

Scheme & Syllabus for M.Tech. Computer Science and Engineering

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING 2023-25

M. Tech. in Computer Science and Engineering

CREDIT DISTRIBUTION

No.	Course Category	Suggested Credits
1.	Professional Courses (PCC) – core	16
2.	Professional Courses (PEC) – elective	18
3.	Research Methodology & IPR/RETP	04
4.	Labs	04
5.	Project Work (UCC) (Phase 1 & 2)	08+20
6.	Audit Courses (2 Nos)	00
7.	Seminar on Current Topic (UCC)	02
8.	Internship (UCC)	08
	Total Credits to be earned:	80

Established under Section 3 of UGC Act 1956 Accredited with 'A+' Grade by NAAC

Off-Campus Centre, Nitte - 574 110, Karkala

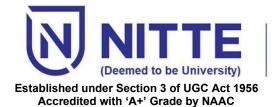
M.Tech. (CSE): Scheme of Teaching and Examinations 2023-25 Outcome Based Education (OBE) and Choice Based Credit System (CBCS) (Effective from the academic year 2022 - 23)

1st Year Scheme

			15	SEMESTE	R							
SI. No	Cours e Type	Course Code	Course Title Tea			ching Ho ek		Exami	nation		Credits	
				Teaching Department	Lecture	Tutorial	Practical/ Drawin	Duration in hours	CIEMarks	SEEMarks	Total Marks	Ğ
					L	Т	Р					
1	PCC	23CSE101	Advanced Data Structures and Algorithms	CSE	4	0	0	3	50	50	100	4
2	PCC	23CSE102	Advanced computer networks	CSE	4	0	0	3	50	50	100	4
3	PEC	23CSE11X	Elective – I	CSE	3	0	0	3	50	50	100	3
4	PEC	23CSE12X	Elective – II	CSE	3	0	0	3	50	50	100	3
5	PEC	23CSE13X	Elective – III	CSE	3	0	0	3	50	50	100	3
6	RETP	23CSE103	Research Experience Through Practice -I	CSE	/we out Inter	ir contact eek for ca Researc raction be raction be raction be student	rrying h and etween and	-	100	0	100	2
7	PCC	23CSE104	Advanced Data Structures and Algorithms Lab	CSE	0	0	2	3	50	50	100	1
8	PCC	23CSE105	IoT Lab	CSE	0	0	2	3	50	50	100	1
9	AUDIT	AUDIT 23CSEAUX Audit Course-I CS	CSE	2	-	-	-	-	-	-	-	
				Total	1 9	0	4	21	450	350	800	21

			11	SEMESTE	R							
				t	Те	aching /Wee	Hours k		E	xaminat	ion	
SI. No	Cours e Type	Cours e Code	Course Title	Teaching Department	Lecture	Tutorial	Practical/ Drawin	Duration in hours	CIEMarks	SEEMarks	Total Marks	Credits
					L	Т	Р	I			L	
1	PCC	23CSE201	Artificial Intelligence and Machine Learning	CSE	4	0	0	3	50	50	100	4
2	PCC	23CSE202	Big Data Analytics	CSE	4	0	0	3	50	50	100	4
3	PEC	23CSE21X	Elective – IV	CSE	3	0	0	3	50	50	100	3
4	PEC	23CSE22X	Elective – V	CSE	3	0	0	3	50	50	100	3
5	PEC	23CSE23X	Elective – VI	CSE	3	0	0	3	50	50	100	3
6	RETP	23CSE203	Research Experience Through Practice -II	CSE	/wee out l Intera	Four contact hours /week for carrying out Research and Interaction between the faculty and students		-	100	0	100	2
7	PCC	23CSE204	Machine Learning Lab	CSE	0	0	2	3	50	50	100	1
8	PCC	22CSE205	Big Data Analytics Lab	CSE	0	0	2	3	50	50	100	1
9	AUDIT	23CSEAUX	Audit Course-II	CSE	2	-	-	-	-	-	-	-
				Total	19	0	4	2 1	450	350	800	21

Note: PCC: Professional Core Course, PEC: Professional Elective Course, AUDIT (AU): Non-credit Audit course, RETP: Research Experience Through Practice.


L –Lecture, T – Tutorial, P- Practical/ Drawing, CIE: Continuous Internal Evaluation, SEE: Semester End Examination.

2nd Year Scheme

				SEMEST	ER							
SI				It	Te	eaching /Wee	Hours ek		Ex	ion		
51 N 0	Course Type	Course Code	Course Title	Teaching Department	- Theory Lecture	▲ Tutorial	Drawin	Duration in hours	CIEMarks	SEEMarks	Total Marks	Credits
	1100		Industry Internship/	005	8 W	leeks Fu		3	400	0	`	
1	UCC	23CSE301	Research Internship/Mini Project	CSE	1 1.0		[40-45 Irs/week]		100	0	100	8
2	UCC	23CSE302	Seminar on Special Topic	CSE	0	0	2	3	100	0	100	2
3	UCC	23CSE303	Project Part -1	CSE	1	2 Weeks Time [N Hrs/w	1in 30	3	200	0	200	8
				Total	0	0	2	9	400	0	40 0	18
No	ote: L -Lect	ure, T – Tutoria	al, P- Practical/ Drawing, S –	Self Stu	dy Con	nponent,	CIE: Con	tinuous	Intern	al Eval	uation,	SEE:
Semester End Examination.												
	Internship: CIE Evaluation is for 100 Marks where 50 Marks is for Report and 50 Marks for the Presentation											
	Project P	art-1: CIE Eva	luation is for 200 Marks whe	ere 100 M	arks is	for Rep	ort and 10	0 Mark	s for th	ne Pres	entatior	1 I

			IV	SEMEST	ER							
				nt	Теа	aching /Wee	Hours k	Examination				
SI. No	Cours e Type	Course Code	Course Title	Teaching Departmet	Theory	Tutorial	Practical/ Drawin	uration in hours	CIEMarks	SEEMarks	Total Marks	Credits
					L	Т	Р	D	С	SI	T ₆	
1	UCC	23CSE401	Project Part -2	CSE		/eeks Fi 36 Hrs	ull Time /week]	3	200	200	400	20
				Total	0	0	0	3	200	200	400	20
Note	Note: L –Lecture, T – Tutorial, P- Practical/ Drawing, S – Self Study Component, CIE: Continuous Internal Evaluation, SEE: Semester End Examination.											
Pr	Project Part-2: CIE Evaluation is for 200 Marks having Project Progress Evaluation (PPE)-1 and PPE-2 each for 100 Marks.											

