenvalue solutions.

Course Outcomes Mapping with Program Outcomes & PSO

Program Outcomes→	1	2	3	4	5	6		PSO.	Ļ
↓ Course Outcomes							1	2	3
22MMD201.1	1	2	3	2	1	1	3	2	3
22MMD201.2	1	2	3	2	1	1	3	2	3
22MMD201.3	1	2	3	2	1	1	3	2	3
22MMD201.4	1	2	3	2	1	1	3	2	3
22MMD201.5	1	2	3	2	1	1	3	2	3
1.1 OW 5.	Me	diun	13.	Hiak		•		•	

TEXT BOOKS:

1.	William T. Thomson, Marie Dillon Dahleh and ChandramouliPadmanabhan- Theory of
	Vibrations with Applications, 5 th Edition, Pearson Education, 2008.
2.	S.S.Rao - Mechanical Vibrations, 4 th Edition, Prentice Hall, 2004.
3.	J.S.Mehta and A.S.Kailey - Mechanical Vibrations, S.Chand& Company Ltd., New Delhi,
	2012.
4.	G.K.Grover - Mechanical Vibrations, Nem Chand & Brothers, 2009.
REFE	RENCE BOOKS:
1.	S. Graham Kelly - Fundamentals of Mechanical Vibration, 2 nd Edition, Mcgraw Hill.
2.	S. Graham Kelly - Mechanical Vibrations, Schaum's Outlines, Tata Mcgraw Hill, 2007.
3.	ThammaiahGowda, Jagadeesha T. and D.V.Girish - Mechanical Vibrations, McGraw Hill,
	New Delhi, 2013

FATIGUE OF MATERIALS

Course Code: 22MMD202 Course Type PCC											
Teac	hing Hours/Week (L: T: P)	4:0:0	Credits	04							
Tota	I Teaching Hours	50+0+0	CIE + SEE Marks	50+50							
Teaching Department: Mechanical Engineering											
Cours	se Objectives:										
oourt											
1.	1. Understand the theories of failure relating to different ductile and brittle materials. Students										
	should be able to develop the co fatigue design and different fatigu	e life models.	testing of materials inclu	uding criteria for							
2.	Determine the stress life behavior including different factors influer understand the strain life behavior life behavior.	using stress life on ncing stress life r with different te	curves and representation behavior. Students sho st methods and factors in	of these curves ould be able to ofluencing strain							
3.	Understand the concept of crack fundamentals of linear elastic frac	nucleation, crac ture mechanics.	k growth and fracture of	materials using							
4.	 Understand the various cumulative damage theories and different cycle counting methods relating to fatigue from variable amplitude loading. Students should be able to define the various statistical aspects of fatigue using different probability distribution plots. Students should be able to analyze the fatigue strength for notched members and its effects using analytical models. 										
5.	Understand the different surface contact surfaces. Students should behavior of various weldments.	e failure mechan I be able to define	isms with stress distribute the weldment nomencla	ution of various ature and fatigue							
0, 1		UNIT-I									
Static	tailure theories		Madea of mashaniaal f	5 Hours							
failure	theories for ductile and brittle mate	erials including Co	bulomb Mohr's theory and	d modified Mohr's							
Fatig	ue failure theories			5 Hours							
Introd Strate fatigue	uctory concepts of fatigue, High c gies in fatigue design, Fatigue failur e failure criteria, Fatigue testing ma	cycle and low cyc re models, Fatigue chines and speci	cle fatigue, Mechanism e design criteria, Fatigue mens.	of fatigue failure, loads, measuring							
		UNIT-II		1 =							
Stres	s-Life (S-N) Approach			5 Hours							
S- N C Facto diagra	S- N curves, Statistical nature of fatigue test data, General S-N behavior, Mean stress effects, Factors influencing S-N behavior, S-N curve representation and approximations, Constant life diagrams										
Strain	h-Life(I -N)approach			5 Hours							
Monotonic stress-strain behavior, Strain controlled test methods, Cyclic stress-strain behavior, Strain based approach to life estimation, Determination of strain life fatigue properties, Mean stress effects, Effect of surface finish.											
UNIT-III											
LEFM	Approach			5 Hours							
LEFM effects	LEFM concepts, Crack tip plastic zone, Fracture toughness, Fatigue crack growth, Mean stress effects, Crack growth life estimation										
Notch	Notches and their effects 5 Hours										
Conce effects growt	Concentration and gradients in stress and strain, S-N approach for notched members, mean stress effects and Haigh diagrams, Neuber's rule, Glinka's rule, applications of fracture mechanics to crack growth at notches										

UNIT IV									
Fatigue from Variable Amplitude Loading5 Ho	urs								
Spectrum loads and cumulative damage, Damage quantification and the concepts of damage fraction and accumulation, Cumulative damage theories, Load interaction and sequence effects,									
Cycle Counting methods.									
statistical Aspects of Fatigue 5 Hours									
Concentration and gradients in stress and strain, S-N approach for notched members, mean s	stress								
arowth at notches	CIACK								
UNIT V									
Surface Failure 5 Ho	urs								
Introduction, Surface geometry, Mating surface, Friction, Adhesive wear, Abrasive wear, Con	rosion								
wear, Surface fatigue spherical contact, Cylindrical contact, General contact, Dynamic con stresses, Surface fatigue strength.	ntact								
Fatigue of Weldments5 Ho	urs								
Weldment Nomenclature and Discontinuities, Constant amplitude fatigue behavior of weldn	nents,								
Improving weldment fatigue resistance, Weldment fatigue life estimation.									
Course Outcomes: At the end of the course student will be able to									
1. Explain the mechanical failure modes of components and calculate the safety factor d static loads acting along different planes using failure theories of ductile and brittle mate Describe the failure design models and methods based on fatigue design criteria explain the procedures for determining the fatigue strength of specimens using fa	ue to rials; and tigue								
1 Lesting machines.	oing								
 stress life behavior and determine the fatigue strength and fatigue life of components b on stress life curve approximations; Determine the cyclic stress- strain curves, strain curves and strain- life fatigue properties using stable cyclic stress- strain hysteresis I under the influence of mean stress and surface finish effects. 3 Estimate the fatigue crack growth rate and fatigue life of a cracked component with 	ased n life oops								
without mean stress effects using the concept of Linear Elastic Fracture Mechan Estimate the fatigue strength of notched members based on stress life and strain approach using analytical models.	nics.; n life								
4. Calculate the expected life of components subjected to variable amplitude load histori fatigue data by converting them to simple constant amplitude load cycles using cyclecou methods; Describe probability distribution plots related to statistical aspects of fatigue to estimate the probability associated with fatigue failure or product life.	es of nting								
5. Explain the surface failure mechanisms and derive the expressions for maximum pres	sure								
distribution in case of cylindrical contact, spherical contact and general contact surfact	aces;								
Explain weldment discontinuities and fatigue design procedures for estimating fatigue	ife of								
weldments along with methods for improving weldment fatigue resistance.	weldments along with methods for improving weldment fatigue resistance.								
Course Outcomes Mapping with Program Outcomes & PSO									
Program Outcomes \rightarrow 1 2 3 4 5 6 PSO									
$\downarrow Course Outcomes \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad $									
22MMD202.1 3 3 3 3 2 2 3 3 2									
22MMD202.2 2 2 2 3 2 3 2 2 2									
22MMD202.3 3 1 1 1 2 2 3 2 2									
22MMD202.4 2 2 3 2 3 2 3 3									
22MMD202 5 3 3 3 2 2 3 3 2									

TEXT BOOKS:							
1.	Metal Fatigue in engineering, Ralph I. Stephens, Ali Fatemi, Robert .R. Stephens, Henry o.						
	Fuchs, John wiley Newyork, Second edition. 2001.						
2.	Failure of Materials in Mechanical Design, Jack. A. Collins, John Wiley, Newyork 1992.						
3.	Machine Design, Robert L. Norton, Pearson.						
REFE	RENCE BOOKS:						
1.	Fatigue of Materials, S.Suresh, Cambridge university press, Cambridge, U.K.						
2.	Fundamentals of Metal Fatigue Analysis, Julie.A.Benantine Prentice Hall, 1990						
3.	Fatigue and Fracture, ASM Hand Book, Vol 19,2002.						

DESIGN ENGINEERING LAB

Cou	rse Code	:	22MMD203	Course Type:	PCC Lab					
Teac	hing Ho	urs/Week (L: T: P)	0:0:2	Credits:	01					
Tota	l Teachir	ng Hours:	0+0+26	CIE + SEE Marks:	50+50					
	Teaching Department: Mechanical Engineering									
Course Objectives:										
1.	Demons	strate the different types	of drives used w	hile designing a machine	component and					
2	analyse	different types brakes ar	nd clutches.	free vibration and dynami	ice of machines					
Ζ.	and me	chanisms	u anu unuampeu		ics of machines					
			List of Experime	nts						
			JNIT – I		13 Hours					
1.	Stud	y of mechanisms derived	from four bar cha	ain, its equivalents and the	Ir inversions.					
2.	Stud	y and analysis of belt, rop	d follower mecha	es.						
3. 1	Stud		t types of gears a	nisiii. Ind gear trains						
4. 5	Stud	y and analysis of uneren	and clutches	ind gear trains.						
5.			JNIT – II		13 Hours					
1.	Unda	amped Free Vibrations:			I					
	i.	Trifilar Pendulum								
	ii.	A Slender Rod on a Cylin	drical Surface							
	iii.	A Semi Cylindrical Shell o	on a Horizontal sur	face.						
2	IV.	Compound Pendulum								
Ζ.	Dam	Viscous Damper								
	ii.	Logarithmic Decrement								
	iii.	Spring-Mass-Damper Sys	stem Coulomb Dan	nping						
3.	Dam	ped Free Vibrations of Tw	vo Degree Freed	om System: Coupled Pend	Julum					
4.	Vibra	ations of Continuous Syst	em: A Cantilever	Beam						
5.	Balaı	ncing of Rotors: Rotor Ba	lancing Machine							
6.	Balar	ncing of Reciprocating N	lachines: Balanci	ng a Twin Cylinder Engin	e (A Locomotive					
7.	Critic	al speeds of shafts with l	ninged and fixed	end conditions						
8.	Tunir	ng of Dynamic Absorber								
9.	Case	e studies on mechanisms	and inversions.							
0	0			ha abla ta						
Cours	se Outco	mes: At the end of the co	ourse student will	be able to						
1	Evaluat	e the different types of dr	ives used in a ma	achine component						
2.	 2 Determine the vibration parameters using undamped and damped free and forced vibrations 									
	and Determine the critical speed of shafts with bearings.									
	•	La construction de la constructi		-						

ourse Outcomes Mapping with Program Outcomes & PSO										
Program Outcomes→	1	2	3	4	5	6		PSO.	Ļ	
↓ Course Outcomes							1	2	3	
22MDE203.1	3	1	3	3	1	3	3	1	2	
22MDE203.2	3	1	3	3	1	3	3	1	2	
1: Low 2: Medium 3: High										

PROGRAMMING LAB

Cou	Course Code: 22MMD204 Course Type: PCC Lab										
Teac	thing Hours/Week (I · T· P)	0.0.5	Credits:	01							
Tota	I Teaching Hours:	0+0+26	CIF + SFF Marks	50+50							
Tota											
	Teaching Department: Mechanical Engineering										
Cours	Course Objectives:										
4	1 Understand built in functions in MATLAR to solve numerical problems and model the code										
for solving problems involving different types of mathematics equations											
2.	Develop a simulation code and ap	ply solutions to si	mulation problems in ma	achine design.							
	L	ist of Experimen	ts	0							
	U	NIT – I		13 Hours							
	Introduction to MATLAB and pra	ctice									
	Practice session on handling bas	sic arithmetic etc									
	Writing codes with control loops,	tunctions and sci	ripts								
	Developing codes for visualizatio	on and plotting	wetiene								
	Solving problems involving linea	r and nonlinear ed	Juations								
	Solving problems involving curve	e nuing and interp	forential equations								
	Solving problems related to optim	ary and partial dif									
	Solving problems involving nume	rical differentiatio	on and integrations								
		NIT – II		13 Hours							
1.	Introduction to Simulink	<u></u>		10 110410							
2.	Case studies and working on pro	jects using Simul	ink								
3.	Case studies and working on pro	jects using Simul	ink								
4.	Case studies and working on pro	jects using Simul	ink								
Cours	se Outcomes: At the end of the cou	urse student will b	e able to								
1.	Apply built-in functions in MATLAB	to solve numerica	al problems and develop	code for solving							
2	problems involving different types	of mathematical	models and equations.	ma anaquintarad							
Ζ.	2. In mechanical design, vibration analysis and CAD										
Course Outcomes Mapping with Program Outcomes & PSO											
	$\begin{array}{ $										
				3							
			$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2							
	1: Low 2: Medium 3: High										
	1. 20										

RESEARCH EXPERIENCE THROUGH PRACTICE -2											
Course Coo	le:	22MMD	205	Со	urse	Тур	e			RETF)
Teaching H	ours/Week (L: T: P)	0:0:4		Cre	dits	;				2	
Total Teach	ing Hours	0+0+52		CIE						100	
Teaching Department: Mechanical Engineering											
Course Objectives: The research purposes are											
1. To foresee future problems through pursuit of truth as a "global centre of excellence											
for intellectual creativity".											
2. To r	2. To respond to current social demands, and to contribute to the creation and										
development of scientific technologies with the aim of realizing an affluent society and											
3. At the	3 At the same time, the course aims to create excellent educational resources and an										
exce	excellent educational environment through frontline researches.										
4. To Understand professional writing and communication contexts and genres,											
analyzing quantifiable data discovered by researching, and constructing finished											
profe	essional workplace documer	nts.									
The students are expected to correct out Mathematical modelling/Design calculations/semanter									nnuter		
simulations/Preliminary experimentation/testing of the research problems identified during Research											
Experience through Practice-I carried out in the first semester.											
At the end of the second semester, students are expected to submit a full research paper based on											
the Mathematical modelling/ Design calculations/computer simulations/Preliminary											
experimentati	ion/testing carried out during	g second	semest	er.		D O	~				(FO
The research paper prepared based on the work carried out by the PG Student is evaluated for 50											
marks and 20 minutes presentation on the research work carried out will be evaluated for 50 marks jointly by the examiners								IIIdIKS			
Course Outc	omes: At the end of the cou	urse stude	ent will	be ab	le to						
1. Create	e a model/prototype through	fabricatio	n, simu	lation	i, dat	ta an	alysi	is, Ex	perin	nentatio	n for
the proposed problem.											
2. Analys	se and validate the results o	btained.									
3. Comp	ose a technical paper as pe	r the give	n forma	it.							
Course Outc	omes Manning with Prog	ram Outc	omes 8	R PSC)						
	Program Outcom	es→ 1	2 3	4	5	6		PSO			
	↓ Course Outcomes			· ·	Ŭ	Ŭ	1	2	3		
	22MMD205.1	3	3 1						2		
	22MMD205.2	3	3 1						2		
	22MMD205.3	3	3 1		1				2		
1: Low 2: Medium 3: High											
1. The Undergraduate Research Hand book Gina Wisker 2018											
E Resource	nuergrauuale research ha	ITU DOOK.		ISKE!	, 20	0					
1. https://	1. https://www.coursera.org/learn/academic-writing-capstone										