Off-Campus Centre, Nitte - 574 110, Karkala

M.Tech. (CSE): Scheme of Teaching and Examinations

2023-25 Outcome Based Education (OBE) and Choice Based Credit System (CBCS) (Effective from the academic year 2022 - 23)

EL	ECTIVE –I	ELE	CTIVE -II	ELECI	rive –III
23CSE111	Advanced Database Management Systems	23CSE121	Data Science Concepts and Applications	23CSE131	Cloud computing
23CSE112	Compiler Optimization & Multi-core Architecture	23CSE122	Advances in Computer Vision	23CSE132	Business Intelligence
23CSE113	Cyber Security & Forensics	23CSE123	Natural Language Processing	23CSE133	Agile Technologi es
23CSE114	Design Thinking	23CSE124	Cryptography & Network Security	23CSE134	Social & Web Analytics

ELEC	TIVE –IV	ELE	CTIVE – V	E	lective - VI
23CSE211	Distributed Operating System	23CSE221	Wireless Networks	23CSE231	Blockchain Technology
23CSE212	Deep Learning	23CSE222	General Purpose Computation on GPU	23CSE232	Speech Processing
23CSE213	Computer Vision	23CSE223	Analysis of Computer Networks	23CSE233	Software Engineering and Modelling
23CSE214	Distributed Systems	23CSE224	Image Processing and Analysis	23CSE234	Web Services

Note: - MOOC course may be taken in place of group - V elective in 2nd semester.

POs

- 1. An ability to independently carry out research /investigation and development work to solve practical problems.
- 2. An ability to write and present a substantial technical report/document.
- 3. Students should be able to demonstrate a degree of mastery over the area as per the specialization of the program. (The mastery should be at a level higher than the requirements in the appropriate bachelor program)
- 4. Identify, formally model, define, and solve computing problems by applying the knowledge of mathematical principles, theoretical foundations, and limits of computing.
- 5. An ability to apply the computational concepts and logics to address a real time problem and to develop software systems, products and processes that are practically feasible to implement using modern tools.
- 6. An ability to function effectively individually or as a part of a team to accomplish a stated goal.
- 7. An ability to communicate effectively with a wide range of audience.
- 8. Recognize the need to engage in self-governing and life-long learning by making use of professional and ethical principles.

PSOs

PSO 1: Proficiency in analysis, design, development and implementation of efficient solutions for real time computational problems applying problem solving skills and turn out to be employable in product-oriented Industry.

PSO 2: An understanding of the modern tools, technologies and architecture of computation to carry out research in order to design and improve the solution for any computational problems.

Advanced Data Structures and Algorithms

Course Code	:	23CSE101	CIE Marks	:	50
Teaching Hours /Week (L:T:P:S)	:	4-0-0-0	SEE Marks	:	50
Total Hours	:	50	Credits	:	4

Course Objectives:

After successful completion of this course students will be able to:

- 1. Describe basic data structures and apply appropriate data structure for solving the problem
- 2. Describe different types of tree data structure and apply the same in problem solving.
- 3. To analyze the efficiency of recursive and non-recursive algorithms and to understand the concepts of amortized analysis of algorithms.
- 4. To analyze the various graph algorithms and evaluate its efficiency.
- 5. To analyze various string matching algorithms and randomized, probabilistic algorithms.

Unit 1

Introduction to Data structures, Basic data structures stacks, queues and circular queues using dynamic arrays, linked lists: Stacks and queues using SLL, DLLand circular linked list. Sparse matrix representation using linked list

Hashing: Hash Function, Collision Resolution Techniques in Hashing, Separate Chaining, Open Addressing, Linear Probing, Quadratic Probing, Double Hashing, Rehashing, Extendible Hashing.

Unit II

Binary trees: Types of binary trees, Binary tree representation, tree traversals, Trees, AVL Trees, Red Black Trees, multi way search trees, B-Trees, 2-3 Trees, B+ trees, Splay Trees, Skip lists 10 Hours

Unit III

Review of Analysis Techniques : Growth of Functions: Asymptotic Notations; Standard notations and common functions; Recurrences and Solution of Recurrence equations - The Substitution Method, The Recurrence tree method, The master method; Amortized Analysis: Aggregate, Accounting and Potential Methods.

10 Hours

Unit IV

Graph Algorithms: Bellman - Ford Algorithm; Single source shortest paths in a DAG; Johnson's Algorithm for sparse graphs; Flow networks and Ford- Fulkerson method; Maximum bipartite matching.

10 Hours

Unit V

String-Matching Algorithms: Naïve string Matching; Rabin - Karp algorithm; String matching with finite automata; Knuth-Morris-Pratt algorithm; Boyer– Moore Algorithm. Probabilistic algorithms; Randomizing Deterministic Algori**thms** 10 hours

Course Outcomes: At the end of the course student will be able to

- 1. Apply suitable data structures to solve the problems, design stack, Queues using dynamic arrays and linked lists and apply hashing concept in searching.
- 2. Use vanity of trees for problem solving
- 3. Analyze the efficiency of recursive and non-recursive algorithms and to understand the concepts of amortized analysis of algorithms.
- 4. Analyze the various graph algorithms and evaluate its efficiency.
- 5. Analyze various string matching algorithms and randomizing algorithms.

Program Outcomes→	1	2	3	4	5	6	7	8	PSC	C↑
↓ Course Outcomes									1	2
1	3	1	2						3	2
2	3	1	2						3	2
3	3	1	2						3	2
4	3	1	2						3	2
5	3	1	2		3				3	2

TEXTBOOKS:

1. Ellis Horowitz, Sartaj Sahni "Fundamental of Data structures in C", Second edition, Universities Pres.

2. Mark Allen Weiss, Data Structures and Algorithm Analysis in C++, 2nd Edition, Pearson, 2004. 2. M T Goodrich Roberto Tamassia, Algorithm

3. T Cormen, C Leiserson, Rivest Introduction to Algorithms, third edition, PHI 2007.

4. Anany Levitin, Introduction to the Design and Analysis of Algorithms, Second edition, Pearson edition .Reference Book:

1. "The Design and Analysis of Computer Algorithms" by Aho, Hopcroft, Ullman

2. H. S. Wilf, Algorithms and complexity, Prentice hall.

ADVANCED COMPUTER NETWORKS

Course Code	:	CIE Marks : 50
Teaching Hours /Week (L:T:P:S)	: 4	SEE Marks : 50
Total Hours	: 50	Credits :

Course Objectives:

After successful completion of this course students will be able to:

- 1. Describe the basics of the computer networking and the network layer.
- 2. Explain the end to end protocols like TCP, UDP and congestion control techniques utilized by these protocols.
- 3. Explain the delivery of the multimedia data over the network with the help of the corresponding protocol.
- 4. Describe the 802.11 wireless LANs, internet access in the wireless paradigm, mobile IP and its concepts.
- 5. Describe wireless sensor technology and software defined networks.

UNIT–I

Introduction: Data communications, Networks, the internet, protocols and standards. Network Models: Layered tasks, The OSI model, Layers in the OSI model, TCP/IP protocol suite, addressing. Network Layer: Internetworking, IPV4, IPV6, Transition from IPV4 to IPV6. 10 Hours

UNIT – II

Transport Layer: Process to Process delivery, UDP, TCP. Congestion Control and Quality of Service: Data traffic, Congestion, Congestion Control, Two examples, Quality of service, Techniques to improve QoS, Integrated services, differentiated services. 10 hours

UNIT-III

Multimedia Networking:Multimedia Networking Applications, Streaming Stored Video, Voice-over-IP, Protocols for real
time conversational applications, Network support for multimedia.10 hours

UNIT-IV

Wireless and Mobile Networks: Introduction, wireless links and network characteristics, Wifi: 802.11 wireless LANs, Cellular Internet Access, Mobility Management: Principles, Mobile IP, Managing Mobility in Cellular Networks.

10 hours

UNIT-V

Wireless Sensor Networks: Introduction and Overview, Application of Wireless Sensor Networks, Basic Wireless Sensor Technology. **Software Defined Networks**: Introduction, Why SDN? Use cases for input traffic monitoring.

10 hours

Course Outcomes:

Upon completion of this course, students will be able to:

- 1. **Illustrate** the basics of networking and the working of the network layer.
- 2. **Demonstrate** the end to end protocols like TCP, UDP and congestion control techniques utilized by these protocols.
- 3. Describe the delivery of the multimedia data over the network with the help of the corresponding protocol.
- 4. **Illustrate** the 802.11 wireless LANs, internet access in the wireless paradigm, mobile IP and its concepts.
- 5. **Describe** the wireless sensor technology and software defined networks.

TEXTBOOKS:

- 1. Behrouz A. Forouzan, Data Communications And Networking, 4th Edition, McGraw-Hill Forouzan Networking Series.
- 2. James F. Kurose and Keith W. Ross, Computer Networking- A Top-Down Approach Featuring the Internet, 6th Edition, Pearson Education.
- 3. Kazem Sohraby, Daniel Minoli, Taieb Znati, Wireless Sensor Networks: Technology, Protocols, and Applications, A John Wiley and Sons Publication.
- 4. Paul Göransson, Chuck Black, Software Defined Networks: A Comprehensive Approach, Elsevier.
- 5. Thomas D. Nadeau and Ken Gray, SDN: Software Defined Networks,1st Edition, O'Reilly Publication.

REFERENCE BOOKS:

- 1. Peterson and Davie, Computer Networks: A systems Approach, 5th Edition, Morgan Kaufmann publication.
- 2. Andrew S. Tanenbaum, Computer Networks, Fourth edition, PHI / Pearson Publication, 2002.

IoT Lab

- 1. Familiarization with Arduino/Raspberry Pi and perform necessary software installation.
- 2. To interface LED/Buzzer with Arduino/Raspberry Pi and write a program to turn ON LED for 1 sec after every 2 seconds.
- 3. To interface Push button/Digital sensor (IR/LDR) with Arduino/Raspberry Pi and write a program to turn ON LED when push button is pressed or at sensor detection.
- 4. To interface DHT11 sensor with Arduino/Raspberry Pi and write a programe to print temperature and humidity readings.
- 5. To interface motor using relay with Arduino/Raspberry Pi and write a programe to turn ON motor when push button is pressed.
- 6. T0 interface OLED with Arduino/Raspberry Pi and write a program to print temperature and humidity readings on it.
- 7. To interface Bluetooth with Arduino/Raspberry Pi and write a program to send sensor data to smartphone using Bluetooth.
- 8. To interface Bluetooth with Arduino/Raspberry Pi and write a program to turn LED ON/OFF when '1'/'0' is received from smartphone using Bluetooth.
- 9. Write a program on Arduino/Raspberry Pi to upload temperature and humidity data to thingspeak cloud.
- 10. Write a program on Arduino/Raspberry Pi to retrieve temperature and humidity data from thingspeak cloud.

ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

	rse Code:	23CSE201	Course Type	PCC
	ching Hours/Week (L: T: P: S)	4+0+0+0	Credits	04
	I Teaching Hours	50	CIE + SEE Marks	50+50
Cour	se Objectives:			
1.	To understand the basics of A			
2.	To work with the problem solv	ving issues of	AI.	
3.	To study planning and knowle	edge Engineer	ing.	
4.	To apply the AI concepts to va	arious applicat	tions.	
5.	To understand and apply the	ML concepts l	ike SVM, BBN to solve pr	oblems.
		UNIT-I		
	duction to Artificial Intelligence			
AI. E	Examples of Various Learning	Paradigms,	Perspectives and Issues	5,
Versi	ion Spaces, Finite and Infinite H	ypothesis Spa	ces.	
Prob	lem Solving: state space search	and control st	rategies. Informed Searc	h 10 Hour s
Meth	nods: Best-First Search, Heuristi	ic Functions, N	Memory Bounded Search	n,
and				
	tive Improvement Algorithms.			
Itera		UNIT-II		
ltera Prob	lem reduction and Game	playing, Log		
lterat Prob prog	lem reduction and Game ramming. Building a Knowledg	playing, Log ge Base; Prop	perties of Good and Ba	d
lterat Prob prog Knov	lem reduction and Game ramming. Building a Knowledg wledge Bases, Knowledge Engin	playing, Log ge Base; Prop neering. The El	perties of Good and Ballectronic Circuits Domain	d n,
Iterat Prob prog Knov Gene	lem reduction and Game ramming. Building a Knowledg wledge Bases, Knowledge Engin eral Ontology, The Grocery Sho	playing, Log ge Base; Prop neering. The El opping World	perties of Good and Ballectronic Circuits Domain . Inference in First-Orde	d n, r
Iterat Prob prog Knov Gene	lem reduction and Game ramming. Building a Knowledg wledge Bases, Knowledge Engin	playing, Log ge Base; Prop neering. The El opping World	perties of Good and Ballectronic Circuits Domain . Inference in First-Orde	d n, r
Iterat Prob prog Knov Gene Logio	lem reduction and Game ramming. Building a Knowledg wledge Bases, Knowledge Engin eral Ontology, The Grocery Sho	playing, Log ge Base; Prop neering. The El opping World antifiers, An Ex	perties of Good and Ballectronic Circuits Domain . Inference in First-Orde cample Proof. Generalized	d n, or d 10 Hour s
Iterat Prob prog Knov Gene Logio Mod	lem reduction and Game ramming. Building a Knowledg wledge Bases, Knowledge Engin eral Ontology, The Grocery Sho c: Inference Rules Involving Qua	playing, Log ge Base; Prop neering. The El opping World antifiers, An Ex	perties of Good and Ballectronic Circuits Domain . Inference in First-Orde cample Proof. Generalized	d n, or d 10 Hour s
Iterat Prob prog Knov Gene Logio Mod Reso	lem reduction and Game ramming. Building a Knowledg wledge Bases, Knowledge Engin eral Ontology, The Grocery Sho c: Inference Rules Involving Qua us Ponens, Forward and Ba	playing, Log ge Base; Prop neering. The El opping World antifiers, An Ex ackward, Cha tion.	perties of Good and Ballectronic Circuits Domain . Inference in First-Orde cample Proof. Generalized	d n, or d 10 Hour s
Iterat Prob prog Knov Gene Logio Reso Proce	lem reduction and Game ramming. Building a Knowledg wledge Bases, Knowledge Engin eral Ontology, The Grocery Sho c: Inference Rules Involving Qua us Ponens, Forward and Ba olution: A complete Inference edure, Completeness of Resolut	playing, Log ge Base; Prop neering. The El opping World antifiers, An Ex ackward, Cha tion. UNIT-III	perties of Good and Ba lectronic Circuits Domain . Inference in First-Orde ample Proof. Generalized aining & Completeness	d n, d 10 Hours 5,
Iterat Prob prog Knov Gene Logio Reso Proco Planr	lem reduction and Game ramming. Building a Knowledge wledge Bases, Knowledge Engin eral Ontology, The Grocery Sho c: Inference Rules Involving Qua us Ponens, Forward and Ba olution: A complete Inference edure, Completeness of Resolut	playing, Log ge Base; Prop neering. The El opping World antifiers, An Ex ackward, Cha tion. <u>UNIT-III</u> t Form Probl	erties of Good and Ba lectronic Circuits Domain . Inference in First-Orde cample Proof. Generalized aining & Completeness em Solving to Planning	d n, d 10 Hours 5, J.
Iterat Prob prog Knov Gene Logic Mod Reso Proce Planr Planr	lem reduction and Game ramming. Building a Knowledge wledge Bases, Knowledge Engin eral Ontology, The Grocery Sho c: Inference Rules Involving Qua us Ponens, Forward and Ba plution: A complete Inference edure, Completeness of Resolut ning A Simple Planning Agen ning in Situation Calculus. Basic	playing, Log ge Base; Prop neering. The El opping World antifiers, An Ex ackward, Cha tion. <u>UNIT-III</u> It Form Probl Representatio	erties of Good and Ba lectronic Circuits Domain . Inference in First-Orde ample Proof. Generalize aining & Completeness em Solving to Planning ons for Planning. A Partial	d n, d 10 Hours 5, g. -
Iterat Prob prog Knov Gene Logic Mod Reso Proce Planr Planr	lem reduction and Game ramming. Building a Knowledge wledge Bases, Knowledge Engin eral Ontology, The Grocery Sho c: Inference Rules Involving Qua us Ponens, Forward and Ba olution: A complete Inference edure, Completeness of Resolut	playing, Log ge Base; Prop neering. The El opping World antifiers, An Ex ackward, Cha tion. <u>UNIT-III</u> It Form Probl Representatio	erties of Good and Ba lectronic Circuits Domain . Inference in First-Orde ample Proof. Generalize aining & Completeness em Solving to Planning ons for Planning. A Partial	d n, d 10 Hours 5, g. -
Iterat Prob prog Knov Gene Logic Mod Reso Proce Planr Planr Orde	lem reduction and Game ramming. Building a Knowledge wledge Bases, Knowledge Engin eral Ontology, The Grocery Sho c: Inference Rules Involving Qua us Ponens, Forward and Ba plution: A complete Inference edure, Completeness of Resolut ning A Simple Planning Agen ning in Situation Calculus. Basic	playing, Log ge Base; Prop neering. The El opping World antifiers, An Ex ackward, Cha tion. <u>UNIT-III</u> It Form Probl Representatio Order planning	erties of Good and Ba lectronic Circuits Domain . Inference in First-Orde cample Proof. Generalized aining & Completeness em Solving to Planning ons for Planning. A Partial algorithm, Planning Wit	d n, d 10 Hours 5, g. -