Professional Elective Courses

DESIGN OF HYDRAULIC AND PNEUMATIC SYSTEMS

Course Code:		22MMD111	Course Type	PEC				
Teaching Hours/Week (L: T: P)		3:0:0	Credits	03				
Tota	I Teaching Hours	40+0+0	CIE + SEE Marks	50+50				
Teaching Department: Mechanical Engineering								
Course Objectives:								
1.	To provide student with knowledge on the application of fluid power in process, construction, and manufacturing Industries.							
2.	To study the fundamental principles, design and operation of hydraulic and pneumatic machines, components and systems and their application in recent automation revolution.							
3.	To provide students with an understanding of the fluids and components utilized in modern industrial fluid power system.							
4.	To develop a measurable degree of competence in the design, construction, and operation of fluid power circuits.							
5.	5. To emphasize basic theory, components sizing, construction and function, how to read pneumatics and fluid power circuit diagrams using the correct symbols and troubleshooting techniques.							
	•	UNIT-I		I				
Fluid	Power Principles and Hydraulic	Pumps		15 Hours				
Introduction to Fluid power - Advantages and Applications - Fluid power systems - Types of fluids - Properties of fluids and selection - Basics of Hydraulics - Pascal's Law, Sources of Hydraulic power, Pump Classification - Construction, Working, Design, Advantages, and Disadvantages.								
Basic Principles of Pneumatics								
Differe	ence between hydraulics and pne	umatics-compres	sor types-two stage pis	ston compressor -				
rotary vane compressor-rotary screw compressor -vacuum pumps- double acting pneumatic cylinder- gear motor pressure regulator -filters-lubricators-FRL unit-water removal – air preparation and distribution - Electronic control of fluid power -solenoid valves-servo valves pump controls								
	·	UNIT-II	1 1					
Hydra	aulic Actuators and Control Com	ponents		16 Hours				
Cylinders - Types and construction, Application, Hydraulic cushioning - Hydraulic motors - Control Components: Direction Control, Flow control and pressure control valves - Types, Construction and Operation - Servo and Proportional valves. Applications - Accessories : Reservoirs, Pressure Switches - Applications - Fluid Power ANSI Symbols - Problems.								
Pneu	matics Actuators and Control Co	mponents						
Way Directional Control Valves:- Check Valve-Shuttle Valves-Two Way Directional Control Valves - Three Way Directional Control Valves -Four Way Directional Control Valves - Directional Control Valves Actuation types-Symbols- Working Principles-Pressure Control Valve: Pilot Operated, Pressure Relief Valve -Pressure Reducing Valve -Sequence Valve - Symbols- Working Principles Flow Control Valve Type -Needle Valve -Pressure Compensated Flow Control Valve-Cushioned Cylinders -Flow Dividers -Balanced Spool Flow Divider- Rotary Flow Divider								
Hydraulic Circuits and Systems								
Accumulators Intensifiers Industrial hydraulic circuits - Regenerative Pump Unloading Double-								
Pump, Pressure Intensifier, Air-over oil, Sequence, Reciprocation, Synchronization, Fail-Safe, Speed Control, Hydrostatic transmission, Electrohydraulic circuits. Mechanical hydraulic servo systems								
Pneumatic Circuits and Systems								
Active components. Compressor. Transmission lines. Air tank. Pneumatic hoses. Open atmosphere (for returning the spent gas to the compressor) Valves. Passive components. Pneumatic cylinders. Service Unit. FRL - Filter Regulator and Lubricator. Regulators and gauges. Accumulator or buffer tank. Feed lines. Pneumatic Fittings								

lΝ

Troub	e Shooting and Applications											
Installa	tion, Selection, Maintenance, Trouble Shooting and Remedies in Hydraulic and Pneumatic											
systen	is, Design of hydraulic circuits for Drilling, Surface grinding, Press and Forklift applications.											
Desig	Design of Pneumatic circuits for Pick and Place applications and tool handling in CNC Machine											
tools.	tools.											
Cours	ourse Outcomes: At the end of the course student will be able to											
1.	Explain the Fluid power and operation of different types of pumps.											
2.	Summarize the features and functions of Hydraulic motors, actuators, and Flow control											
	valves											
3.	Explain the different types of Hydraulic circuits and systems											
4.	Explain the working of different pneumatic circuits and systems											
5.	Summarize the various trouble shooting methods and applications of hydraulic and											
	pneumatic systems.											
Cours	e Outcomes Mapping with Program Outcomes & PSO											
	Program Outcomes \rightarrow 1 2 3 4 5 6 PSO											
	↓ Course Outcomes 1 2 3											
	22MMD111.1 1 1 3 1 1 1											
	22MMD111.2 1 2 3 1 1 1											
	22MMD111.3 1 2 3 1 1 1											
	22MMD111.4 1 2 3 1 1 1											
	22MMD111.5 1 2 3 1 1 1											
	1: Low 2: Medium 3: High											
TEXT	BOOKS:											
1.	Anthony Esposito, "Fluid Power with Applications", Pearson Education 2005.											
2.	Majumdar S.R., "Oil Hydraulics Systems- Principles and Maintenance", Tata McGraw-Hill,											
-	2001.											
3.	3. "Anthony Lal, "Oil hydraulics in the service of industry", Allied publishers, 1982.											
REFE	EFERENCE BOOKS:											
1.	1. Dudelyt, A. Pease and John T. Pippenger, "Basic Fluid Power", Prentice Hall, 1987.											
2.	Majumdar S.R., "Pneumatic systems - Principles and maintenance", Tata McGraw Hill, 1995											
3.	Michael J, Prinches and Ashby J. G, "Power Hydraulics", Prentice Hall, 1989.											
4.	Shanmuga sundaram.K, "Hydraulic and Pneumatic controls", Chand & Co, 2006.											

INDUSTRIAL PROCESS EQUIPMENT DESIGN

Cou	rse Code:	22MMD112	Course Type	PEC
Teac	hing Hours/Week (L: T: P)	3:0:0	Credits	03
Tota	I Teaching Hours	40+0+0	CIE + SEE Marks	50+50
	Teeching Den	wine on to Machae		
Course	Teaching Depa	artment: wechan	lical Engineering	
Cours	se Objectives:			
	To be able to each the manifest	and a full a sector	and finders to reden de de la	the second second second
1.	I o be able to apply the requirem	ents of the relev	ant industry standards to	the mechanical
2.	Design process equipment and	modify the desig	n of existing equipment	to new process
	conditions or new required capac	ity.	in or oxioting oquipmont	
3.	Bridge the gap between theoretic	al and practical co	oncepts used for designing	g the equipment
	in any process industry.			-
4.	Create understanding of equipme	ent design with m	echanical concepts.	
5.	Design heat exchangers, absorb	ers, distillation co	lumns, reactors and press	sure vessels.
lia fina a	luction to Draces Emvironment D	UNII-I		45 11
Introc	luction to Process Equipment D	esign		15 Hours
Criteri	a, need and factors for design, go	eneral considerat	ions in equipment design,	criteria for
symbo	als of equipments or instruments	used in flowsher	et fundamental principles	s and equations.
princi	bal stresses theories of failure			
Mech	anical Design of Pressure Vesse	el		
Introd	uction of ASME Code, classification	on of pressure ve	ssel as per IS-2825, mec	hanical design of
shell s	subjected to internal pressure, des	ign of shell for ex	kternal pressure with and	without stiffening
ring, r	nechanical design of heads subjec	cted to internal pro	essure, different types of	nozzles, flanges,
flange	facings and gaskets and their selection is the selection of the selecti	ection criteria, we	lded joint efficiency.	
_		UNIT-II		
Proce	ess design of Absorbers		Cale and the second second second	16 Hours
Introd	uction, criteria for selection among	j different types o	of absorption equipment, p	process design of
dotorr	a lower lype absorber, determining	alion of actual	amount of solvent, selection	citoria of liquid
distrih	utors redistributors and packing si	innort nrocess d	esign of spray chamber or	spray tower type
absor	ber, Venturi scrubber.		colgin of opray chamber of	opidy tower type
Mech	anical design of Reaction Vesse			
Mecha	anical design of jacket, coil, agitato	or etc., different ty	pes of agitators and their	selection criteria,
differe	ent types of agitator shaft sealing s	systems and their	selection criteria, differen	nt types of power
transr	nission systems, determination of p	power required fo	r agitation, shaft diameter	, blade thickness,
etc., d	ifferent types of jackets and their s	election criteria,	selection between coil and	d jacket.
Supp	orts : Different types of supports	, mechanical des	sign of bracket support, s	skirt support and
Sauule	3 Support.			
Proce	ess design of Distillation Column	(Tray Tower)		09 Hours
Introd	uction criteria of selection select	ion of equipment	t for distillation distillation	n column design
contin	uous distillation, design variables	in distillation. de	sign methods for binarv s	ystems. McCabe
Thiele	method, selection of key compon	ents for multi-con	ponent distillation, Fensk	ey- Underwood-
Gillila	nd's (F-U-G) correlation method, d	ifferent types of tr	ay supports & their select	ion criteria.
Desig	n of Heat transfer operation equ	lipment		
Heat-	exchanger standards and code	es, shell and t	ube heat exchangers,	general design
consid	Jerations, tube-side heat-transfer c	coefficient and pre	essure drop (single phase), shell-side heat-
transf	er and pressure drop (single pha	se), kern's meth	Da, Beil's method, criteria	a of selection for
HUHZU				

Cours	se Outo	omes: At the end of the course s	stude	ent v	vill b	e ab	le to					
1.	Discus unders vesse	ss general design considerations i standing of design parameters a s.	invol and	lving kno	pro wled	cess Ige (des of d	ign esig	deve n pro	lopmo ocedu	ent; A ures	Acquire basic for pressure
2.	Explai	n the process design of various a	bso	rptio	n ea	uipn	nent	s.				
3.	Explai	n designing various parts of react	tion	vess	els.							
4.	Demo	nstrate the procedures in designing	ng o	f trav	/ dis	tillat	ion d	olur	nns.			
5.	Apply excha	fundamental knowledge and des ngers.	ign	equi	pme	nt fo	or he	eat ti	ansf	er op	eratio	ons like heat
Cours	se Outo	omes Mapping with Program C	outc	ome	s &	PSC)					1
		Program Outcomes→	1	2	3	4	5	6	1	PSU	2	-
		$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $									-		
		22IVIVID112.2	2	3	3	2	1	2	1		2	-
		22IVIVID112.3	2	2	2	2	1	2	1		2	-
		22IVIVID112.4	2	3	3	2	1	2	1	1	2	-
		221VIIVID112.5 1:1 ow 2:		Jiun	3.	4 Hiak	1	4	1	I	2	J
		1. LOW 2.	INICO	Jiun	13.	ingi						
TEXT	BOOK	(S:										
1.	Bhatta	charyya, B.C., "Introduction to cher	nica	l Equ	uipm	ent D	Desig	jn: N	lecha	nical	aspe	cts", CBS
	Publis	hers & Distributors, New Delhi.		-								
2.	Serth,	R.W., "Process Heat Transfer: Princ	ples	and	Арр	licati	ons"	200	7, Els	evier	Ltd.	
3.	Brown	ell, H. and Young, E.H., "Process Ec	uipr	nent	Desi	<u>gn: \</u>	/ess	el De	esign"	, Johr	n Wile	y & sons.
4.	James	R. Couper, James R. Fair and W. R	loy F	enno'	∋y, "(Chen	nical	Proc	ess E	quip	ment ·	- Selection and
5		de book - LS : 4503 - 1967 "India	iann Si	, ∠∪ l tand:	ard S	Sneci	ficat	ion f	or Sh	nell ar	nd Tu	ibe Type Heat
5.	Exchangers".											
6.	I.S.:28	25-1969, "Code for Unfired Pressure	e Ve	ssels	".							
REFE	RENCE	BOOKS:										
1.	Towle	r, G. P. and R. K. Sinnott, "Chemical	Engi	neer	ing D)esig	n, Pı	incip	oles, F	Practio	ce and	d Economics of
	Plant a	and Process Design", 2nd Edition, B	utter	wort	<u>n Hei</u>	inem	ann,	201	2.		D L !!	
2.		osni , V. V. Mahajani, "Process Equip	omer	nt De	sign'	, 3rc		tion,	Macr	nillan	Publi	sners, 2009.
3.	S B II Edition	nakore and שו שnatt, "Introduction to 2007	o Pro	ocess	s ⊨nç	jinee	ering	and	Desi	gn", I	ata M	cGraw Hill, 1st
L		., 2007.										

MECHANISM DESIGN

Cou	rse Code:	22MMD113	Course Type	PEC					
Teac	hing Hours/Week (I · T· P)	3.0.0	Credits	03					
Tota		40.0.0		50,50					
ΤΟΙΑ	i reaching hours	40+0+0		50+50					
	Teaching Dep	artment: Mechar	nical Engineering						
Cours	se Objectives:								
1.	Understand the terminologies in displacement.	kinematics and i	mechanism, Analyze the	mechanisms for					
2.	Analyze the mechanisms for velo	ocity and accelera	tion using different metho	ds.					
3.	Design and Synthesis of four bar	r mechanisms for	two positions using graph	ical methods.					
4.	Design and Synthesis of four ba and analytical methods.	r mechanisms fo	r three and four positions	using graphical					
5.	Analyze mechanisms subjected forces.	to static and dy	namic forces, friction for	ces and Engine					
		UNIT-I							
Geom	netry of Motion			15 Hours					
Introd mecha	uction, analysis and synthesis, Manisms, mobility, Grubbler's rule, E	/lechanism termir Equivalent mecha	nology, planar, spherical nisms, Grashoff's law.	and spatial					
Kinen	natic Analysis: Displacement Ana	lysis, Transmissio	on angle, Deviation angle,	Range of motion.					
Veloc	ity Analysis: Relative velocity me	thod, Auxiliary po	int method.						
Accel	eration Analysis: Relative accele	eration, Coriolis A	cceleration.						
Curath		UNIT-II							
Synth		·	nation Dath man and in a						
nype, mecha slider Poles	anisms, Precision positions, Struc crank mechanisms, Crank-rocker and relative poles, Location of pol	tural error, Cheby mechanisms wit es and relative po	/shev's spacing, Two pos h optimum transmission a les. Two position synthes	sition synthesis of angle, Time ratio. is of Slider crank,					
crank	and rocker mechanisms.			1					
Graph	nical Methods of Dimensional S	ynthesis							
Funct	ion generation, Path generation ar	nd Body guidance	mechanisms.	k har maabaniam					
Bloch	's method of synthesis	yntnesis: Freude	ensiell's equation for four	bar mechanism,					
DIOCIT	s method of synthesis.	UNIT-III							
Dyna	mics of Mechanism			09 Hours					
Introd	uction, static forces, dynamic forc	es. D'Alembert's	principle. Inertia forces in	linkages, Center					
of per	cussion, Kineto-static Analysis, Th	ne superposition r	nethod.						
Frictio	on in Mechanisms	· ·							
Force	analysis considering friction for sl	ider crank and fou	ır bar mechanisms.	·					
Engin	ne Force Analysis								
Pistor	n Effort, thrust on connecting rod, b	pearings and cran	k effort						
Cours	se Outcomes: At the end of the co	ourse student will	be able to						
1.	Determine the transmission ang using the knowledge of kinemation	le, deviation angl cs.	e and range of motion for	mechanisms by					
2.	Determine the velocity and ac method, auxiliary point method a	celeration of link nd Coriolis accele	s in mechanisms using eration method.	relative velocity					
3.	3. Determine precision position using Chebyshev's spacing for function generation mechanisms and Develop Slider crank and crank rocker mechanism for two positions using optimum transmission angle and relative pole method								
Щ									

lΝ

4.	Develop motion, path, and function generation for four bar mechanisms using graphical method. Develop function generation for four bar mechanisms for three positions using Freudenstein's method and Bloch's method.											
5. Determine static forces, dynamic forces in four bar mechanisms using kineto-static analysis and friction force and Engine forces for four bar mechanisms using analytical methods.												
Course Outcomes Mapping with Program Outcomes & PSO												
		Program Outcomes→	1	2	3	4	5	6		PSO (
		↓ Course Outcomes							1	2	3	
		22MMD113.1	3	1	2	3	1	1	3	2	1	
		22MMD113.2	3	1	2	3	1	1	3	2	1	
	22MMD113.3 3 1 2 3 1 1 3 2 1											
	22MMD113.4 3 1 2 3 1 1 3 2 1											
		22MMD113.5	3	1	2	3	1	1	3	2	1	
		1: Low 2:	Med	dium	ו 3: I	High	1					
		<u> </u>										
	BOOK		<u> </u>		<u> </u>			1				
1.	Mech	anism Design Analysis and Syntr	າesis ⊾:	s by	Arth	ur G	Erd	mar	n and	Geo	rge N	l Sandor,
2	Field	nce Hall Of India PVI Liu, New Del	111. of m		inor	.,		10/2	Idro	<u> </u>	214	(intel)//illey
۷.	India.	2007.		Iaci	mer	у —	R.J.	VVC	aiuroi		a.L.r	Milzel, Willey
3.	Theor	y of Machines and Mechanism	- E.S	Shigl	ey 8	k J.J	.Jicl	ker l	McGr	aw H	lill co	mpany, Third
	editio	n, 2013										
REFE	RENCE	BOOKS:										
1.	Mech	anism and Machine Theory - A.G	.Am	bed	kar, I	PHI,	200)7.				
2.	Theor	ry of Machines - S S Ratan, McG	raw	Hill	com	pany	/, Fo	ourth	editi	on, 2	015.	
3.	Theor	y of Machines and Mechanism -	Gho	sh a	nd N	/lallio	ck, E	ast	West	t pres	s 20	07.
4.	Mach	ines and Mechanisms - David H.	Mys	zka,	Pea	rson	Edu	ıcati	on, 2	2005.		

CONTINUUM MECHANICS

Cou	rse Code:	22MMD121	Course Type	PEC								
Tota	I Teaching Hours	3:0:0		03 50±50								
1012	Teaching Hours	+0+0+0		30+30								
Cours	reaching Dep	bartment: wechai										
oour												
1.Understand the concept of stress and determine the stress components.												
2.	Understand and determine the	e components of s	trains and the stress-strain rel	ations.								
3.	Carry out analysis of two-dimer	nsional problems i	n cartesian co-ordinates.									
4.	Solve two-dimensional problem	s in polar co-ordin	ates.									
5.	Understand the concepts of tor	sion and viscoelas	sticity.									
		UNIT-I										
Introd	Introduction to Stress 15 Hours											
Defini	tion and notation for forces and	stresses body for	ce surface force component	s of stresses								
equat	ions of equilibrium, specification	of stress at a poi	nt- stress tensor, deviatorial	and spherical								
stress	s tensors, Cauchy's equations an	d principal stress	es, stress invariants, bounda	ry conditions,								
stress	s transformation, Octahedral stres	Ses.										
Introd	duction to Strain											
Defor	mation, strain displacement relat	ions, strain comp	onents, state of strain at a p	oint, principal								
strain	s, strain invariants, strain transfo eviatorial strain tensors	rmation, compatib	ility equations, cubical dilatat	on, spherical								
		UNIT-II										
Gene	ral equations of Elasticity			16 Hours								
Gene	ralized Hooke's law in terms of	engineering con	stants, formulation of elastic	ity problems,								
existe	ence and uniqueness of solution, local theorem	, Saint - Venant's	s principle, principle of super	position and								
Two	dimensional problems in Cartes	ion oo ordinataa										
i wo dimensional problems in Cartesian co-ordinates												
Plane	Plane stress, plane strain, Beltrami-Michell equations for plane stress and plane strain, Airy's stress function investigation of simple beam problems, bending of a parrow cantilever beam under and load											
simply	simply supported beam with uniformly distributed load, use of Fourier series to solve two dimensional											
proble	ems.											
		UNIT-III										
Two	Two dimensional problems in Polar co-ordinates 09 Hours											

Basic relations in polar coordinates, Equilibrium equation and strain-displacement relations in polar coordinates, compatibility equation and biharmonic equation in polar coordinates, thick walledcylinder subjected to internal and external pressure, rotating disks of uniform thickness, pure bendingof curved beams.

Torsion of Prismatic Bars

Introduction, Torsion of circular and elliptical cross section bars, Prandtl's Membrane analogy, Torsion of thin-walled sections.

Viscoelasticity

Linear viscoelastic behavior. Simple viscoelastic models-generalized models, linear differential operator equation.

Course Outcomes: At the end of the course student will be able to

1.	Describe the concept of state of stress at a point and determine the components of stress													
	on any given plane and principal stresses;													
2.	Compute the state of strain in an arbitrary plane and principal strains. Co-relate the stress													
	components with strain components using generalized Hooke's law.													
3.	Analyze the two-dimensional problems in Cartesian co-ordinates by applying the concept of													
	Airy's	Airy's stress function and bi harmonic equations.												
4.	Analyz	te the stresses for two-dimensior	nal p	roble	ems	on r	otati	ng d	lisks	in the	e pola	ar coo	ordina	te
	system.													
5.	Deterr	nine the shear flow and shear st	ress	dist	ributi	ion i	n thi	n wa	alled	sectio	ons;	Desc	ribe th	ne
	genera	alized models used for modeling	visc	oela	stic ł	beha	avior							
Cour	se Outo	omes Manning with Program (Duto	ome	s &	PSC	<u>,</u>							
ooui			Juio		.5 0		, 							
		Program Outcomes→	1	2	3	4	5	6		PSO	ļ			
		↓ Course Outcomes	1						1	2	3			
	22MMD121.1 2 2 3 2 2 1 3 1 2													
	22MMD121.2 2 2 3 2 2 1 3 1 2													
		22MMD121.3	2	2	3	2	2	1	3	1	2			
	22MMD121.4 2 2 3 2 1 3 1 2													
		22MMD121.5	2	2	3	2	2	1	3	1	2			

1: Low 2: Medium 3: High

TEXT BOOKS:

- **1.** Timoshenko and Goodier, "Theory of Elasticity", Third Edition, Tata McGraw Hill Book Company, 2010.
 - **2.** Dym C. L and Shames. I. H, "Solid Mechanics : A variational approach", Springer, 2013.

3.	G. T. Mase, R.E. Smelser, R.M. Smelser, G.E. Mase, "Continuum Mechanics for Engineers", Taylor and Francis, 2009.
4.	Sadhu Singh, "Theory of Plasticity and Metal forming Process", Khanna Publishers, Delhi, 1999.
REFE	RENCE BOOKS:
1.	T.G.Sitharam, "Applied Elasticity", Interline publishing, 2008.
2.	L S Srinath, "Advanced Mechanics of Solids", Third Edition, Tata McGraw Hill Company, 2009.
3.	Sadhu Singh, "Theory of Elasticity", Khanna publishers, 2010
4.	Wang. C. T., "Applied Elasticity", McGraw Hill, 1953.
5.	Haffman and Sachs, "Introduction to the Theory of Plasticity for Engineers", Literary Licensing, LLC, 2012.
6.	Dill, Ellis Harold, "Continuum Mechanics: Elasticity, Plasticity, Viscoelasticity", CRC Press, 2006.

COMPUTER GRAPHICS

Cou	rse Code:	22MMD122-1	Course Type	PEC								
Tead	ching Hours/Week (L: T: P)	3:0:0	Credits	03								
Tota	I Teaching Hours	40+0+0	CIE + SEE Marks	50+50								
	Teaching Dep	artment: Mechan	ical Engineering	· · ·								
Cours	se Objectives:											
1.	Apply various types of geometr system.	ic transformations	of 2D objects to place	in a coordinate								
2. To describe mathematically the different types of curves to draw an object												
3.	3. To describe mathematically the different types of surfaces for representing objects											
4.	4. To describe mathematically the different types of solid entities for representing three dimensional solids.											
5.	To understand the transformation	n of a given contin	uous graphics object to d	iscrete pixels								
		UNIT-I										
Trans	formations			15 Hours								
Repre Trans about an art	esentation of points, Transforma formations, Translations and a geo an arbitrary point, arbitrary axis in pitrary line and plane.	tions: Rotation, Formetric interpretat space and axis pa	Reflection, Scaling, Shea ion of homogeneous coor rallel to coordinate axis. R	aring, Combined dinates, Rotation Reflection through								
Туре	s and Mathematical Representat	ion of Curves										
Curve repres synthe spline	e representation, Explicit, Implicit a sentation of Lines, Circles, Ellipse, etic curve, Hermite cubic splines, curves	nd parametric rep , Parabola, Hyperl Bezier curves: Ble	resentation. Nonparametric cola, Conics. Parametric ending function, Propertie	ic and parametric representation of s, generation, B-								
		UNIT-II										
Туре	s and Mathematical Representat	ion of Surfaces		16 Hours								
Surface entities and parametric representation- Plane, Ruled, surface of revolution, Offset surface, Coons patch, Bezier surface, B-spline surface												
Types and Mathematical Representation of Solid entities												
Block, Cylinder, Cone, Sphere, Wedge, Torus, Solid representation, Fundamentals of solid modeling, Set theory, Regularized set operations, Set membership classification, Half spaces, Basic elements, Building operations, Boundary representation and Constructive solid geometry, Basic elements, Building operations.												
	UNIT-III											

	oonvoloion and onpping										09 Hours
Repre algorit Scan Suther	Representation of points, lines, Drawing Algorithms: DDA algorithm, Bresenham's integer line algorithm, Bresenham's circle algorithm, Polygon filling algorithms: Scan conversion, Seed filling, Scan line algorithm. Viewing transformation, Clipping - Points, lines, Text, Polygon, Cohen-Sutherland line clipping, Sutherland-Hodgmen algorithm.										
Cours	se Outcomes: At the end of the course s	tude	ent w	vill be	e ab	le to					
1.	Apply various types of geometric trans system.	form	natio	ns o	f 2D	obj	ects	to p	lace	in a	coordinate
2.	Describe mathematically the different ty	pes	of c	urve	es to	drav	v an	obje	ect		
3.	Describe mathematically the different ty	pes	of s	urfac	ces f	or re	epre	senti	ng ob	jects	
4.	Describe mathematically the different dimensional solids.	type	es of	f sol	id e	ntitie	es fo	or re	prese	enting	three
5.	Apply the transformation of a given con	tinuo	ous g	grap	hics	obje	ect to	o dise	crete	pixels	
Cours	se Outcomes Mapping with Program C	outc	ome	s &	PSC)					
		1	2	2	1	Б	6		PSO	1	
	↓ Course Outcomes	1	2	5	4	5	0	1	2	3	
	22MMD122.1	3	1	3	2	2	1	2	2	2	
	22MMD122.2	3	1	3	2	3	1	3	3	3	
	22MMD122.3	3	1	3	2	3	1	3	1	2	
	22MMD122.4	2	1	3	2	2	1	2	2	2	
	22MMD122.5	3	1	3	2	3	1	3	3	2	
	1: Low 2:	Med	dium	n 3: I	High)					
TEXT	BOOKS:										
1.	IbrahamZeid, CAD/CAM-Theory and P	ract	ice-N	/IcGi	raw	Hill,	200	6.			
2.	 David Rogers & Alan Adams, Mathematical Elements for Computer Graphics-Tata McGraw Hill 2002 										
DEFE											
KEFE											0.07
1.	I. Alang Z, Plastock, R. A, Computer Graphics- Schaum's Outline, McGraw Hill, 2007.										
2.	Foley, van Dam, Feiner and Hughes, Computer Graphics- Principles and Practice-Addison Wesley, 1996.										
3.	Sinha A N., Udai A D., Computer Grap	hics	- Ta	ta M	cGra	aw H	lill, 2	2008.			

1. 2.

3. 4.

5.

COMPUTER APPLICATIONS IN DESIGN Course Code: 22MMD123 Course Type PEC Teaching Hours/Week (L: T: P) 3:0:0 Credits 03 **Total Teaching Hours** 40+0+0 CIE + SEE Marks 50+50 **Teaching Department: Mechanical Engineering** Course Objectives: Understand the geometric transformations and projection methods in CAD. Identify and develop the geometric models to represent curves and surface modelling. Understand the concept of solid models designing for engineering. Analyze the visual realism to the solid modelling. Understand the mesh generation techniques for engineering analysis UNIT-I Introduction to computer graphics fundamentals 15 Hours Output primitives (points, lines, curves etc.,), 2-D & 3-D transformation (Translation, scaling, rotation) windowing - view ports - clipping transformation. Curves and surfaces modelling Introduction to curves - Analytical curves: line, circle and conics - synthetic curves: Hermite cubic spline- Bezier curve and B-Spline curve - curve manipulations. Introduction to surfaces - Analytical surfaces: Plane surface, ruled surface, surface of revolution and tabulated cylinder - synthetic surfaces: Hermite bicubic surface- Bezier surface and B-Spline surface- surface manipulations. UNIT-II NURBS and solid modeling 16 Hours NURBS- Basics- curves, lines, arcs, circle and bi linear surface. Regularized Boolean set operations - primitive instancing - sweep representations - boundary representations - constructive solid Geometry - comparison of representations - user interface for solid modeling. Visual realism Hidden - Line - Surface - solid removal algorithms shading - coloring. Introduction to parametric and variational geometry based software's and their principles creation of prismatic and lofted parts using these packages. UNIT-III Assembly of parts and product data exchange 09 Hours Assembly modeling - interferences of positions and orientation - tolerances analysis - mass property calculations - mechanism simulation. Graphics and computing standards- Open GL Data Exchange standards - IGES, STEP- Communication standards. Course Outcomes: At the end of the course student will be able to Apply geometric transformations and projection methods in CAD Develop geometric models to represent curves and surface modelling.

- 3. Design solid models for engineering design.
- 4. Apply visual realism to the solid modelling
- Apply mesh generation techniques for engineering analysis 5.

Course Outcomes Mapping with Program Outcomes & PSO

Program Outcomes→	1	2	3	4	5	6		PSO.	Ļ
↓ Course Outcomes							1	2	3
22MMD123.1	3	1	2	3	3	1	3	1	1
22MMD123.2	3	1	2	3	3	1	3	1	1
22MMD123.3	3	1	2	3	3	1	3	1	1

1.

2.

	22MMD123.4	3	1	2	3	3	1	3	1	1		
	22MMD123.5	3	1	2	3	3	1	3	1	1		
	1: Low 2: Medium 3: High											
TEXT	BOOKS:											
1.	David F. Rogers, James Alan Adams "	Math	nema	itical	eler	men	ts fo	r com	npute	r gra	phics" second	
	edition, Tata McGraw-Hill edition.2003									-		
2.	Donald Hearn and M. Pauline Baker "	Com	pute	r Gra	aphio	cs", I	Prer	ntice I	Hall,	Inc.,	1992.	
REFE	RENCE BOOKS:											
1.	Foley, Wan Dam, Feiner and Hug	hes	- Co	omp	uter	⁻ gra	aphi	cs p	rincij	oles	& practices,	
	Pearson Education - 2003.					-		-	-		-	
2.	2. Ibrahim Zeid Mastering CAD/CAM - McGraw Hill, International Edition, 2007.											
3.	William M Neumann and Robert F	Sp	orou	II ["] P	rinc	iple	s of	Cor	npute	er G	raphics", Mc	
	Graw Hill Book Co. Singapore, 198	9. [.]				-			-		-	

AUTOMOBILE SYSTEM DESIGN

Cou	rse Code:	22MMD131	Course Type	PEC								
Teac	hing Hours/Week (L: T: P)	3:0:0	Credits	03								
Tota	I Teaching Hours	40+0+0	CIE + SEE Marks	50+50								
	Taaaking Daw											
•		artment: Mechan	ical Engineering									
Cours	se Objectives:											
1.	Select and design the clutch and	propeller of autor	mobile system for a given s	situation.								
2.	Design different types of axles in	automobile syste	m									
Design different types of steering system in automobile system												
4.	4. Design different types of steering system in automobile system											
ວ.	5. Design different types of suspension system in automobile system											
Decia	n of olutob ovotom	UNIT-I										
Desig	n of clutch system											
Desig	n of various clutch system compoi	nents (Single plat	e, multiple plates, centritu	gai ciutch, lining								
Culind	iai) and Pressure Plate Assertibly	components. Hyc	ina bydraulia pipos. Clutch	ponents (Master								
band l	Cylinder, Slave cylinder, reservoir) clutch fluid – its properties, hydraulic pipes. Clutch Pedal & Clutch hand lover design. Clutch cable Design / selection considerations											
Desig	in of propeller shaft											
Desig	n of propeller shaft for bending to	rsion rigidity and	critical speed criteria. Des	sign of universal								
ioint a	ind slip joint	rsion, rigidity and	childar speed chilena. De	sign of universal								
joint a		UNIT-II										
Desig	in of Axle	•••••		16 Hours								
Front Axle beam. Steering Knuckle, King nin, Rear Axle (drive Axle) tube. Design of fully floating, balf												
floatin	a axle and dead axle. Design of F	inal drive and diff	erential: Design of spiral b	evel and hypoid								
type o	f final drive/differential.			, , , , , , , , , , , , , , , , , , ,								
Desig	n of braking system											
Brake	balance, Stopping distance, Brake	e fade, Work don	e in braking, Braking effici	ency, Braking of								
vehicl	e, Braking of vehicle moving in a	curved path, Des	sign of drum brake, Desig	n of disc brake,								
Desig	n of hydraulic brake system, Desig	n of hand brake o	or parking brake.									
		UNIT-III										
Desig	n of steering system			09 Hours								
Condi	tion for true rolling, Turning circle r	adius, Principle o	f Ackermann steering, Acl	kermann-linkage								
geom	etry, Steering gear ratio, Steering I	pox torque, Desig	n of various steering gear	box.								
Desig	n of suspension system		· · · /1 · · ·									
Funct	ion of suspension, Forces act on	suspension, Su	spension springs (laminat	ted or leaf, coll,								
torsio	n bar, rubber spring, pneumatic spi	ring), Design of la	iminated or leaf spring, De	sign of nelical or								
coll st	oring, Design of torsion bar spring.											
Courr	• Outcomese At the and of the as	uree etudent will	ha ahla ta									
Cours	Se Outcomes. At the end of the co											
4	Design the slutch for a siven situ	ation of automob	ile vehicle and design the	nroneller shoft								
1. Design the clutch for a given situation of automobile vehicle and design the propeller shaft												
2	Design the Ayle for a given situat	ion of automobile	vehicle									
2.	Design the steering system for a	ven situation of a	utomohile vehicle									
<u>з.</u>	Design the braking system for give	ven situation of a	Itomohile vehicle									
5	Design the suspension system for	r given situation of	nomobile vehicle									
Cours	se Outcomes Manning with Prog											
	Program Outcomes 1 2 3 4 5 6 PSO											
	Frogram Outcom	co → ∠ 3	4 0 0 F3U ↓									