	leemed to be University)										
Unce	rtainty Measure: Probability Th	eory	, Ва	yesi	an E	Belie	ef Ne	etwo	rks,		
Mach	ine Learning Paradigms: Mach	ine	lear	ning	sys	tem	, sup	pervi	sed a	nd	10 Hours
unsup	pervised learnings, Inductive, d	edu	ctive	e lea	rnir	ig, C	Clust	ering	j .		
			UNI	T-V							
Supp	ort vector Machine, case-based	d rea	ason	ing	and	lea	rnin	g.			10 Hours
ANN:	Single Layer, Multilayer. RBF, I	Desi	gn i	ssue	s in	AN	N, R	ecur	rent		Torrours
Netw	ork.										
Cours	se Outcomes: At the end of the	e co	urse	stu	den	t wil	l be	able	e to		
1		<u> </u>									
1.	Define Artificial intelligence a	ndı	den	tity	orob	lem	is to	r Al.	Char	acterize	the
	search techniques to solve problems and recognize the scope of classical search										
	techniques										
2.	Define knowledge and its role	e in .	AI. C	Dem	onst	rate	e the	use	of Lo	ogic in s	olving AI
	problems										
3.	Demonstrate handling of unc	erta	in k	now	ledo	ie a	nd p	lann	ing ir	ו Al.	
4.	Understanding of probability								-		
5.	Analyze the given problem to		-							solve t	he
	engineering	- 1- I	.,								
	problem.										
<u> </u>	problem.										
	Program Outcomes→	1	2	3	4	5	6	7	8	PSO	-
	↓ Course Outcomes									1	2
	1	2	3	1				1	2	1	1
	2	3	2	1			1		2		1
	3 4	3	2	2	2				2	2	
	5	3	3	2	2	2			2		3
	BOOKS:										
1.	Eliane Rich, Artificial Intellige	nce,	Mc	Grav	v Hi	ll In	tern	atior	nal stu	udent e	dition,
	1984.										
2.	Machine Learning, Tom Mitcl	ne, N	ИcG	raw	Hill,	199	97				
	RENCE BOOKS:										
1.	Mehryar Mohri, Afshin Rosta	miza	adeh	ı, Ar	neet	: Tal	wall	ar	"Four	ndation	of
	Machine MIT										
	Press,2012.										
<u>.</u>	•										

MACHINE LEARNING LAB

Course Code:	23CSE	204			e Type:	
Teaching Hours/Week (L: T: P: S):	0+0+2	+0			Credits:	
Total Teaching Hours:	2		С	IE + SEE	Marks:	50+50
Course Objectives:						
1. To understand the basics of Da	atastruc	tures				
2. To apply the ML concepts to s	olve pro	blems.				
Lis	t of Exp	erimen	ts			
1. the basics of data structures like	e Linked	list, stack	queue,	set and m	ap in Java	Э.
2. Adaboost and Bagging usin	g Rand	om Fore	ests.			
3. Logistic Regression						
4. NEURAL NETWORK Grap	hs for d	ifferent	activat	ion funct	ions: sig	moid,
Tanh, ReLu Parameter Initia	lization:	Simple	neural	network	for Iris c	lataset.
5. DEEP LEARNING Caffe: for c	different	deep l	earning	architect	tures like	e DBN,
CNN, RNN, LSTM, DSN App	lication	:				
Course Outcomes: At the end of the	course	studen	t will be	able to		
1. Implement the ML concepts us	sing pyt	hon pro	ogramm	ning		
2. Design solutions to given prob	plem by	using a	ppropri	iate conc	epts	
					-	
Program Outcomes→	1 2	3 4	5 6	7 8	PSO	Ļ
↓ Course Outcomes					1	2
1	1 2	2 1		1 2		
2	3 2	2 2		1 2		
REFERENCE BOOKS:						
1	hina lar		D (1			امم: امرم ۸
 Abhishek Vijayvargiya, Macl 		iming to	or Pytho	on: An Ap	proach	to Applied