	Course Outcomes							1	2	3		
	22MMD131.1	3	2	3	3	2	1	2	2	3		
	22MMD131.2	3	2	3	3	2	1	2	2	3		
	22MMD131.3	3	2	3	3	2	1	2	2	3		
	22MMD131.4	3	2	3	3	2	1	2	2	3		
	22MMD131.5	3	2	3	3	2	1	2	2	3		
	1: Low 2: Medium 3: High										J	
TEXT POOKS.												
TEXT	TEXT BOOKS:											
1.	Elements of Motor Vehicles Design by DT	B doi	nkins	<u>, ТМ</u>	H							
2.	Automobile Chassis Design and calculation	ns by	/ P.L	ukin,	Mir	Publ	isher	S				
3.	3. Auto design Problems by K.M.Agrawal, Satyaprakashan.											
4.	Automotive Mechanics by N.K.Glri, Khanr	a Pu	blish	ers								
5.	Machine Design by Sadhusingh, Khanna	Publi	shers	<u> </u>								
6.	Automobile Chassis Design by Dean Aver	ns, L	llife E	Book	s Ltd	(199	92)					
7.	Automobile Engg. Vol - I & II by Kirpal Sin	gh, S	tand	ard F	ub.							
8.	Automobile Engg. Vol - I & II by K.M.Gupt	a, Un	nesh	Pub.								
9.	Auto Design by R.B. Gupta, Satya Prakas	han										
10.	"Mechanical Engineering Design", Fourth Hill International Book Company	Editio	on, b	y Jos	eph	E. S	higle	ey & L	arry D	D. Mite	chell, McGraw-	
11.	Design of Machine Elements by Bhandari	, Tata	а Мс	Graw	/-Hill	Pub	lishir	ng Co	mpan	iy Ltd		
12.	Machine Design by, Sharma and Agrawal	, S.K.	Kata	ria &	Son	S						
13.	Transmission System Design by R.B.Patil	, Tec	hMax	x Put	ο., Ρι	une.						
14.	Machine Design Vol - II & III by F.Haideri,	Niral	Pral	kasha	an, F	Pune	-					
15.	PSG Design Data Book.											
16.	Automotive Chassis by P.M.Heldt , Chilton	n Co.	, NY	(199)2)							
17.	Machine Design by Pandya and Shah, Ch	arota	r Pul	olishi	ng H	louse	Э.					
18.	Machine Design by R S Khurmi J.K.Gupta	i, S cl	hand	& C	э.							
19.	Elements of Motor Vehicles Design by DT	B do	nkins	, ТМ	Н							
20.	Automobile Chassis Design and calculation	ons by	/ P.L	ukin,	Mir	Publ	isher	S				
21.	Auto design Problems by K.M.Agrawal, Sa	atyap	raka	shan								
22.	Automotive Mechanics by N.K.GIri, Khanr	na Pu	blish	ers								
23.	Machine Design by Sadhusingh, Khanna	Publi	shers	5								
E-Sou	Source											
1.	http://nptel.ac.in/											
2.	www.learnerstv.com											
3.	http://auto.howstuffworks.com/											
4.	nptel.iitk.ac.in/											

CREATIVE ENGINEERING

Course Code:	22MMD132	Course Type	PEC								
Teaching Hours/Week (L: T: P)	3:0:0	Credits	03								
Total Teaching Hours	40+0+0	CIE + SEE Marks	50+50								
			00100								
Teaching Depa	irtment: Mechan	cal Engineering									
Course Objectives:											
1 To propare students to understan	d the stops involv	od in the creative thinkir									
 To prepare students to understand To prepare students to apply the vision of thinking 	various technique	s for stimulating creativit	y and innovation								
3. To prepare students to analyze the techniques to design and develop new products.											
4. To prepare students to synthesize	the creative desi	gn with analysis to devel	op new products								
5. To prepare students to develop C											
Introduction Creative thinking	01111		15 Hours								
Blocks to creativity, factors that influence	e creative design	, engineering design an	d creative design,								
influence of society, technology and b technology push, attribute of a creative per CREATIVITY & PRODUCT DESIGN N collection, review & analysis, problem statement initial specifications	Blocks to creativity, factors that influence creative design, engineering design and creative design, influence of society, technology and business on creativity, force field analysis, market pull & technology push, attribute of a creative person, creative thinking in groups, creating a creative climate. CREATIVITY & PRODUCT DESIGN Need or identification of a problem, market survey, data collection, review & analysis, problem definition, Kipling method, challenge statement, problem										
Idea Generation Brain storming, ana morphological method, interaction mat CREATIVE THINKING PROBLEM / quantification, Heros, boundary condi evaluation of ideas, detail design, prototy	logy technique of rix method, anal OPPORTUNIT tions, record dis ping, product dep	or synectics, check lis ysis of interconnected Y Pictures of situations scuss-clarify-verify, reconstructions over the second second second second second second second second second scuss-clarify-verify, reconstructions second	st, trigger words, decision making, on, environment, ording of ideas, ssment, recycling.								
	UNIT-II										
Emotional Design			16 Hours								
Three levels of Design – Viceral, Beha groups, designs with personality – mach personality products, products for gam mathematical, virtual simulation, physica	avioral and Reflect nines that senses nes, fun, people a l simulation, scale	ctive- design by individ emotions and induce e and places; Simulation e down models.	ual and design in motions- Robots, – dimensional or								
Theory Of Inventive Duckless Colving		features of read and									
Theory Of Inventive Problem Solving (Triz) Common features of good solutions – resolve contradiction, use available resource, increase the ideality, trade-off, inherent contradiction, 30 key TRIZ principles – multifunction, preliminary action, compensation, nested doll, blessing in disguise, segmentation, separation, regional influences, symmetry change, opaque & porous, inflate and deflate, color, recycle & recover, phase transformation, energy, imaging, environment, composition, economical, surface response, equipotential, static & dynamic, continuous & intermittent, servo systems, smart systems, dimensions											
Application of Code Approach	UNI I -III										
(a) Cooking stove for rural India; (b) utilizing solar energy; (c) water filtration systems; (d) automation in healthcare; (e) technologies for law enforcement; (f) application of robots to reduce human fatigue (g) Layout of berths in a railway coach.											
Course Outcomes: At the end of the co	urse student will h	be able to									
 Explain the steps involved in the of Apply the various techniques for statements 	creative thinking p stimulating creativ	rocess ity and innovation thinki	ng								

2	Analyze the techniques to design and develop new products											
3.	Analyze the techniques to design and	deve	elob i	iew	proc	iucis	.					
4.	Synthesize the creative design with a	nalysi	s to	deve	elop	new	pro	ducts	5			
5.	Develop CEDA approach for realistic	applic	atio	าร.								
Cours	se Outcomes Mapping with Program	Outc	ome	es &	PSC)						
	Program Outcomes-	· 1	2	3	4	5	6		PSO.	Ļ		
	$\downarrow Course Outcomes \qquad \qquad 1 2 3$											
	22MMD132.1 3 2 2 2 1 1 3 2 3											
	22MMD132.2 3 1 1 2 1 1 3 2 3											
	22MMD132.3	3	2	1	2	1	1	3	2	3		
	22MMD132.4	3	1	1	2	1	1	3	2	3		
	22MMD132.5	2	2	1	2	1	1	3	2	3		
	1: Low 2	2: Me	diun	1 3: I	Higł	า						
TEXT	BOOKS:											
1.	Amaresh Chakrabarti, Creative Engir	ieerin	ig De	esigr	ı Syı	nthe	sis, S	Sprin	ger, 2	2009		
2.	Floyd Hurt, Rousing Creativity: Think	New	Now	/, Cri	isp F	Publ	Inc.	1999), ISE	3N 15	60525479	
3.	Donald A. Norman, Emotional Design	, Per	seus	Boo	oks (Grou	p Ne	ew Y	ork,	2004	, ISBN 123-1-	
	118-027-6											
4.	Kalevi Rantanen & Ellen Domb, Sim	plifie	d TR	IZ –	ll ed	ln., /	Auer	bach	n Pub	olicati	ons, Taylor &	
	Francis Group, 2010, ISBN: 978-142-0062-748											

MECHATRONICS SYSTEM DESIGN

Course Code:	22MMD133	Course Type	PEC								
Teaching Hours/Week (L: T: P)	3:0:0	Credits	03								
Total Teaching Hours	40+0+0	CIE + SEE Marks	50+50								
Tracking Day											
	artment: Mechar	lical Engineering									
Course Objectives:											
		t i	Γ								
1. Design a mechatronics system to	or a specific applic	cation									
Select the sensors and actuators required for mechatronics system Select the sensors and actuators required for mechatronics system Select the sensors and actuators required for mechatronics system Select the sensors and actuators required for mechatronics system Select the sensors and actuators required for mechatronics system Select the sensors and actuators required for mechatronics system Select the sensors and actuators required for mechatronics system Select the sensors and actuators required for mechatronics system Select the sensors and actuators required for mechatronics system Select the sensors and actuators required for mechatronics system Select the sensors and actuators required for mechatronics system											
Design a signal conditioning circuit Linderstand dynamics and control of a mechatronics system											
5. Understand MEMS based system	ns and their fabric	cation methods									
,,,,,,	UNIT-I										
Introduction			15 Hours								
Definition and Introduction to Mechatro	onic Systems, Ov	erview of Mechatronic pr	oducts and their								
functioning, measurement systems, Col	ntrol Systems, Si	nple Controllers, Integrate	ed Design Issues								
in Mechatronics, Mechatronics Design F	Process, Key Elen	nents of Mechatronics sys	tem.								
System Models											
Mathematical models, mechanical syste	m building blocks	, electrical system building	g blocks, thermal								
system building blocks, pneumatic sy	stems build blo	cks. Electro-mechanical	systems, hydro-								
mechanical systems.	ing computer sin	nulations									
Sensors	ing computer sin	nulations.									
Sensors											
stress measurement. Force measurement	ent Vibration_Ac	celeration Sensors Time	of flight sensors								
Binary force sensors. Temperature n	neasurement. Se	ensors for Flow Measure	ement. Pressure								
measurement, Problems, Laser Displac	ement Sensors.										
Active Learning of sensors and their	application.										
	UNIT-II										
Actuators			16 Hours								
Introduction, Electromagnetic Principle	s, Solenoids and	Relays, Electric Motors,	DC Motors, DC								
Motor Electrical Equation, Permanent M	agnet DC Motor,	Dynamic Equations, Elections, Material	ronic Control of a								
Selecting a Motor Hydraulics Hydrau	lic Valves, Hydra	ulic Actuators Proumati	cs Diezoelectric								
Actuators Different types of Piezoelectr	ic Actuators										
Active Learning of actuators and thei	r application.										
Signal Conditioning											
Amplifiers, ideal operational amplifier n	nodel, inverting a	mplifier, non-inverting am	plifier, unity-gain								
buffer summing amplifier, difference	amplifier, instru	mentation amplifier, inte	grator amplifier,								
differentiator amplifier, comparator, sa	ample and hold	amplifier, active filters,	Problems, Data								
acquisition, Introduction, Sampling and	aliasing, Quantiz	zation theory, Digital-to-ar	nalog conversion								
hardware, Analog-to-digital conversion	n hardware, Pro	blems, Protection, Filteri	ng, Wheatstone								
Bridge, Digital signals, Multiplexers, Date Active Learning of Date Acquisition S	ta Acquisition.										
Control theory-Analysis			09 Hours								
Introduction System response Dynamic	characteristics of	a control system Zero-orde	er systems First-								
order systems, Second-order systems.	General second-	order transfer function Sv	stems, Modelina								
and interdisciplinary analogies, Stability	, The Routh-Hun	witz stability criterion, Ste	ady-state errors.								
Proportional, Proportional-Integral, Prop	ortional-Integral-[Derivative controllers, Prob	lems.								
Micro Electro Mechanical Systems (N	IEMS)										

Benefi of reso displace Force biome senso (SMA) micro- Micro Photol	Benefits of miniaturization, Working principles of MEMS and microsystems, Scaling Effect, Sensitivity of resonance frequency to the mass change in a micro cantilever beam, sensitivity of change in displacement with respect to change in acceleration in a spring mass damper system, Trimmer's Force Scaling Vector, scaling in electro static forces, micro sensors, acoustic wave sensors, biomedical sensor, chemical sensors, optical sensors, micro pressure sensors, micro thermal sensors, micro actuators, micro actuation using thermal forces, actuation using shape memory alloys (SMA), micro actuation using electrostatic forces, applications of micro actuations, micro-valves, micro-pumps and micro heat pipes, micro-accelerometers and micro gyroscopes Microfabrication Processes Photolithography, Ion implantation, Diffusion, Oxidation Chemical vapor deposition, Physical vapor deposition (Sputtering), Deposition by epitaxy, Etching.																							
Micromanufacturing																								
Bulk m	Bulk micromanufacturing Surface micromachining LIGA process																							
Active	e learnii	ng c	of M	EMS	S Se	ens	ors	like	e Acc	eler	om	nete	ers,	gyr	oso	ope	es,	an	d P	res	sur	e S	Sens	ors
Cours	se Outco	ome	es: /	۱t th	e ei	nd c	of th	ne co	ourse	stuc	den	t w	ill b	e ab	ole t	2 C								
1.	1. Develop a mathematical model for a mechatronics system consisting of Mechanical, electrical, hydraulic, pneumatic, and thermal systems and simulate the same using software tool.																							
2.	 Design a sensor subsystem for a mechatronics system using IR sensor, laser displacement sensor, ultrasonic sensor, load cell, rotary encoder, draw wire sensor, temperature sensor and tool force dynamometer, inductive pick up, hall effect sensor and force sensing resister. Design an actuator subsystem for a mechatronics system using mechanical relays, solid state relays, DC Motor, Stepper Motor, AC Motor, Piezoelectric actuator, and pneumatic actuator 																							
3.	 3. Design a data acquisition subsystem for Mechatronics system implementing signal conditioning using operational amplifiers for filtering noise signal, summing, differentiating, integrating, subtracting, and comparing the input signals. Design analog to digital converters and digital to analog converters for the specified bit number capacity in a mechatronics system. 																							
4.	Design of pne switche model and the speed	n a l euma es, p for eir s con	PLC atic o prox the imul trol	con cylir imity con atio of D	itrolinder y se trol n us c m	led rs u nso of f sing ioto	pne sing ors, ⁻ irst J sot r	euma g dir flow ord ftwa	atic ad rection contr er and re too	ctuat n co ol va d se l. A i	tion ntro alve cor n al	n ar ol v es a nd (yse	d co alve and orde the	ontre es, dela er sy e eff	ol sy pres ay va /ste ect	/ste ssur alve ms of P	m f e-t s. I (EI 2, P	for s o-e Dev ect -I, F	seq lec /elc ro-i P-l-	tric op ti mec D c	ncing con he n char ontr	g a ve nat nica olle	nd co rters them al sys ers fo	ontrol , limit atical stem) or the
5.	Descri actuato MEMS accele	ibe ors a S se eratio	the and nsoi on of	con the -ba vib	cept mic sed ratii	t of rofa me na c	sca abric echa cant	aling catic atro tilev	in m on tec nics er bea	echa hniq syste am.	anio ues em	cal s u: to	sys sed me	tem to d easu	and leve ire	d the	e N the dis	/EN e M spla	NS EM acei	bas IS d mer	sed levic nt, N	sei ce. /elo	nsors Des ocity	s and ign a ,
Cours	e Outco	ome	es N	app	bing	ı wi	th F	Prog	gram	Out	100	me	s &	PS	C									
				•••																				
$\begin{array}{ c c c c c c c c } \hline Program Outcomes \rightarrow & 1 & 2 & 3 & 4 & 5 & 6 & \hline PSO \downarrow \\ \hline \downarrow Course Outcomes & 1 & 1 & 1 & 3 & 1 & 1 & 2 & 3 \\ \hline 22MMD133.1 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\ \hline 22MMD133.2 & 1 & 2 & 3 & 1 & 1 & 1 & 1 \\ \hline 22MMD133.3 & 1 & 2 & 3 & 1 & 1 & 1 & 1 \\ \hline 22MMD133.4 & 1 & 2 & 3 & 1 & 1 & 1 & 1 \\ \hline 22MMD133.4 & 1 & 2 & 3 & 1 & 1 & 1 & 1 \\ \hline 22MMD133.5 & 1 & 2 & 3 & 1 & 1 & 1 & 1 \\ \hline 22MMD133.4 & 1 & 2 & 3 & 1 & 1 & 1 & 1 \\ \hline 22MMD133.5 & 1 & 2 & 3 & 1 & 1 & 1 & 1 \\ \hline 22MMD133.4 & 1 & 2 & 3 & 1 & 1 & 1 & 1 \\ \hline 22MMD133.5 & 1 & 2 & 3 & 1 & 1 & 1 & 1 \\ \hline 22MMD133.4 & 1 & 2 & 3 & 1 & 1 & 1 & 1 \\ \hline 22MMD133.4 & 1 & 2 & 3 & 1 & 1 & 1 & 1 \\ \hline 22MMD133.5 & 1 & 2 & 3 & 1 & 1 & 1 & 1 \\ \hline 22MMD133.4 & 1 & 2 & 3 & 1 & 1 & 1 & 1 \\ \hline 22MMD133.4 & 1 & 2 & 3 & 1 & 1 & 1 & 1 \\ \hline 22MMD133.4 & 1 & 2 & 3 & 1 & 1 & 1 & 1 \\ \hline 22MMD133.4 & 1 & 2 & 3 & 1 & 1 & 1 & 1 \\ \hline 22MMD133.4 & 1 & 2 & 3 & 1 & 1 & 1 & 1 \\ \hline 22MMD133.4 & 1 & 2 & 3 & 1 & 1 & 1 & 1 \\ \hline 22MMD133.4 & 1 & 2 & 3 & 1 & 1 & 1 & 1 \\ \hline 22MMD133.4 & 1 & 2 & 3 & 1 & 1 & 1 & 1 \\ \hline 22MMD133.4 & 1 & 2 & 3 & 1 & 1 & 1 & 1 \\ \hline 22MMD133.4 & 1 & 2 & 3 & 1 & 1 & 1 & 1 \\ \hline 22MMD133.4 & 1 & 2 & 3 & 1 & 1 & 1 & 1 \\ \hline 22MMD133.4 & 1 & 2 & 3 & 1 & 1 & 1 & 1 \\ \hline 22MMD133.4 & 1 & 2 & 3 & 1 & 1 & 1 & 1 \\ \hline 22MMD133.4 & 1 & 2 & 3 & 1 & 1 & 1 & 1 \\ \hline 22MMD133.4 & 1 & 2 & 3 & 1 & 1 & 1 & 1 \\ \hline 22MMD133.4 & 1 & 2 & 3 & 1 & 1 & 1 & 1 \\ \hline 22MMD133 & 1 & 2 & 3 & 1 & 1 & 1 & 1 \\ \hline 22MMD13 & 1 & 1 & 1 & 1 & 1 & 1 \\ \hline 22MMD13 & 1 & 1 & 1 & 1 & 1 & 1 \\ \hline 22MMD13 & 1 & 1 & 1 & 1 & 1 & 1 \\ \hline 22MMD13 & 1 & 1 & 1 & 1 & 1 & 1 \\ \hline 22MMD13 & 1 & 1 & 1 & 1 & 1 & 1 \\ \hline 22MMD13 & 1 & 1 & 1 & 1 & 1 & 1 \\ \hline 22MMD13 & 1 & 1 & 1 & 1 & 1 & 1 \\ \hline 22MMD13 & 1 & 1 & 1 & 1 & 1 & 1 \\ \hline 22MMD13 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ \hline 22MMD13 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ \hline 22MMD13 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ \hline 22MMD13 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ \hline 22MMD13 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ \hline 22MMD13 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ \hline 22MMD13 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ \hline 22MMD13 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & $																								
	L			22	. IVI IV	וטו	3 3.	ט 1 - ו	014/ 7	<u> 1</u> • M/	- - - - -	4 um	<u> </u>	Hial				1		L	1			
								1:1	_0w 2	. 1716	al	uM	ა: I	nigi	1									
TEXT	воок	S:																						
1.	1. "Introduction to Mechatronics & Measurement Systems" Michel. B. Histand & David. Alciatore, McGrewHill																							
_	_																						р	1.00

2.	Devdas Shetty and Kolk "Mechatronics System Design"-Thomson.												
3.	HSU"MEMS and Microsystems design and manufacture"-TMH												
REFE	ERENCE BOOKS:												
1.	"Mechatronics"-W. Bolton, 2 Ed. Addison Wesley Longman, Pub, 1999												
2.	Mahalik "Mechatronics"-TMH												
3.	"Mechatronics"-HMT, TMH.												
4.	Kamm,"Understanding Electro Mechanica IEngineering an Introduction to												
	Mechatronics"-PHI.												
5.	"Fine Mechanics and Precision Instruments"-PergamonPress, 1971.												

	В		ICS									
		0000000044										
Cou	rse Code: phing Hours/Wook (I · T· P)	22MMD211	Course Type	PEC								
Tota	I Teaching Hours	3.0.0 40±0±0	CIE + SEE Marks	50±50								
1010		rtmonti Mooho		30+30								
Cours	reaching Depa		nical Engineering									
1	Describe the biological mechanic	al and neurologi	cal mechanisms by which	muscles produce								
1.	movement	ai, and neurologi		r muscles produce								
2.	Analyze the forces at a skeletal io	int for various sta	atic and dvnamic human a	activities.								
3.	3. Demonstrate a basic understanding of human Bio-fluid Mechanics.											
4.	4. Understand the cardiovascular, Respiratory, and Implants mechanics.											
5.	5. Recall the general characteristics, material properties, appropriate constitutive model, and											
	adaptation potential for tissue and	organs studied.										
		UNIT-I										
Introc				/ Hours								
Introd	Iuction - Issues in Real Time Com	puting - Structu	re of a Real Time Syster	n - Lask classes -								
and Q	Cheduling - Classical Uniprocesso	ystems - Estimation alo	ing Program Run Times - Iorithms - Uniprocessor c	idsk, Assignment								
tasks	- Task assignment - Mode char	nges and Fault	Tolerant Scheduling (Divergence System								
Funda	amentals, General and Unix OS a	rchitecture Emb	bedded Linux.	poraling oyotom								
Biom	echanics of Joints			7 Hours								
Skele	tal Joints, Skeletal Muscles, Joint F	unction, forces a	and stresses in human joi	nts, Mechanics of								
the El	bow, Shoulder, Spinal Column, Hip	o, Knee, and Ank	kle.									
UNIT-II												
Bio-fluid Mechanics 7 Hours												
The C	Circulatory System in the Human Bo	ody, The Heart a	s a Pump, Nature of Bloo	d, Nature of Blood								
	ry Blood Vessel Bifurcation: An Ar	ssels, Steady D	euille's Formula and Mur	rav's law Flow in								
a Rigi	d-Walled Curved Tube Flow in Col	llansible Tubes	Pulmonary Circulation Th	he Pressure-Pulse								
Curve	in the Right Ventricle, Effect of Pu	Ilmonary Arterial	Pressure on Pulmonary I	Resistance								
				5 Hours								
Introd	uction to cardiovascular Mechanic	s, Respiratory M	lechanics, Applied Biome	chanics, and								
Biome	echanics of Implants											
	-	UNIT-III										
Hard	lissues	T '		7 Hours								
Comr	non Unaracteristics of Biological	TISSUES STRUC	tructural Integrity of Rong	Bone Fractures								
Elasti	c Properties. Viscoelasticity Empir	ical Models of V	iscoelasticity									
Soft 1	lissues			7 Hours								
Struct	ture and function of soft tissues: Te	ndons and Ligan	nents, Skeletal Muscles, A	Articular Cartilage.								
Cours	se Outcomes: At the end of the co	urse student will	be able to									
1.	Describe human movement in bo	th anatomical an	nd mechanical terms.									
2.	Explain and apply the principles different joints.	ot kinetic and ki	nematic data collection a	nd analysis for								
3.	Apply knowledge of fluid mechan to cardiovascular, Respiratory, ar	iics to understan nd Implant syster	d the flow properties of b ns.	lood and its laws								
4.	Discuss and present emerging n the multi-disciplinary collaborative	ew technologies e nature of biome	in the biomechanics fiel echanics research.	d and appreciate								
5.	Apply the concepts and theory of bone.	f viscoelasticity t	o soft tissues, hard tissue	es, cartilage, and								

lΝ

Course Outcomes Mapping with Program Outcomes & PSO													
		1	2	2	1	5	6		DQ				
		1	2	5	4	5	0	1	2	ע ג			
	22MMD211.1	3	2	3	1	1	3	1					
	22MMD211.2	3	2	3	1	1	3	1	1	1			
	22MMD211.3	3	2	3	1	1	3	1	1	1			
	22MMD211.4	3	2	3	1	1	3	1	1	1			
	22MMD211.5	3	2	3	1	1	3	1	1	1			
	1: Low 2: Medium 3: High												
n Low 2. modian o. mgn													
REFE	RENCE BOOKS:												
1.	Y C Fung, Biomechanics: Mechanical Properties of Living Tissues, Springer, 2nd edition, 1993.												
2.	N. Ozkaya and M. Nordin, Fundamentals of Biomechanics-Equilibrium, Motion and Deformation, Springer-Verlag, 2nd edition 1999												
3.	Duane Knudson, Fundamental of bion	nech	anic	s, Sp	oring	er, 2	2nd e	editio	n 200)7			
4.	D. J. Schneck and J. D. Bronzino, Bio	med	han	ics-	Prine	ciple	es ar	nd Ap	oplica	tions	, CRC Press,		
	2nd Edition, 2000												
5.	Joseph D, Bronzino, "The Biomec edition, 2006.	lical	Eng	linee	ering	g Ha	ndb	ook'	', CF	RC P	ress, 3rd		
6.	Mow, Van C.; Huiskes, Rik, Basic C 3rd Edition,2005, Lippincott Willian	Ortho าร &	opae Will	edic kins	Bio	mec	han	ics a	nd N	/lecha	ano-Biology,		
7.	Krishnan B Chandran, Ajit P Yogar	atha	an, S	Stan	ley I	E Ri	ittge	ers, E	Bioflu	id Me	echanics the		
	numan circulation, CRC Press, Tay		<u>x⊢r</u>	anci	s G	roup)			l			
8.	CRC Press												
9.	Ayyaswamy, P. S. (2016).Introduction to Biofluid Mechanics. Fluid Mechanics, e1- e73. doi:10.1016/b978-0-12-405935-1.00016-2												

EXPERIMENTAL STRESS ANALYSIS

C		00000000										
	ise Code:		Course Type									
Teac	Toaching Hours	3:0:0		U3 50.50								
Tota				30+30								
•	Teaching Depa	rtment: Mechani	cal Engineering									
Cours	se Objectives:											
1.4		<u> </u>										
1.	Differentiate between stress and stechniques and be aware about the	strain and betweer	n experimental stress ai nents in the field	halysis with other								
2	Use electric resistance strain da	ides for strain me	asurement by identifyin	a the types their								
	characteristics, performance, in	nfluence of the	environment, the ci	ircuits used for								
	measurement and the commonly used strain gauge arrangements.											
3.	3. Discuss about photoelasticity for stress measurements by recognizing the laws, effects,											
1	Discuss about photoelastic coatin	as for stress and (strain measurements ar	nd differentiate its								
4.	behaviour from photoelastic mode	el materials.										
5.	Present information about Hol	ography and Mo	ire techniques for str	ress and strain								
	measurements											
				15 Hours								
0.00	view of Experimental stress and	weie analytical	numerical and averaging	ontal approaches								
speci	fic domain of these approaches, a	idvantages and di	isadvantages	ental approaches,								
Introc	luction to stress and strain											
Recei	nt developments in experiment	al stress analysi	is techniques - Shear	rography, Speckle								
Interfe	erometry, Thermoelastic stress and	lysis and Digital Ir	nage Correlation									
Electi	cical resistance gauges - Introdu	ction - physical pl	rincipie, strain sensitivity	ty of gage metals,								
gaye	construction, gage sensitivity an	u yaye laciol, il strain gage circui	ts – Potentiometer W	/heatstone bridge								
const	ant current and voltage circuits	stant gage circu		ficatstolle blidge,								
Strain	rosettes - introduction, two eleme	ent, three element	, rectangular and delta	rosettes.								
	· · · · · · · · · · · · · · · · · · ·	UNIT-II										
				15 Hours								
Trans	mission photoelasticity - physic	al principle, histori	ical development, birefr	ingence, nature of								
light,	Polarization, methods to get polar	ized light, plane a	and circular polariscope	, stress-optic law,								
wavep	plates, Isoclinics and Isochromatics	, Fringe order dete	ermination, Tardy's Corr	pensation method								
and fr	inge multiplication techniques											
Photo	belastic coatings – introduction,	strain-optic relation	on for coating, evaluati	on of coating and								
speci	men stresses, correction factors f	or photoelastic co	oatings, coating mater	ials, properties of								
coatir	ng materials, selection of coating t	thickness										
Brittle	e coatings - introduction, brittle coa	ating technique pri	nciples, crack patterns	produced, steps in								
brittle	coating tests, coating selection and		ion.									
Maira	tochnique introduction goomet	trical approach d	isplacement enpresses	in plane and out								
	moiré methode, moiré photograp	hy and mairs arid	production									
	ranby - introduction difference b	etween normal nt	otography and hologra	anhy equation for								
nlane	and spherical waves recording a	ind reconstruction	process intensity and	coherence								
Holon	raphic interferometry. Real time an	d Double exposur	e methods.									
Cours	se Outcomes: At the end of the co	urse student will b	e able to									

I٧

1.	Differe	entiate	betw	veen ex	kperime	ental stre	ess a	inaly	vsis v o fio	vith : Id	anal	ytica	l and	l num	nerica	al technic	lues
2		n tha u		f alactr	ie rocie	tonco ct	roin			or ct	roin	mor	ouro	mont	by ic	lontifuinc	1 tho
Z .	Expla	thoir o	se o bara	ctoristi		formance		yau	jes i	of th		wiro	nmor	nt th			d for
	measi	iremer	nt an	d the c	ommor	nlv used	strai	in as		arra		men	innei ite	it, uit			
2	Discut				eticity	for stress	s me		romo	onte	hy r		no. Inizin	a the		s offocts	
з.	Discus		u pri dir		ontotio		2 1116	asu ata (btoi	nod	ond	ito c	u i zi i	iy ine sis		s, enecis	,
1	Discur		<u>30, 11</u> 11 ph	oto olo		atings fo	u, u r ctra		und c	trair			illaly:	515. ntc. 01	nd di	fforontiat	o ito
4.	behav	iour fro	om pl	hoto el	astic r	odel ma	teria	ils.	inu s	ouali	me	asui	eme	nis a		nereniiai	
5.	Discuss about Holography and Moire techniques for stress and strain measurements																
Course Outcomes Mapping with Program Outcomes & PSO																	
Program Outcomes \rightarrow 1 2 3 4 5 6 PSO																	
		↓ Cοι	urse	Outco	mes				-	-	-		1	2	3	-	
			22	MMD2	212-1.1		1	2	3	2	3	3	1	3	3		
			22	MMD2	212-1.2		1	2	3	3	2	3	1	1	3		
			22	MMD2	212-1.3		1	2	3	1	3	3	1	2	3		
			22	MMD2	212-1.4		1	2	3	2	1	3	1	1	3		
			22	MMD2	212-1.5		1	2	3	2	2	2	1	3	2		
					1	: Low 2:	Me	diun	n 3: I	High	Ì					-	
TEXT	BOOK	S:															
1.	K.Ra	mesh, e	e-boo	ok on E	Experin	nental St	tress	s Ana	alysis	s (D'	VD N	Лedi	a), II ⁻	T Ma	dras,	2009.	
2.	J.W.E	Dally ar	าd W	.F.Rile	y, Expe	erimenta	l Str	ess	anal	ysis,	Mc	Grav	v Hill	, 199	1.		
3.	L.S.S	rinath,	M.R	.Ragha	avan, K	(.Lingaia	h, G	.Gar	gesa	а, В.	Pan	t and	l K.R	ama	chan	dra,	
	"Expe	eriment	al St	ress A	nalysis	, Tata M	lcGra	aw ⊦	<u>lill, 1</u>	984			<u>.</u>	<u>.</u>	<u>.</u>		
REFERENCE BOOKS:																	
1. Sadhu Singh, Experimental Stress Analysis, Khanna Publishers, 2009.																	
2. U.C.Jindal, Experimental Stress Analysis, Pearson 2013.																	