BIG DATA ANALYTICS					
Course Code:	23CSE202	Course Type	PCC		
Teaching Hours/Week (L: T: P: S)	5+0+0+0	Credits	04		
Total Teaching Hours	50	CIE + SEE Marks	50+50		

UNIT-/

Introduction to Big Data: Types of digital Data, Characteristics of Data, Evolution of Big Data, Definition of Big Data, Challenges with Big Data, What Is Big Data? Why Big data? Traditional BI versus Big data.Big Data Analytics: What is Big Data Analytics? Why this sudden Hype around Big Data analytics? Data Science, Terminologies used in Big Data environments

Introduction to NoSQL: Where it is used, Types of NoSQL databases, Why NoSQL, Advantages of NoSQL,

Introduction to MongoDB: What is MongoDB? Why MongoDB? Using JSON, Creating or generating a unique key, Data types in MongoDB, MongoDB Query Language: Insert method, Save

method, Update method, Remove method, Find method, Dealing with Null values, Count, Limit, Sort, Skip.

10 Hrs

UNIT II

Introduction to Hadoop : Introducing Hadoop, need of Hadoop, limitations of RDBMS, RDBMS versus Hadoop, Distributed Computing Challenges, History of Hadoop, Hadoop Overview, Use Case of Hadoop, Hadoop Distributors, HDFS (Hadoop Distributed File System), Processing Data with Hadoop, Managing Resources and Applications with Hadoop YARN (Yet another Resource Negotiator).

Writing Hadoop MapReduce Programs: Understanding the basics of MapReduce, Introducing Hadoop MapReduce,Understanding the different Java concepts used in Hadoop programming,.

10 Hrs

UNIT-III

Writing a Hadoop MapReduce example, Understanding several possible MapReduce definitions to solve business problems

SPARK: Spark applications, Jobs, stages and Tasks, Resilient Distributed Datasets(RDD), Anatomy of SPARK Job Run; SPARK on YARN

10 Hrs UNIT IV

Hadoop Ecosystem: Understanding Hadoop subprojects: Mahout, Apache HBase, Hive, Pig, Apache Sqoop, Apache Zookeeper, Apache Solr, Ambari.

HBase: What is HBase? Storage Mechanism in HBase, Features of HBase, HBase and RDBMS, HBase and HDFS.

10 Hrs

UNIT V

Introduction to Pig: What is Pig? Pig on Hadoop, Pig Philosophy, Pig Latin overview; Pig Data Types; Running Modes of Pig; Execution Modes of PIG, Relational operators, EVAL function, Complex data types.

Introduction to Hive: What is Hive? Architecture; HIVE Data Types; HIVE File Format; Hive Query Language(HQL).

10 hrs

TEXTBOOKS:

1.	SeemaAcharya, SubhashiniChellappan, "Big Data Analytics", 1st Edition, Wiley,
	2015.
2.	Vignesh Prajapati, "Big Data Analytics with R and Hadoop", Packet Publishing
	2013.
3.	Tom White, Hadoop: The Definitive Guide, 4th Edition, O'Reilley, 2012.
REFE	RENCE BOOKS:
1.	V1. Boris lublinsky, Kevin t. Smith, Alexey Yakubovich, "Professional
	Hadoop Solutions", Wiley, ISBN: 9788126551071, 2015.
2.	Chris Eaton, Dirk derooset al. , "Understanding Big data ", McGraw Hill, 2012.
3.	E. Capriolo, D. Wampler, and J. Rutherglen, Programming Hive, O'Reilley, 2012.
4.	Lars George, HBase: The Definitive Guide, O'Reilley, 2011.
5.	Alan Gates, Programming Pig, O'Reilley, 2011
E Boo	ks / MOOCs/ NPTEL
1.	https://www.upgrad.com/big-data-analytics-

Course Code:		23CSE205	Course Type:	PCC Lat			
Теа	ching Hours/Week (L: T: P: S):	0+0+2+0	Credits: 01				
Tota	al Teaching Hours:	2	CIE + SEE Marks:	50+50			
Cours	se Objectives:						
	task in Hadoop.,		nd implement different file r	nanagemei			
2.	task in Hadoop., Implement different operations on Apply different operation on Hive	n PIG latin Scripts,					
2.	task in Hadoop., Implement different operations on Apply different operation on Hive						
2. 3. 1.	task in Hadoop., Implement different operations on Apply different operation on Hive Lis implement different file manage	n PIG latin Scripts, st of Experimen t ement task in Had	ts doop				
2. 3.	task in Hadoop., Implement different operations on Apply different operation on Hive Lis implement different file manage Understand Map Reduce Paradic	n PIG latin Scripts, St of Experimen t ement task in Had gm and develop c	ts doop lata applications using varie				

Course Code:	23CSE105	Course Type	RETP
Teaching Hours/Week (L: T: P: S)	0:0:4:0	Credits	2
Total Teaching Hours	24	CIE + SEE Marks	50+50
Teachi	ng Departmer	nt: CSE	
Course Objectives: The research pur	poses are		
To foresee future problems th	rough pursuit	of truth as a "global c	entre of
excellence for intellectual crea	tivity".		
• To respond to current social d	emands, and	to contribute to the cr	eation and
development of scientific tech	nologies with	the aim of realizing an	n affluent
society and natural environme	ent for human	ity.	
• At the same time, the course a	aims to create	excellent educational	resources
and an excellent educational e	environment t	hrough frontline resea	rches
• To Understand professional w	riting and cor	nmunication contexts	and
genres, analyzing quantifiable	data discover	red by researching, and	d
constructing finished profession	onal workplac	e documents.	
Individual PG Students are to be allo student's area of research interest, s of the first semester.	pecialization		
	MODULE -1		
Defining the research problem - Se	electing the p	problem - Necessity o	of defining the
problem - Techniques involved in def	fining the prob	olem - Importance of li	terature review
in defining a problem - Survey of lite	erature - Prima	ary and secondary sou	rces - Reviews
treatise, monographs patents - web	as a source -	searching the web - I	dentifying gap
areas from literature review - Devel	opmont of w	orking hypothesis syst	tomatic way o

areas from literature review - Development of working hypothesis, systematic way of conducting

research, write a review / research paper, research proposal, preparation of research report.

MODULE-2

- Introduction various simulation tools related to Computer Science
- Use of latest software tools that is related to the domain of the research.
- Introduction to typesetting tool (Latex).

• At the end of the course students should submit a research proposal and should present the idea.

The Research proposal report prepared based on the work carried out by the PG Student is evaluated for 50 marks and 20 minutes presentation on the research work carried out

will be evaluated for 50 marks jointly by the examiners.

1.	Identify and define the problem statement based on the literature reviewed.
	Formulate the objectives specific to the defined problem statement.
3.	Develop the methodology for achieving the objectives.