SMART MATERIALS AND STRUCTURES

Course Code: 22MMD213 Course Type PEC												
Teac	hing Hours/Week (L: T: P)	3:0:0	Credits	03								
Tota	I Teaching Hours	40+0+0	CIE + SEE Marks	50+50								
	Teaching Dep	artment: Mecha	nical Engineering									
Cours	se Objectives:											
1.	Study the basic concepts and ap properties and effects of piezoel	plications of vario ectric material.	us types of smart structures a	along with the								
2.	To carry out modeling of beams understand the mechanism of a	subjected to pur	e bending harmonic excitation ale and double actuators.	on and								
3.	To study the concept and effect	of shape memory	alloys along with their applic	cations								
4. To understand the mechanism, properties and applications of electrorheological and												
magnetorheological fluids.												
5. To study the mechanical properties and scaling of MEMS materials along with modeling and												
15 Hours												
Smart	t structures: Types of Smart Strue	ctures, Potential F	easibility of Smart Structures	, Key elements								
of Sr	nart Structures, Applications c	of Smart Structu	ires. Piezoelectric material	ls, Properties,								
piezoe	piezoelectric Constitutive Relations, De poling and Coercive Field, field strain relation. Hysteresis,											
Creep and Strain rate effects, Inchworm Linear Motor.												
Beam Modeling: Beam modeling with induced strain Rate effects, Inchworm Linear Motor Beam												
Rendi	ng harmonic excitation Bernoulli-	Fuler beam Mode	a problems Piezo-electrical	applications								
Denai		UNIT-II										
				15 Hours								
Shape	e memory Alloy: Experimental Ph	enomenology, Sł	nape Memory Effect, Phase T	ransformation,								
Tanak	a's Constitutive Model, testing o	f SMA Wires, Vil	oration Control through SMA	A, Multiplexing.								
Applic	ations of SMA and Problems.	nunnaution Fluid	Composition and hohowing	The Dingham								
Plasti	and related models. Pre-Vield F	Properties, Fluid Response Post-Y	ield flow applications in Clut	ches Dampers								
and O	thers.			ches, Dampers								
		UNIT-III										
MEMS	3			10 Hours								
Mecha	anical Properties of MEMS Materia	als, Scaling of Me	chanical Systems, Fundamer	ntals of Theory,								
Intrins	ic Characteristics of MEMS, Min	iaturization, Micro	oelectronics Integration. Mod	deling, Control								
Strate	gles and Limitations, Active Struc	tures in Practice.										
Cours	• Outcomes: At the and of the c	ourso student will	be able to									
Cours	se outcomes. At the end of the c											
1.	Explain the basic concept. type	s and application	ns of various smart structure	es alona with								
	hysteresis, creep and strain rate	effect of piezoele	ectric materials.	3								
2.	Model beams using Bernoulii-Eu	uler beam model	subjected to pure bending ha	armonic								
excitation.												
3.	Describe the shape memory ef	tect along with a	applications of shape memo	ry alloys and								
4.	Explain the mechanism and prov	perties of FR and	MR fluids along with their an	plications								
5.	Discuss the mechanical propert	ies of MFMS mat	terials and scaling of mechan	nical systems								
	along with modeling and active of	control of smart st	tructures.									
Cours	se Outcomes Mapping with Pro	gram Outcomes	& PSO	I								
	Program Outcor	- nes→ 1 2 3	3 4 5 6 PSO ↓									
				<u>.</u>								

		↓ Course Outcomes							1	2	3		
		22MMD213.1	2	2	2	3	2	2	2	2	2		
		22MMD213.2	3	3	3	2	3	2	3	3	3		
		22MMD213.3	3	2	2	3	3	2	3	1	3		
		22MMD213.4	2	3	1	2	2	2	1	2	2		
		22MMD213.5	3	1	3	3	3	2	3	3	3		
		1: Low 2:	Med	dium	n 3: I	High	1				L	•	
TEXT	BOOK	S:											
1.	M. V.	M. V. Gandhi and B. S. Thompson, Smart Materials and Structures, Chapman and Hall,											
	London, New York,1992(ISBN:0412370107).												
2.	B.Cul	shaw,SmartStructuresandmateria	als,A	rtec	hHo	use,	Bost	on,1	996(ISBN	1:089	0066817).	
3.	A. V.	Srinivasan, Smart Structures: An	alysi	is ar	nd De	esigr	n, Ca	ambi	ridge	Univ	versity	y Press,	
	Camb	oridge; New York, 2001(ISBN:052	2165	026	7).								
REFE	RENCE	BOOKS:											
1.	A. J. I	Moulson and J. M. Herbert, Electi	o ce	eram	ics: l	Mate	erials	s, Pr	operl	ties a	nd A	pplications,	
	John	Wiley & Sons, ISBN:0471497429).										
2.	Piezo	electric Sensories: Force, Strain,	Pre	ssur	e, Ao	ccele	eratio	on a	nd A	coust	tic En	nission	
	Sense	ors. Materials and Amplifiers, Spr	inge	r, Be	erlin	New	/Yorl	<,20	02(IS	BN:3	35404	122595).	
3.	K.Ucł	nino,PiezoelectricActuatorsandWt	raso	nicN	lotor	s,Kl	uwe	rAca	demi	icPut	olishe	rs,Boston,19	
	97(IS	BN: 0792398114).											
4.	G. En	gdahl, Handbook of Giant Magne	etost	rictiv	ve Ma	ateri	als,	Aca	demi	c Pre	ss, S	an Diego,	
	Calif,	London.2000 (ISBN:012238640)	().										

DESIGN AND CONTROL OF ROBOTIC MANIPULATOR

Course Code:	22MMD221	Course Type	PEC
Teaching Hours/Week (L: 1: P)	3:0:0		03
Total Teaching Hours	40+0+0	CIE + SEE Marks	50+50
Teaching Depa	rtment: Mechan	ical Engineering	
Course Objectives:	_		
1. Understand 3D Homogeneous ve	ctor transformation	ons with reference to the	robotic
applications			
2. Formulate the direct and inverse i	kinematics solution	n for Robotic manipulate	JIS
5. Onderstand the robot differential 1	for robot manipul	pulator Jacobian	
5 Understand robot trajectory plann	ing and control	1015	
	UNIT-I		
Introduction to robotics			14 Hours
Robot anatomy Links and joints Degre	e of Freedom a	rm configuration Wrist of	configuration End
effectors Coordinate frames Manning	i Manning hetv	veen rotated frames M	Vanning between
translated frames Mapping between rot	ated and translat	ed frames Description of	of object in space
Problems			n object in optice,
Active Learning of 3D homogeneous Tra	nsformations.		
Direct Kinematics and Inverse kinematic	s: Mechanical str	ructure and Notations, D	escription of links
and joints, Kinematic Modeling of the	manipulator, De	enavit – Hartenberg no	otation, Kinematic
relationship between adjacent links, M	lanipulator trans	formation matrix, Probl	ems, Manipulator
workspace, Solvability of inverse kinema	tic model, Exister	nce of solution, Multiple s	solutions, Solution
technique, Closed form solution, Guidelir	nes to obtain clos	ed form solutions, Proble	ems.
Active Learning of Direct and inverse			
			13 Hours
Manipulator Differential Motion and Stati	cs: Linear and an	aular velocity of rigid boo	ty Linear velocity
Angular velocity l inear velocity due t	o angular motion	n Combined linear and	angular motion
Relationship between transformation ma	atrix and angular	velocity. Mapping veloci	tv vector. Velocitv
propagation of a link, Angular velocity o	of a link, Manipula	ator Jacobian, Jacobian	computation, The
prismatic joint Jacobian, The rotary	joint Jacobian,	Jacobian inverse, Jac	obian singularity,
Computation of singularities, Wrist singu	larities, Arm singu	ularities, Problems.	• •
Active Learning of Robot Jacobian an	d robot singular	ities.	
	UNIT-III		
	·		13 Hours
Robot Dynamics: Lagrangian mechanic	s, Two degree o	f freedom manipulator -	- dynamic model,
Lagrange - Euler formulation, Velocity o	if a point on the n	nanipulator, The inertia	tensor, the kinetic
energy, The potential energy, Equation	of motion, The L	E dynamic model algori	tnm
Robot Hajectory Planning and Control	oav joint chaco t	ochniques Lleo of a n)ogroo polynomial
as interpolation function. Cubical polynom	nial trajectories Δ	echniques, use of a p- L straight_line nath Δ circ	ular nath Position
path. Orientation path Joint-space versu	s Cartesian space	e. trajectory planning pro	oblems. Onen and
closed loop control. The manipulator c	ontrol problems.	Characteristic of the se	econd order linear
system, Model of a DC motor, Partitione	d PD control sche	eme, Effect of an externa	al disturbance.PID
control scheme, Computed Torque Control	rol, Force control	of Robotic Manipulator.	,
Active Learning on Derivation of Dyn	amic equation	of motion for 2DOF a	ind 3DOF robot
configurations			
Course Outcomes: At the end of the co	urse student will	be able to	

1.	Solve	СС	mp	lex	\mathbf{C}^{2}	BD	h	om	log	jen	eou	is tra	nsfor	m	atio	ons	invo	olvi	ng	m	ultiple	e r	rota	tior	n	and i	multi	ple
	transla	atic	ns	of	n	0	/in	g١	co	ord	inat	e sys	tem	w	vith	res	pec	t to	a	re	feren	nce	e co	oro	dir	nate	syste	m.
	Comp	ute	e the	ə r	ota	atio	on	m	atr	ix f	or t	he ro	atior	۱ c	of n	novi	ng o	00	rdir	nat	e sys	ste	m a	abo	but	an a	arbitra	ary
	axis. (Co	mpι	ute	tł	ne	in	/ei	se	e tra	ansf	iorma	tion	ma	atri	ces.	Re	pre	se	nt	the v	/ec	tor	in	di	fferer	nt	
	coordi	ina	te s	ys	te	m																						
2.	Comp	ute	e th	e (lir	ЭC	t k	ine	em	atic	cs a	ind Ir	vers	e I	kin	ema	tics	so	lut	ion	for 2	2R	R PI	ana	ar,	Cyli	ndric	al,
	3R, 5F	Rа	nd	S	CA	R/	٩r	ob	ot.	. Co	omp	are t	ne di	re	ct a	and	inve	erse	e ki	ne	matic	CS	sol	utio	n	obtai	ined	for
	differe	ent	hor	ne	р	S	tio	ns	ot	i a i	robc	<u>)t.</u>											_					
3.	Comp	ute	e the	ЭJ	ac	ot)ia	n n	na	trix	tor	2R P	anar	, C	Cyl	ndri	cal,	3R	, 5	R,	SCA	R/	A ro	bol	t a	nd ca	alcula	ate
	their s	ing	ula	r c	on	tig	ur	atio	ons	s. Ľ)eve	elop a	robc	ot c	cor	itigu	ratio	ona	anc	lde	emor	nst	rate	e its	sa	rm ai	nd wr	ist
	singula	arr			<u>/</u> :									_					. IC					- I: ·			l	
4.		ute ion	e m of	e I mr	∕.Iľ ∖ti/	iei nn	.IC for	er r a	ier 2F	yy 7 P	anc nel	i pote ar rok	otus	e in	ene na I	iyy aar	or∠ ana	ו א: ם_ ו	-1a -111	na or	i i 00 meth	JOT.	. 5 1		e	me a	ynan	IIC
5	Comp		the		hin	/// t ti	rai		ے tor			snlac	ame	nt nt	Ve	loci	tv a	nd		പ	Arati	on	۰. ۱۸/۱۱	th r	20	nect	to tin	
J.	of pris	ane am	atic	יר גר	nd.	ro	aj ta	зсі nv	ioi	nt f	וט) for t	spiac the ai	ven	n, i∩i	int	disr	ly, d Iace	iniu 2ma	nt	ar	nd tin	ne ne	sn	ecit	es fic	ation	io un is liei	
	cubic	prismatic and rotary joint for the given joint displacement and time specifications using bic polynomial trajectory planning and Trapezoidal velocity trajectory planning schemes.																										
	Desia	prismatic and rotary joint for the given joint displacement and time specifications using bic polynomial trajectory planning and Trapezoidal velocity trajectory planning schemes.																										
	c . g						•									-]•.												
Cours	se Outc	esign a PID controller for dc motor driven robot joint.																										
		Τ			P	0	gra	im	0	uto	com	ies→	1		2	3	4	5		6			PS	O↓				
		\downarrow	Со	ur	se	C)ut	CO	m	es											1	2	2	3				
					2	22	۸N	۱D	22	1.1	l		2		1	3					1		1	1				
					2	2	٨N	١D	22	1.2	2		2		1	3					1		1	1				
					2	22	MN	۱D	22	1.3	;		2		1	3					1		1	1				
					2	22	MN	۱D	22	1.4	ł		2		1	3					1		1	1				
					2	22	MN	۱D	22	1.5	;		2		1	3					1		1	1				
											1: L	.ow 2	: Me	di	um	ı 3:	Hig	h										
TEXT	BOOK	<u>S:</u>																										
1.	Robot	tics	an	d (Co	ntı	ol	, R	K	Mit	thal	and	JN	ag	rat	h, N	lcG	raw	Hi									
2.	Introdu	uct	ion	tc	F	So	bo	tics	s A	٩na	alysi	is, Ni	ku, S	6.E	З.,	Sys	tem	IS,	Ap	plio	catio	ns,	, P	ear	sc	n Eo	Jucat	ion,
	2008.				_																							
REFE	RENCE	<u> </u>)K	<u>S:</u>						<u> </u>	<u> </u>															<u></u>	
1.		uct	ion	to	R	ob	oti	cs	: N	lec	han	ics ai	nd Co	on	tro	I -2r	nd E	diti	on	-Cr	aig, .	J.J	I., A	١dd	iso	on, M	/else	у,
	2nd ed	diti	on	19	89		<u>a</u> k	<u>.</u>		Λ.	<u>n c l</u>	<u>, elc.</u> c	<u> </u>				: I'			-		~	000					
Z .	Funda	ame Higg			01	R			CS	, Al	naiy	isis a				1- 50			<u>к.</u>	J.,	PHI,	20			~		<u> </u>	
2	Kobot	lics		nt 1	ol וסר	, ະ 7	ber	ISI	ng	, vi	ISIO	h and	Intel	шg	jen	ce-	ru I	1.5	., C	٦Or	izale	Z I	ЧŬ	,, L	_ee	е С.,	5.G.	,
ა.	IVICGra	aw		, I :	98	1.																						

DESIGN FOR MANUFACTURING

Com	rse Code:	22MMD222	Course Type	PFC
Teac	ching Hours/Week (L: T: P)	3:0:0	Credits	03
Tota	I Teaching Hours	40+0+0	CIE + SEE Marks	50+50
	Teaching Don	artment: Mechan		
Cours	se Objectives:		ical Lighteening	
ooura				
1	To teach students various steps	in the product dev	elopment process and th	e significance of
	early phases of design			
2.	To teach fundamental principles	of design and a	pplication of these princi	ples in practical
	design problems.	5		
3.	To teach design of systems for e	ase of assembly a	and manufacture	
4.	To teach interrelations among pa	art geometry, toler	ances, materials and ma	nufacturing
	processes			
5.	To teach principles of robust de	sign procedures a	and how to set values fo	r various design
	variables.			
		UNIT-I		45.11
				15 Hours
Mater of earl Select mater	tal and Process Selection: Introd ly materials and process selection tion of materials, Primary process ials.	uction, Advantage , Selection of Man / materials selection	es of applying DFMA, Gen ufacturing processes, Pro on, Systematic selection	eral requirements ocess capabilities, of processes and
Engin Tolera surfac Datur datur	neering Design Features: Dir ances, Assembly limits, achievir ces, holes. Examples. m features – Functional datum, n. Examples	nensioning, Tole ng larger machin Machining seque	rances, General Tolera ning tolerances. Screw nce, manufacturing datu	ance, Geometric threads, Ground um, changing the
Comp Screw holdin	ponent Design - Machining Cons vs, Reduction in machining areas, vg, surface grinding, Examples.	iderations: Drills, Simplification by	Milling cutters, Drilling, K separation and amalgam	eyways, Dowels, ation, work piece
		UNIT-II		
				15 Hours
Comp holes, Desig Syster Introd Rules Desig finishi compa	oonent Design – Casting Conside , identifying parting line, special sa on for Injection Molding and Shee ms, molds, machine size, cycle tin uction to sheet metalworking, De on for Die Casting and Powder M ng, Assembly techniques, Des action characteristics, Tooling, Sin	erations: Pattern, and cores, designin et Metal Working: ne, Cost estimatio dicated Dies and 8 Metal Processing sign principles, atering, Design gui UNIT-III	Mould, parting line, cast ng to obviate sand cores. Injection molding materia n, Insert molding, Design Press working, Press s Hours. : Die casting alloys, cycle Powder metallurgy pro idelines	holes, machined Examples als, Molding cycle, guidelines, elections, Design e, machines, dies, acessing, stages,
Geor	netric Tolerance			10 Hours
Symb	ols. Three datum concept of dir	mensioning Strai	ahtness, concentricity F	Run-out. Location
Tolera	ance, Assembly of parts having cor	ncentric cylinders.	Control of feature location	n by true position.
Body	of revolution, Roundness, Profile of	dimensioning, Tap	ers, Shaft of two diameter	ers. Examples.
	· · ·	<u> </u>		•
Cours	se Outcomes: At the end of the co	ourse student will	be able to	
1.	Establish a list of candidate mate functional requirements and sele	erials for each com ection criteria base	ponent of design through d on loading.	n identification of