Course Outcomes Mapping with Program Outcomes & PSO

	Program Outcomes→	1	2	3	4	5	6	7	8	PSC	D↓	
	↓ Course Outcomes									1	2	
	1	3	2	2						2		
	2	3		2						2		
	3	3		3							3	
REFERE	NCE BOOKS:											
1. _T	he Undergraduate Research	Har	nd b	ook	. Gir	na V	Viske	er · 2	018			
E Books	/ MOOCs/ NPTEL											

<u> </u>	Irse Code:	23CSE111		PCC
	rse Code: ching Hours/Week (L: T: P: S)	23CSE111 3+0+0+0	Course Type Credits	03
	al Teaching Hours	40	CIE + SEE Marks	50+50
	se Objectives:			
	1			
1.	To understand the different me	ethods in stor	ing data in disks as files.	
2.	To familiarize with different typ	pes of Indexin	g.	
3.	To understand the Query evalu	uation process	and evaluating operators	5.
4.	To understand the working of	a typical quer	y optimizer.	
5.	To Familiarize with Distributed	database con	cept, distributed database	9
	Architecture, Query processing	and optimiza	ition in distributed databa	ise
		UNIT-I		
itora	age and Indexing:			
	view of storage and indexing anizations and Indexing, Index	-	-	
-	anizations. Storing data: disks			
-	undant Arrays of Independent D			
	ager, Buffer Replacement Polic	-	-	
	ord Formats. Tree-structured in		-	15 Hours
nde	xed Sequential Access Method	(ISAM). B+	Trees: A Dynamic Index	15 Hours
Struc	cture, Search, Insert, Delete, Du	uplicates, B+	Trees in Practice. Hash-	
base	d indexing: Static Hashing, E	Extendible Ha	ashing, Linear Hashing,	
Exter	ndable vs. Linear Hashing			
		UNIT-II		
	ry Evaluation:			
	view of query evaluation: The Sy	-		
	rator Evaluation, Algorithms for F	Relational Ope	erations, Introduction to	
Quei	•			
•	mization, Alternative Plans: A	0		
•	mizer Does? External sorting: Wh			
wo	-Way Merge Sort, External Mer	-	-	
				1
	ber of I/Os, Using B+ Trees for S Selection Operation, General	-	- .	15 Hours

Operation, The Join Operation, The Set Operations, Aggregate Operations, The Impact of Buffering. A typical relational query optimizer: Translating SQL Queries into Algebra, Estimating the Cost of a Plan

UNIT-III

Distributed Database Concepts: Distributed Database Concepts, Data Fragmentation, Replication, and Allocation Techniques for Distributed Database Design, Overview of Concurrency Control and Recovery in Distributed Databases, Overview of Transaction Management in Distributed Databases, Query Processing and Optimization in Distributed Databases, Types of Distributed Database Systems, Distributed Database

Architectures, Distributed Catalog Management

Course Outcomes: At the end of the course student will be able to

- **1.** Explain the different methods in storing data in disks as files.
- 2. Illustrate with different types of Indexing.
- **3.** Perform the Query evaluation process and evaluate operators.
- 4. Explain the working of a typical query optimizer.
- 5. Explain the Distributed database concept, distributed database Architecture,Query processing and optimization in distributed database

Program Outcomes→	1	2	3	4	5	6	7	8	PSO ↓	
↓ Course Outcomes									1	2
1	3		2						3	
2	3		2		2				2	3
3	3		2						3	
4	3		2						2	3
5	3		2		2				2	3

TEXTBOOKS:

Database management systems / Raghu Ramakrishnan, Johannes Gehrke.3rd
 Edition Mc Graw Hill

REFERENCE BOOKS:

 Fundamental Database Systems Ramez Elmasri and Shamkant B. Navathe, 7th Edition., Pearson Publication

 Database System Concepts A. Silberschatz, Henry F. Korth ,S. Sudarshan Sixth Edition McGraw Hill Publication

COMPILER OPTIMIZATION AND MULTI-CORE ARCHITECTURES

Course Code:	23CSE112	Course Type	PCC
Teaching Hours/Week (L: T: P: S)	3+0+0+0	Credits	03
Total Teaching Hours	40	CIE + SEE Marks	50+50
Course Objectives:		•	

- **1.** To familiarize principles of parallel programming
- **2.** To understand compiler optimizations
- **3.** To comprehend the parallel architectures
- **4.** To familiarize parallel programming paradigms

UNIT-I

Programming principles:

Reactive parallel programming. Synchronization strategies, critical regions, atomic updates, races, deadlock avoidance, prevention, livelock, starvation, scheduling fairness, virtualization, speculative parallelization, transactional memories.

Optimizations:

Basic compiler optimizations, Control and data flow analysis, Enhancing parallelism, dependence analysis. Tiling for locality and communication, Aggregation for communication, Load balancing strategies, Register Allocation:Coloring, Spilling & IPA, Pointer alias Analysis ,Dynamic Code Optimizations and garbage collection,

	-
UNIT-I	
UNIT-I	

Program transformation by pattern matching, Partial evaluation, Objectoriented and Aspect-oriented programming, Automatic Parallelization I and II.

Overview of architectures:

Automatic Programming:

Architectural characterization of most important Parallel systems today. **14 Hours** Issues in effective programming of parallel architectures: exploitation of parallelism, locality (cache, registers), load balancing, communication, overhead, consistency, coherency, latency avoidance

UNIT-III

Programming paradigms:

By the data: Partitioned data, global view of data, and no state. By control: Partitioned control, global view of control, functional control. Survey of programming languages/APIs:OpenMP and MPI.	10 Hours
	•
Course Outcomes: At the end of the course student will be able to	

- **1.** To explain the principles of parallel programming
- **2.** To perform different compiler optimizations
- **3.** To illustrate automatic parallelization
- **4.** To comprehend the parallel architectures
- **5.** To explain the parallel programming paradigms

		1	2	3	4	5	6	7	8			
	Program Outcomes→	I	2	3	4	5	0	/	0	PSC		
	↓ Course Outcomes									1	2	
	1	2		2	3	2			2	1	3	
	2	2		2	3	2			2	1	3	
	3	2		2	3	2			2	1	3	
	4	2		2	3	2			2	1	3	
TEVT	5	2		2	3	2			2	1	3	
-	BOOKS:											
1.	Muchnick,StevenS.,Advanced	Coi	mpil	er D	esig	in a	nd l	mple	ment	ation	•	
	MorganKaufmann,1997											
2.	LowryandMcCartney,Automa	ting	Sof	twa	reDe	esigi	n,AA	AlPr	ess,1	991.		
3.	John L. Hennessy and David A	A. Pa	attei	rson	, Co	mpı	uter	Arch	itectu	ure: A	Qua	intitative
	Approach, Morgan Kaufmanr	n; 5	edit	ion,	201	1.						
REFE	RENCE BOOKS:											
1.	Czarnecki, K.and Eisenecker, U.	, Ge	ener	ative	e Pro	ogra	mm	ing:	Meth	ods, ⁻	Fools	s and
	Applications, Pearson, 2000.											
2.	Maurice Herlihyand Nir Shavi	t ,Tł	ne A	rt of	fΜι	ıltip	roce	essor	Prog	ramm	ning,	Morgan
	Kaufmann, Morgan Kaufmanı	n; 1s	sted	itior	n, 20	12.						
3	Niranjan N. Chiplunkar and R	aju	K., Iı	ntro	duct	ion	to F	Parall	el Co	mput	ing.	Wiley
	India,2020.											

CYBER SECURITY & FORENSICS

Course Code:	23CSE113	Course Type	PCC					
Teaching Hours/Week (L: T: P: S)	3+0+0+0	Credits	03					
Total Teaching Hours	40	CIE + SEE Marks	50+50					
Course Objectives:								
1. To understand the basics of co	yber security.							
2. To understand the concepts of firewalls.								
3. To analyze the intrusion detection system and Hash authentication								
4. To analyze phishing and iden	tify the theft.							
5. To Understand the computer	forensics.							
	UNIT-I							
Cyber security Overview:	Dorsportivo	Trends in the Types of	,f					
Introduction, Security from Global	•							
Attacks and Malware, The types of N								
and security configuration schemes								
Zero-Day Vulnerability, Attacks on		rids and Utility network	S					
Network and Infrastructure Overvie		.	15 Hours					
Fire Walls : Firewalls, Stateless Packe	5							
Application level Gateways, Circuit	level Gateway	rs, A Comparison of Fou	r					
types of gateways.								
Intrusion Detection / Prevention Sys	UNIT-II tem :							
Overview, The approaches used for		work Based IDS/IPS, Hos	st					
Based IDS/IPS, The detection of P								
Distributed Intrusion Detection syste		-						
Hash and Authentication:								
Authentication overview, Hash Funct	ions. The Hasl	h Message Authenticatio	n					
Code, Password Based Authenti		5	15 Hours					
Standard, Password Based Security								
tokens(only two								
factor authentication),Open Identifi	cation and On	en Authorization						

Phishing and Identity theft: Introduction, Phishing , Identity theft (ID) Cyber Crime and CyberSecurity: Introduction, Why do we need cyber laws: Indian context, The Indian IT Act, Challenges to Indian Law and cybercrime scenarios in India, Consequences of not addressing the weakness in information technology Act. Digital Signatures and Indian Act. Cyber Crime and Punishment

Understanding Computer Forensics: Introduction, Digital forensics science,											
	need of computer forensics, Cyl					•					10 Hours
			iore	iisic.	5 011	uu	gita			1	
Digita	5										
foren	forensics life cycle, Network Forensics, Computer forensics and										
stega	inography										
Cours	se Outcomes: At the end of the	e co	urse	stu	den	t wil	l be	able	e to		
1.	To understand the basics of c	ybe	r sec	curit	у.						
2.	To understand the concepts of	of fir	ewa	lls.							
3.	To analyze the intrusion detection	ctior	n sys	stem	an	d Ha	ash a	authe	entica	ition	
4.	To analyze phishing and iden	tify	the	thef	t.						
5.	Understand the computer for	ensi	CS.								
	Program Outcomes→	1	2	3	4	5	6	7	8	PSC)↓
	↓ Course Outcomes									1	2
	1	2		1						3	1
	2	2		1						2	3
	3 4	2		1		3				3 2	2 3
	5	2		1						2	<u> </u>
TEXT	BOOKS:										
1. Chwan-Hwa (John) Wu, J. David Irwin, Introduction to Computer Networks and											
1.	Chwan-Hwa (John) Wu, J. Dav	vid I	rwir	n, Int	trod	ucti	on t	o Co	mput	er Ne	tworks and
1.	Chwan-Hwa (John) Wu, J. Day Cyber security, publication: :								•		
1. 2.		CRC	pre	ss, T	aylo	or ai	nd F	ranc	is gro	up, 20	13.
	Cyber security, publication: :	CRC e, Si	pre unit	ss, T Bela	aylo apur	or ai e, P	nd F ubli	ranc catio	is gro n :Joł	up, 20 nn Wil	013. ey, 2012.
2.	Cyber security, publication: : Cyber Security –Nina Godbol	CRC e, Si litec	pre unit l by	ss, T Bela Jam	aylo apur es C	or ai e, P Grah	nd F ublie am,	ranci catio Rich	is gro n :Joł ard H	up, 20 nn Wil	013. ey, 2012.

	DESIGN THINKING						
Cou	rse Code:	23CSE114	Course Type	PCC			
Tea	ching Hours/Week (L: T: P: S)	3+0+0+0	Credits	03			
Tota	al Teaching Hours	40	CIE + SEE Marks	50+50			
Cour	Course Objectives:						
	-						
1.	1. To provide a basic conceptual design thinking						
2.	2. To explore customer need analysis.						
3.							

	NITTE
-	(Deemed to be University)

- 4. To work on problem decomposition.
- 5. To understand product development process.

NITTE (Deemed to be University)

(Dee	med to be University)											
			UNI									
Introduction and problem discovery: Introduction to Design Thinking, People Centered Design &Evoking the Right problem, Skills expected of design thinking practitioners.												
	ying Customer Needs: Product	dev	velop	omei	nt pi	roce	ss a	and o	conce	pt,	15	Hours
development phase in design planning and analysis, Customer needs and												
marke	markets, Types of product users Customer needs analysis.											
	UNIT-II											
Translating customer needs into measurable specifications: Bench marking needs vs. Specifications,Quality function deployment (house of quality), Dynamics of product specifications.							15	Hours				
	d Creativity: Problem decompos	ition	tech	nniqu	ues a	and	solu	tion				
	ots, Brainstorming principles and				y in	crea	tive	think	ing,			
Syster	n exploration and concept / dow	n-se	election	on								
			UNI	T-III								
DFE p develo	n for Environment: rinciples and decision making, opment process,Product life cycl										10	Hours
Miller	story.											
Couro	e Outcomes: At the end of the		urco	ctu	don	+il	lha	able	to			
Course	e Outcomes: At the end of the		urse	รเน	uen		i be	able	10			
	Examina Dacian Thinking conce	nto	and	orina	ninla							
1.	Examine Design Thinking conce	pis	anu j	princ	lible	5						
2.	Practice the methods, processes	s ar	nd to	nle c	of cur	stor	or n	haa	analy	cic		
2.	radice the methods, processes	5, ai		515 0	n cu.	51011		eeu	anary	313.		
	Apply the Design Thinking appro the needs to specifications.	bach	and	mo	del t	o rea	al wo	orld s	ituatio	ons and	trans	late
	Analyze the role of primary and Thinking	seco	ondai	ry re	sea	rch i	n the	e disc	covery	y stage	of Des	sign
5.	Apply the design thinking to i	real	wor	ld p	robl	ems	5.					
												1
	Program Outcomes→	1	2	3	4	5	6	7	8	PSO		
	↓ Course Outcomes									1	2	
	1	3		2						3	2	
	2	3		2	3	_				3	2	
	3	3		2		3				3	2	
	4 5	3		2						3	2	
	5	3		2					l	5	2	

TEXT	BOOKS:
1	Karl T. Ulrich, Steven. D. Eppinger, "Product design and development", Mcgrav
2	hill publications, 5th ed., 2011.
	Nanua Singh, "Systems approach to computer integrated design and
3	manufacturing", Wiley India Pvt. Ltd., 4435-36/7, Ansari Road, Daryaganj, 1999
4	Wake, Warren K., Design Paradigms A Source for Creative Visualization, NewYork
	John Wiley & Sons, 2000.
	Rowe, Peter G. Design Thinking, Cambridge, MA: MIT Press 1987.