lΝ

2.	Identify experin require	 control factors, noise factors, ment to establish relation betwee ements. 	and n va	an riou	app s de	ropr sign	iate vari	orth able	ogon s and	ial ai d per	ray t forma	o set up ance) an	
3.	Evalua	te and improve the assembly effi	cier	icy fo	or a	give	n pro	oduc	:t.					
4.	Identify	/ and apply the suitable manufac	turin	ig pr	oces	ss to	pro	duct	or pi	roduc	t mix			
5.	Apply manufa	all of the design methods learne	ed in ve to	n thi o var	s co iatio	urse ns).	e to	rede	sign	a pr	oduct	for ease	e of	
-														
Cours	se Outc	omes Mapping with Program O	outc	ome	s &	PSC)							
	г			-	-		-		1					
	-	Program Outcomes→	1	2	3	4	5	6	-	P3	SO↓			
	-	$\begin{array}{c c c c c c c c c c c c c c c c c c c $												
		22MMD222.1	2	2	2	2	3	3	1	3	3			
		22MMD222.2	2	1	1	3	2	3	1	1	3			
		22MMD222.2 2 1 1 3 2 3 1 1 3 22MMD222.3 2 2 1 1 3 3 1 2 3												
		22MMD222.4	2	1	1	2	1	3	1	1	3			
		22MMD222.5	2	2	2	2	2	2	1	3	2			
		1: Low 2:	Med	nuit	ו 3: I	High)							
	-													
TEXT/	/REFER	ENCE BOOKS:												
1.	Produ	ct Design for Manufacture and	Ass	emt	oly -	Geo	offre	y Bo	othr	oyd -	Pete	er Dewhu	urst -	
	Winst	on Knight - Marcel Dekker, Inc	Nev	vyor	k - S	Seco	nd F	Revis	sion,	ISBN	0-82	247-0584	I-X	
2.	Desig	Designing for Manufacturing - Harry Peck - Pitman Publications - 1983.												
3.	Dimer	Dimensioning and Tolerance for Quantity Production - Merhyle F Spotts -Inc. Englewood												
	Cliffs	 New Jersey – Prentice Hall, 5 	oth e	diti	on.									

FRACTURE MECHANICS

Cou	rse Code:	22MMD223	Course Type	PEC
Teac	hing Hours/Week (L: T: P)	3:0:0	Credits	03
Tota	I Teaching Hours	40+0+0	CIE + SEE Marks	50+50
	Teaching Depa	rtment: Mechani	cal Engineering	
Cours	se Objectives:		<u> </u>	
1.	Understand material failure for	any combination	of applied stresses & es	stimate failure
	conditions of a structure.			
2.	Determine the near field equatio fields around a crack tip	ns to determine	the stress-strain and load	-displacement
3.	Identify and formulate stress inter tip for linear materials.	nsity factor, and th	e stress and strain fields a	round a crack
4.	Identify and formulate stress int nonlinear materials.	ensity factor, CT	OD and strain energy re	lease rate for
5.	Calculate and predict fracture tou methods to determine the fracture	ghness of materia	als and be familiar with the	e experimental
1				
		UNIT-I		
				15 Hours
cracks appro mecha The A Specia	s. Stress concentration due to ellipt ach. Fracture mechanics approach anics, Numerical problems. Airy stress function: Complex stre al cases, Elliptical cracks, Numerica	ical hole, Strength to design. NDT a ss function. Soluti al problems	ideal materials, Griffith's nd Various NDT methods on to crack problems. Effe	energy balance used in fracture ect of finite size.
		UNIT-II		
				15 Hours
Linea appro Dugda Nume Elasti for cra	r plastic fracture mechanics: ach. The shape of the plastic zone ale model. Plastic constraint factor. crical problems. c plastic fracture mechanics: Fra- ack growth. The crack resistance (F	Plasticity effects, for plane stress The Thickness eff cture beyond gene curve), Complian ffecting the critics	Irwin plastic zone corre and plane strain cases, Di ect, Residual stress effect eral yield, The energy releance, J integral, Tearing mo	ection. Dugdale fferent forms of on plastic zone, use rate, Criteria odulus, Stability.
Crack	branching Principles of crack arrow	necung the childa	nractice Fatigue crack pr	onadation and
applic	cations of fracture mechanics: C propagation.	rack growth and th	ne stress intensity factor. F	actors affecting
	r r - r	UNIT-III		
Deter	mination of Stress intensity facto	ors and plane str	ain fracture toughness	10 Hours
Introd deterr Size r	uction, experimental methods, nination of CTOD, Plane strain fract equirements. Non-linearity, Numeri	estimation of ture toughness test cal problems.	stress intensity factors. st, The Standard test, nume	Experimental erical problems.
Cours	se Outcomes: At the end of the co	urse student will h	be able to	
Jours				
1.	Elaborate fracture mechanics app Griffith's criterion	proach to design a	nd failure conditions of a s	structure using
2.	Compute the near field equations around a crack tip using complex	to calculate the s stress function m	tress-strain and load-displaethod.	acement fields
3.	Determine stress intensity factor, around a crack tip for linear mater	strain energy rele	ease rate, and the stress a	nd strain fields

· · ·												<u> </u>
4.	Comp	oute J-Integral and CTOD as el	asti	c fra	ctur	e m	echa	anic	s pai	rame	ters a	and explain
	stabili	ty criterion for non-linear materia	ls a	nd C	alcu	ulate	the	e fati	gue	life o	f stru	ctures using
	fractu	e mechanics approach.										
5.	Calcu	late fracture toughness of mater	ials	usin	a nu	mer	ical	met	hods.	and	AST	M standards
	for me	tals and non-metals.			5							
												I.
Cours	se Outo	omes Mapping with Program C)utc	ome	s &	PSC)					
		<u></u>					-					
		Program Outcomes→	1	2	3	4	5	6		PS	60 ↓	
		↓ Course Outcomes							1	2	3	
	Course Outcomes 1 2 3 22MMD223.1 3 1 2 3 - 1 3 2 1 22MMD223.2 3 1 2 3 - 1 3 2 1 22MMD223.2 3 1 2 3 - 1 3 2 1 22MMD223.3 3 1 2 3 - 1 3 2 1											
		22MMD223.4	3	1	2	3	-	1	3	2	1	
		22MMD223.5	3	1	2	3	-	1	3	2	1	
		1: Low 2:	Mee	diun	n 3: I	High	1					
TEXT	BOOK	S:										
1.	Broek	David, Elementary Engineering	Frac	ture	Med	chan	ics,	3rd	Rev.	Ed. S	Spring	ger, 1984
2.	Ande	rson T.L., Fracture Mechanics, 2r	nd E	ditio	n, Cl	RC I	^{>} res	s, 20	005.			
REFE	RENCE	BOOKS:										
1.	Engir	eering fracture mechanics - S.A.	Meg	guid	Else	vier.						
2.	Prash	nant Kumar, Elements of fracture	mec	hani	cs, I	ИcG	raw	hill l	Educ	ation	(I) Pv	vt., Ltd
3.	Fract	ure and Fatigue Control in Structu	ires	- Ro	lfe a	nd E	Bars	om,	Pren	tice I	-lall.	
4.	Introc	luction to fracture mechanics - Ka	ren	Hell	an, N	ИcG	raw	Hill				

COMPOSITE MATERIALS TECHNOLOGY

Cou	rse Code:	22MMD231	Course Type	PEC
Teac	hing Hours/Week (L: T: P)	3:0:0	Credits	03
Tota	I Teaching Hours	40+0+0	CIE + SEE Marks	50+50
	Teaching Depa	artment: Mechan	ical Engineering	
Cours	se Objectives:			
			<u>e</u>	
1.	Student should be able to identify	the properties of	fiber and matrix materials us	sed in
2	Student should apply constitutive	equations of	composite materials and	d understand
۷.	mechanical behavior at micro, ma	cro and meso leve	el.	
3.	Student should apply the different materials.	nt failure theories	during the failure analysis	of composite
4.	Student should be able to descr metal matrix, and ceramic matrix	ibe fundamental t composites.	fabrication processes for po	olymer matrix,
5.	Student should be able to use the	ideas developed i	n the analysis of composites	towards using
	composites in Aircrafts, missiles	, Space hardware	e, automobile, Electrical and	d Electronics,
	Marine, Recreational and sports e	equipment		
		UNIT-I		40 110.000
la ta a d	hadian ta Oanna aita Mataniala			16 Hours
Introd	luction to Composite Materials:	Definition, Class	sification, Types of matrice	s material and
	rcements, Characteristics & selec	ctruction	osites, laminated composit	es, Particulate
Micro	Mechanical Analysis of a Lamin	suucion.	valuation of the four elastic	moduli. Rule of
mixtur	e Numerical Problems			
Macro	Mechanics of a Lamina : Hook	e's law for differ	ent types of materials. Nur	mber of elastic
consta	ants, Derivation of nine independer	nt constants for or	thotropic material, Two- dim	ensional
relatio	nship of compliance and stiffnes	s matrix. Hooke	s law for two-dimensional	angle lamina,
engine	eering constants -Numerical proble	ms.		-
		UNIT-II		45 110.000
Dissi				15 Hours
Blaxia	al Strength Theories: Maximum st	ress theory, Maxi	mum strain theory, Tsa-Hill t	neory, Isal-wu
Manu	facturing: Layup and curing, oper	and closed mou	ld processing Handlavup te	chniques Bag
mould	ing and filament winding. Pultrusion	n Pulforming The	rmo forming. Injection moule	dina
Fabrio	cation of Composite Structures.	Cutting machinir	ng drilling mechanical faste	eners and
adhes	ive bonding, joining, tooling, fabrica	tion equipments.	Introduction, material qualific	ation. Types of
defect	is			·
		UNIT-III		
				9 Hours
Appli	cation Developments: Aircrafts,	missiles, Space	hardware, automobile, Elec	strical and
Electr	onics, Marine, Recreational and sp	orts equipment-ful	ture potential of composites.	
Metal	Matrix Composites: Reinforcem	ient materials, Ty	pes, Characteristics and s	election, Base
metals				
Cours	se Outcomes: At the end of the co	Irse student will h	e able to	
Jours				
1.	Explain composite materials and	derive four elasti	c moduli of the composite la	mina to solve
2	Derive book's law for three dim	ensional unidired	ional lamina and two dime	nsional angle
۷.	lamina. Determine stress, strain a	and principal stres	s of the composite lamina.	nsional angle

3.	Use dif	fferent fai	lure theorie	s for compos	ite la	amin	a to	dete	ermi	ne tł	ne str	rengt	h of t	he composite
	lamina	. Explain	special cas	es of laminat	es a	nd d	erive	эA,	B, C) ma	trices	s, sol	ve nu	Imerical
	probler	ns assoc	iated with s	pecial cases	of la	min	ates							
4.	Explair	n differen	techniques	s for manufac	cturir	ng ar	nd fa	bric	atior	n of d	comp	osite	e mate	erials.
5.	Explair	n applicat	ion of comp	osite materia	al in	engi	neer	ing	sect	ors.	Desc	cribe	Meta	I matrix
	compo	site and i	ts application	on.										
Cours	e Outco	omes Ma	pping with	Program O	utco	mes	5 & F	SO						
						-								
			Program O	utcomes→	1	2	3	4	5	6		PS	SO↓	
		↓ Cours	se Outcom	es							1	2	3	
			22MMD23	1.1	1	2	3	3	2	1	2	2	3	
			22MMD23	1.2	1	2	3	3	2	1	2	2	3	
			22MMD23	1.3	1	2	3	3	2	1	2	2	3	
			22MMD23	1.4	1	2	3	3	2	1	2	2	3	
			22MMD23	1.5	1	2	3	3	2	1	2	2	3	
				1: Low 2:	Med	ium	3: ⊦	ligh	3					
TEXT	BOOKS	S:												
1.	Compo	osite Mat	erials handl	book, Mein S	chw	artz	McG	iraw	Hill	Bool	< Cor	npan	ıy,198	34.
2.	Mecha	anics of c	omposite m	aterials, Auta	arK.k	Kaw	CRC	C Pre	ess l	Vew	York.			
REFE	RENCE	BOOKS												
1.	Mechanics of Composite Materials, Rober M. Joness Mc- GrawHill Kogakusha Ltd.													
2.	Stress	analysis	of fiber Re	einforced Cor	npo	site	Mate	erials	s, M	icha	el W	, Нує	er Mc	GrawHill
	Interna	ational.												
3.	Compo	osite Mat	erial Scienc	e and Engine	eerir	ig, K	risha	an K	. Ch	awla	a Spr	inger		
4.	Fibre F	Reinforce	d Composit	es,P.C.Mallil	кМа	rcelE)eck	er						

DESIGN OF WHEELED MOBILE ROBOTS

Cou	rse Code:	22MMD232	Course Type	PEC
Teac	hing Hours/Week (L: T: P)	3:0:0	Credits	03
Tota	I Teaching Hours	40+0+0	CIE + SEE Marks	50+50
	Teaching Depa	artment: Mechani	cal Engineering	
Cours	se Objectives:			
1.	Understand the fundamental cond	cepts and applicat	ions of mobile robotics	
2.	Present the fundamental analytic	cal concepts requ	ired for the study of mol	oile robot
	kinematics			
3.	Learn mathematical models and	computational ar	nd motion control method	ts applicable to
4	Wheeled mobile robotic systems	walata dita atata wa		and localization
4.	Understand basic sensor systems	related to state m	easurements, navigation	and localization
5.	Learn different motion planning a	nd navigation sch	emes related to mobile ro	DOIS
		UNIT-I		
Intro	le stiene letre de stien te mehile vele		n'aulatara Oarananata	
Introc	iuction: Introduction to mobile robo	ots and mobile ma	nipulators. Components	of a mobile robot.
Types	; or mobile robots.	or locomotion Tu	an of land based mobile	robota wheeled
Locom	notion case studies			i lobols, wheeled
Mohil	Bobot Kinematics Introducti	ion Need of m:	athematical model dea	ree of freedom
Differe	ential Kinematics: Representing	robot position	forward differential kine	ematics Inverse
differe	ential kinematics. Degree of mane	euverability. Type	s of wheels for mobile r	obots. Kinematic
simula	ation of a mobile robot. A generaliz	zed wheel model.	Examples: Differential wi	heel drive mobile
robot,	Skid steering wheel drive mobile r	obot, Omni wheel	drive mobile robot, Meca	anum wheel drive
mobile	e robot, Tricycle wheel drive mobile	e robot.		
Types	s of Mobile Robots based on Whe	eel configuration	: Holonomic and non-hol	lonomic systems,
kinem	atic model, Pseudo Inverse.			
Dyna	mics of mobile robot: Lagrange-	Euler and Newtor	n-Euler methods. Equation	on of motion and
dynan	nic simulation of a mobile robot, C	omputer based d	ynamic (numerical) simu	lation of different
wneel	ed mobile robots,			
				13 Hours
Kinor	natic Simulation of Wheeled Mot	vile Robots: Kine	matic Model Wheel Mod	
wheel	drive Omni-directional wheel drive	e Mecanum whee	Arive	
Perce	ntion: Sensors for Mobile Robots	Sensor classifica	tion characterizing sense	or performance
Whee	motor sensors Heading sensors	Ground-based be	acons Active ranging M	lotion/speed
senso	ors. Vision-based sensors			o non op o o o
Mobil	e Robots -Localization and Mappi	ng: Autonomy for	Robots, Building Blocks	of Navigation,
Challe	enges of Localization, Noise and Al	liasing, Mobile rob	ot localizations. Odomet	ry, Dead
recko	ning, Map based localization, Mark	ov Localization, K	alman Filter. Autonomou	s map building:
SLAN	I, EKF SLAM			
		UNIT-III		
				13 Hours
Mobil	e Robot Navigation: Compete	ences for Navig	ation, Path Planning I	Methods, Graph
Const	ruction: Visibility graph, Voronoi dia	agram, Cell decom	position methods. Graph	Search Methods
and A	Igorithms: Deterministic Graph Se	earch, Breadth-fir	st search, Depth-first se	arch, Grass fire,
Dijkst	ra's algorithm. Path Planning- A* A	Igorithm and Pote	ential Field methods. Obs	stacle Avoidance:
Bug A	agorithm.			
	In control of mobile robots: Mot	ion controlling me	inous, kinematic control,	
	ascaueu control, reedback control	inulation Simulati	no wheeled mobile robo	robote along with
Kiner	atic control.			obots along with

Course Outcomes: At the end of the course student will be able to

1.	Acquire knowledge about the fundamental concepts and applications of mobile robots
2.	Build kinematic models of holonomic and nonholonomic mobile robots.

- 3. Apply mathematical models and computational and motion control methods applicable to mobile robotic systems.
- 4. Apply Localization and Mapping techniques for wheeled mobile robot control
- 5. Apply algorithms and methodologies for wheeled mobile robot navigation and path planning.

Course Outcomes Mapping with Program Outcomes & PSO

Program Outcomes→	1	2	3	4	5	6		PSO↓	
↓ Course Outcomes							1	2	3
22MMD232.1	1	1	3				1	1	1
22MMD232.2	1	2	3				1	1	1
22MMD232.3	1	2	3				1	1	1
22MMD232.4	1	2	3				1	1	1
22MMD232.5	1	2	3				1	1	1

1: Low 2: Medium 3: High

TEXT BOOKS:					
1.	R Siegwart, IR Nour bakhsh, D Scaramuzza, Introduction to Autonomous Mobile Robots, MIT				
	Press, USA, 2011.				
2.	SG Tzafestas, Introduction to Mobile Robot Control, Elsevier, USA, 2014.				
REFERENCE BOOKS:					
1.	A Kelly, Mobile Robotics: Mathematics, Models, and Methods, Cambridge University Press,				
	USA, 2013.				
2.	S Thrun, W Burgard, D Fox, Probabilistic Robotics, MIT Press, USA, 2005				
3.	G Dudek, M Jenkin, Computational Principles of Mobile Robotics, Cambridge University				
	Press, USA, 2010.				
4.	https://archive.nptel.ac.in/courses/112/106/112106298/				
5.	https://onlinecourses.nptel.ac.in/noc21_me44/preview				

DIGITAL MANUFACTURING

Course Code: 22MMD233 Course Type PEC						
Teaching Hours/Week (I · T· P)		3.0.0	Credite	03		
Total Teaching Hours		40+0+0	CIE + SEE Marks	50+50		
Togehing Department: Mechanical Engineering						
Course Objectives:						
1.	1 Learn the fundamentals of Digital manufacturing. Design processes and methods and					
	CAD/CAM/CAE technologies and product lifecycle management (PLM)					
2.	Use of Finite Element Analysis (FEA) to validate functional performance					
3.	Learn the General stages of the process, solid and FEA models, materials definition, loading					
	(loads, displacements constraints), post-processing, results and verifications					
4.	Learn about the Digitizing methods and main technologies: applications and selection of					
_	reverse engineering systems					
5.	Know about the Main additive ma	inufacturing techn	ologies, principles and a	applications		
UNIT-I						
15 Hours						
Introduction - Importance of Digital manufacturing, Fundamental concepts of industry 4.0 &						
Conc	ention and development of prod	ucts Design proc	esses and methods Cl			
technologies and product lifecycle management (PLM). Concepts generation and embodiment						
Expression of product design ideas using 2D sketches						
Driver	rs for digital transformations, Digital	transformation cl	nallenges			
		UNIT-II				
				15 Hours		
Computer Aided Design (CAD): 3D modeling. Parametric design. Assembly modeling. Render the appearance of a product. CAD Computer Aided Engineering (CAE): Finite Element Analysis (FEA) to validate functional performance: general stages of the process, solid and FEA models, materials definition, loading (loads, displacements constraints), post-processing, results and verifications. Topology optimization in additive manufacturing						
P		UNIT-III				
				10 Hours		
Reverse engineering: General methodology: point clouds, meshes (.stl), NURBS surface models and parametric CAD models. Digitizing methods and main technologies: applications and selection of reverse engineering systems. Hardware and software involved. Reverse engineering and additive manufacturing Additive manufacturing: General methodology, stages and components of the process. Main technologies, principles and applications. Strengths, weaknesses, challenges, and limitations of additive manufacturing technologies. Main brands and suppliers available. Design for Additive Manufacturing (DFAM). Design for functionality and 3D printability. Planning and slicing additive manufacturing software						
Course Outcomes: At the end of the course student will be able to						
1.	Explain the fundamental concepts	s of Digital manufa	acturing, about product of	development and		
	the drivers and challenges regarding digital transformation					
2.	2. Discuss the use of CAD in product development.					
3.	Discuss about FEA for validating the functional performance of products.					
4.	Discuss the application and selection of reverse engineering systems.					
5. Uscuss about the major additive manufacturing technologies, its principles and applications						
Course Outcomes Mapping with Program Outcomes & PSO						

I٨

1: Low 2: Medium 3: High									
/-Hill									
es.									
Ed.,									
Springer-Verlag London, 2008. ISBN-13: 978-1-849-96660-3									
strial									
Revolution for the Digital Age, 1st Ed., John Wiley & Sons, 2005. ISBN-13: 978-0-470-01613- 8									
duct									
Ed.,									
apid									
/8-1-									
, 3rd									
- An									
ning,									
tion									
-wh-									

AIRCRAFT DESIGN(NPTEL)

Course Code: 22MMD234 Course Type PEC											
Top	hing Hours (Mook (I · T· P)	2:0:0	Crodite	03							
Teat		3.0.0		03							
Teaching Department: Mechanical Engineering											
Course Objectives:											
1. Understand the design process while designing aircraft by considering the different types of loading. Define the aerodynamic of aircraft											
2.	2. Know the fuel system and fuel system integration and landing gear arrangements.										
3.	3. Describe the stability, and control of flight dynamics										
4.	4. Understand the flight mechanics and performance of flight.										
5.	Understanding of Cost and Weig	ght Analysis and E	stimation of aircraft.								
		UNIT-I									
				15 Hours							
Overv	view of the Design Process: Air	foil and Geometry	Selection, Thrust-to-Wei	ght Ratio and Wing							
Loadi	ng.										
Initial	Sizing: Control-Surface Sizing, (Configuration Layo	ut.	_							
Aeroo	dynamic Considerations: Struct	ural Consideration	s, Vulnerability Considera	tions							
Crew	Station, Passengers, and Payload] ion Fuel System	Londing Coor Arrongome	nto							
гор	ision and Fuel System integrat		Lanung Gear Anangeme	1115.							
				15 Hours							
Sten-	hy-Sten Development of a New	Design: Aerodyna	amics Pronulsion	15110015							
Step-by-Step Development of a new Design: Aerodynamics Propulsion Structures and Loads Weights: Group Weights Method											
Stabil	ity. Control. and Handling Qualiti	es Longitudinal S	tatic Stability and Contro	Lateral-Directional							
Static	Stability and Control										
Perfo	rmance and Flight Mechanics: I	Equations of Motio	n Operating Envelope								
		UNIT-III									
				10 Hours							
Cost	Analysis, Operations and Mainte	nance Costs, Airci	aft and Airline Economics	6.							
Sizing and Trade Studies, Vertical FlightJet and Prop, Extremes of Flight											
Design of Unique Aircraft Concepts, Flying Wing, Tailless, Lifting Fuselage, and Blended Wing-											
Body,	Conceptual Design Examples										
Cour	se Outcomes: At the end of the c	ourse student will	he able to								
Jours											
1	Describe the aircraft design pr	ocass and stage	Explain the methods	objectives and							
••	challenges of initial sizing	ocess and stayes									
2.	Compute the weight and engine	parameters of an	aircraft.								
3.	Describe the concepts. lavout po	ossibilities, and tec	hnologies in aircraft desig	ın.							
4.	Identify information requirement	ts and critically an	praise sources of data a	and analysis for							
	aircraft design and evaluation										
5.	Understanding of, and ability to	apply, basic con	cepts for: Cost and Weig	ht Analysis and							
	Estimation			-							
		_									
Cours	se Outcomes Mapping with Prog	gram Outcomes	& PSO								

	Program Outcomes→	1	2	3	4	5	6		PS	PSO↓		
	↓ Course Outcomes							1	2	3		
	22MMD234.1	1	2	3	3		1	1	1	3		
	22MMD234.2	1	2	3	3		1	1	1	3		
	1	2	3	3		1	1	1	3			
	1	2	3	3		1	1	1	3			
22MMD234.5				3	3		1	1	1	3		
	1: Low 2	: Me	diun	n 3: I	High							
TEXT BO	OKS:											
1.	Introduction to Flight By - Anderson											
2.	Aircraft Design: A Conceptual Appro	ach	by D	anie	P.	Rayr	ner					
3.	Anderson, J. D., Fundamentals of	Aer	odyn	amic	cs, 6	Sth E	Ed.,	Bost	ton: I	McGr	aw-Hill Higher	
	Education, 2016.											
4.	Anderson, J. D., Aircraft Performance	e an	d De	sign	, Во	ston	: Mc	Grav	v-Hill,	1999).	
5.	Nicolai, L., Carichner G., Fundamentals of Aircraft and Airship Design, Volume 1 Aircraft											
	Design, AIAA, 2010.											
6.	Nicolai, L., Carichner G., Fundamentals of Aircraft and Airship Design, Volume 2 -Airship											
7	Design and Case Studies, AIAA, 2013.											
7.	Torenbeek, E., Synthesis of Subson		pian	e De	sigr	1, De		T	SILY F	ress	, 1982.	
δ.	I orenbeek, E., Advanced Aircraft De	esign		ncep	tual	Des	ign,	1 ecr	noio	gy an	d Optimization	
0	of Subsonic Civil Airplanes, John Wiley & Sons, Incorporated, 2013.											
<u> </u>	Lill D.O. Dataman, O.D. Machanica and Thermodynamics of Deputies of Deputies of Compared and the second statements of the											
10.	Mass : Addison-Wesley 1991	s and	1 I I E		uyna		5 01	гор	uisioi	1, 2110	i ⊏u., Reauing,	
11	Mattingly I Heiser W Bover K Haven B Dratt D Aircraft Engine Design 2rd Ed											
	AIAA. 2018.	110	, en,	ים., ו	ratt	, с .,		oran	Lingi		Joigh, ora Lu.,	
12.	Nelson, R. C., Flight Stability and Au	Itom	atic (Conti	rols.	2nd	Ed.	. Bos	ton.	Mass	.: McGraw Hill.	
	1998											
E-Resou	rces											
1.	https://onlinecourses.nptel.ac.in/noc	22_a	e01/	/prev	iew							

lΝ

Audit Courses

AUTOMOTIVE SAFETY											
Course (ode.	22MMDA	111-1				Cou	Irse T	vne [.]		
Teaching Hours/Week (L: T: P) 1:0:1 Credits:											
Total Teaching Hours: 13+0+26 CIE + SEE Marks: -											
		1340420					+ 01		ains.		
Teaching Department: Mechanical Engineering											
Course Objectives:											
1. To provide students an overall introduction to areas of automotive Safety spanning over accidence avoidance, pre-crash technologies, mitigation of injuries, and post-crash technologies											
		List of Exp	erime	nts						E Haura	
Introducti	on to Automotivo Safoty:	Unit-I	inoroo	cod r	and	cof	h	dofini	tione	5 Hours	
automotive	e safety, driving forces for incl	reased road	l safet	v. real	ulatio	ns a	and o	consu	mer t	ests	
	<u> </u>	Unit-II		<u>, - </u>						5 Hours	
Integrated driver, Veh	I Automotive safety : Accide nicle and environment	nce avoida	nce an	d facto	ors a	SSO	ciate	d ,cor	ntribut	ing factors of	
		Unit-III				-				5 Hours	
Passive S	afety: Mitigation of injuries	: Introducti	on to I	Primar	y an	d se	econ	dary r	restra	ints systems,	
mechanisi		Unit-IV								5 Hours	
Anthropo biomechar	morphic Test Devices: His nics, injury assessments	storical bac	kgrou	nd, ev	oluti	on	and	curre	ent A	TDs in use,	
		Unit-V								5 Hours	
Crash Sir system fur	nulations: component, sub- action, future of Automotive sa	-system and afety	d syst	em le	vel s	simu	Ilatio	ns, o	ptimiz	zing restraint	
Course O	utcomes: At the end of the co	ourse stude	ent will	he ab	le to						
1. Exp	plain the need for automotive	safety									
2. Re	call the different definitions ar	nd concepts	involv	/ed in	activ	e sa	fety	(accio	dence	avoidance)	
and	Passive safety (Injury mitiga	ations)									
3. Des	scribe about safety devices.			:							
4. Des 5	scribe about anthropomorphic	and fine-tu	es and	Injury strain	asse	tom	nent	S			
J.	idiation involved in designing		ning it	550 400	1 3 9 3	tem	3				
Course O	utcomes Mapping with Prog	gram Outco	omes	& PSC)						
		-									
	Program Outcon	$nes \rightarrow 1$	2 3	4	5	6		PSO			
	↓ Course Outcomes						1	2	3		
22MMDAU1-1.1 1 3 1											
	22MMDAU1-1.2 1 3 1										
	22MMDAU1-1.3	1				3	1	<u> </u>			
	22MMDAU1-1.4	1				3	1				
	22MMDAU1-1.5		lium 2	Hiak		3	1				
	1.1		aiuiii J	. myi							

TEXT BC	DOKS:								
1.	Integrated Automotive Safety Handbook, SAE International, Ulrich Seiffert, Mark Gonter								
REFERE	REFERENCE BOOKS:								
1.	Vehicle Crash Mechanics, Mathew Huang								
2.	Vehicle crashworthiness and occupant protection: Paul Du Bois Clifford C. Chou Bahig B.								
	Fileta Tawfik B. Khalil Albert I. King Hikmat F. Mahmood Harold J. Mertz Jac Wismans								

DESIGN OPTIMIZATION											
Cour	rse Code:	220000	112-1				Cou	rea T	vno:		
Teac	bing Hours/Week (I · T· P)	1.0.1	02 1			Crodite:					
Tete		12.0.26								-	
Tota	Treaching Hours:	13+0+20					+ 25		irks:	-	
-	Teaching Dep	artment: N	lecha	nical	Engi	nee	ring				
Course Objectives:											
1. The purpose of this course is to introduce the students to mathematical modeling, optimization theory and computational methods for analytical and simulation-based optimal design.											
		List of Exp	perim	ents							
ام میشم ا		Unit-I					1			5 Hours	
Introd	uction to Design Optimization, Op	timum Des	ign Pi	obien	1 Forr	nula	tion			5 Hours	
Graph	ical Solution Methods, Optimality	Conditions	. Opti	mum	Desio	in Co	oncer	ots		5110013	
		Unit-III	,		3	,				5 Hours	
Optim	um Design, Numerical Solution Pr	rocess, Lin	ear Pi	ogran	nming	g Me	thods	6		L	
		Unit-IV								5 Hours	
Uncor	nstrained Optimum Design, Praction	cal Applicat	tions	of Opt	imiza	tion					
Advor	and Tapian Disarata Variable Cl	Unit-V	izatio	- Con				oturo	Inoni	5 Hours	
Advar		obai Optim	Izatio	n Con	cepts	, IVIL	JO, N	ature	inspi	rea methoas	
Cours	se Outcomes: At the end of the co	ourse stude	ent wi	ll be a	ble to)					
1.	Explain about optimization techn	iques									
2.	Apply the techniques for enginee	ering desigr	n optii	nizati	on	-					
3.	Identify which methods are appro	opriate for a	a give	n opti	mizat	ion a	applic	ation			
4.	Formulate engineering problems	s as optimiz	ation	proble	ems ti	hat a	ire ap	prop	riate f	or a chosen	
5	method	oftware to	solvo	ongin	ooring	n dog	sian r	roble	me fo	r optimality	
5.			50176	engin	cenni	y ues	sigiri p		1113 10		
Cours	se Outcomes Mapping with Proc	gram Outc	omes	& PS	0						
		5									
	Program Outcon	nes→ 1	2	3 4	5	6		PSO			
	↓ Course Outcomes						1	2	3		
	22MMDAU2-1.1	1	1				1				
	22MMDAU2-1.2	1	1				1				
	22MMDAU2-1.3	1	1				1				
	22MMDAU2-1.4	1	1				1				
22MMDAU2-1.5 1 2 1 1											
1: LOW 2: Medium 3: High											
	1. Introduction to Optimum Desig	an, 3 rd or 4 th	Editio	on, Ja	sbir S	ian /	Arora	, Aca	demic	Press, 2017	
REFERENCE BOOKS:											
	1. Principles of Optimal Design: Modeling and Computation, 3rd Edition, by P.Y. Papalambros										
	and D.J. Wilde, Cambridge U	niversity Pr	ress, ž	2015							