Data Science Concepts and Applications

+0+0 Credits	03
CIE + SEE N	Marks 50+50
]	

1.	To Study the core concepts and technologies od data science
2.	To familiarize Mathematical and Statistical foundations for Data Science
3.	To study data processing, statistical technqiues
4.	To understand various machine learning algorithms
5.	To familiarize with data visualization tools with case studies
<u> </u>	

UNIT-I

Introduction to core concepts and technologies: Introduction, Terminology, data science process, data science toolkit, Types of data, Example applications, Mathematical Foundations for Data Science: linear algebra; Analytical and numerical solutions of linear equations; Mathematical structures, concepts and notations used in discrete mathematics. Introduction to Statistical Methods: basic and some advanced concepts of probability and statistics; Concepts of statistics in solving problems arising in data science.

15 Hours

UNIT-II	
Data collection and management: Introduction, Sources of data, Data collection	15
and APIs, Exploring and fixing data, Data storage and management, using multiple	Hours
data sources. Data analysis: Introduction, Terminology and concepts, Introduction	
to statistics, Central tendencies and distributions, Variance, Distribution properties	
and arithmetic, Samples/CLT, Basic machine learning algorithms, Linear	
regression, SVM, Naive Bayes.	
UNIT-III	
· · · · · · · · · · · · · · · · · · ·	9 Hours
Data types, Data encodings, Retinal variables, mapping variables to encodings,	
Visual encodings. Applications of Data Science, Technologies for visualization,	
Bokeh (Python), recent trends in various data collection and analysis techniques,	
various visualization techniques, application development methods of used in data.	
science. Case- studies	

Course Outcomes: At the end of the course student will be able to

NITTE (Deemed to be University)

1.	Explore the fundamental concepts of data science
2.	Understand data analysis techniques for applications handling large data
3.	Understand various machine learning algorithms used in data science process
4.	Visualize and present the inference using various tools
5.	Learn to think through the ethics surrounding privacy, data sharing and algorithmic decision-making

Program Outcomes→	1	2	3	4	5	6	7	8	PSC	¢C
↓ Course Outcomes									1	2
1	3		1		1			1		1
2	1		1		1			1		1
3	1		1		1			1		1
4	1		1		1			1		1
5	3		1		1			1		1
1: Lo	w. 2	: Me	dium	1. 3:	Hiał	า				

	T. LOW, Z. Medium, S. High
TEXT	BOOKS:
1.	Cathy O'Neil, Rachel Schutt, Doing Data Science, Straight Talk from The Frontline. O'Reilly, 2013.
2.	Introducing Data Science, Davy Cielen, Arno D. B. Meysman, Mohamed Ali, Manning
	Publications Co., 1st edition, 2016
3.	An Introduction to Statistical Learning: with Applications in R, Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani, Springer, 1st edition, 2013

NITTE (Deemed to be University)

Reference Books:

- 1. Jure Leskovek, Anand Rajaraman, Jeffrey Ullman, Mining of Massive Datasets. v2.1, Cambridge University Press, 2014.
- 2. Data Science from Scratch: First Principles with Python, Joel Grus, O'Reilly, 1st edition, 2015.
- 3. Doing Data Science, Straight Talk from the Frontline, Cathy O'Neil, Rachel Schutt, O' Reilly, 1st edition, 2013.
- 4. Mining of Massive Datasets, Jure Leskovec, Anand Rajaraman, Jeffrey David Ullman, Cambridge University Press, 2nd edition, 2014

ADVANCES IN COMPUTER VISION

Οοι	ırse Code:	23CSE122	Course Type	PCC
Теа	ching Hours/Week (L: T: P: S)	3+0+0+0	Credits	03
	al Teaching Hours	40	CIE + SEE Marks	50+50
Cou	rse Objectives:			
1.	To oveloin the need of costial	and fraguence	u domain tachniquae fari	
	To explain the need of spatial compression	and frequency	y domain techniques for i	mage
2.	Identify, formulate and solve p vision.	problems in im	nage processing and com	puter
3.	Critically review and assess sci knowledge to identify the nov		,	
4.	Design and develop practical a vision applications or systems	and innovative	e image processing and co	omputer
		UNIT-I		
Intro	duction to Computer Vision:			
Goal	areas,Human Vision,Segmentat	tion,Perceptio	n, Semantic information,	
Spec	ial effects, Modeling, App	lications; Li	near Algebra: Vectors	
Matı	rices,Transformation matrices,Ma	atrix inverse,N	latrix rank,SVD.	
Pixe	Is, Features, and Cameras: Pix	els and Filte	rs: Images as functions,	
	ar Systems (filters),Convolution		•	
Canr	-	detector:	-	
	G,SIFT;CameraModels			
	· ·	UNIT-II		
Cam	era: Pinhole Cameras, Camer	as & lenses,	Projection matrix,	
Intri	nsic parameters, Extrinsicpara	ameters; Ste	reoVision: Epipolar	
Geoi	metry,	F	Parallelimages,Image	15 Hours
	Rectifica	tion,Solving		
	correspo	ondence	problem,Active	
Stere	eoVision System;			
	-	UNIT-III		

NITTE (Deemed to be University)

Regions of Images, and Segmentation:Basic Concepts ofSegmentation:Gestalt Theory;Agglomerative, K-means & Mean-shiftClustering; Optical flow, Feature tracking, Applications;Advanced ImageParsing Topicand Applications:Binary,Image Matting;Figure-groundSegmentation Using Clustering Algorithms.Recognizing Faces and Objects: Basic Concepts in Recognition & its

pipeline, Nearest NeighborMatch;PCA andEigenfaces; Tracking Millions of People: Detection, Tracklet Generation Association;

Course Outcomes: At the end of the course student will be able to

1.	Explain the need of spatial and frequency domain techniques for image compression.
2.	Identify, formulate and solve problems in image processing and computer vision.
3.	Critically review and assess scientific literature in the field and apply theoretical knowledge to identify the novelty and practicality of proposed methods
4.	Design and develop practical and innovative image processing and computer vision applications or systems
L E	

5. Solve problems using the concepts of image segmentation, object recognition.

Program Outcomes→	1	2	3	4	5	6	7	8	PSC	¢C
↓ Course Outcomes									1	2
1	2								3	2
2	1	2			3				3	2
3	2								3	2
4	2								3	2
5	2				3				3	2

TEXTBOOKS:

1.

Richard	Szeliski,Computer	Vision:Algorithms	and
	Applications, Micros	oft Research, Electroi	nic draft,2010.

DavidA.Forsyth &JeanPonce, Computer Vision: A Modern Approach, Prentice
 Hall; 2 edition, 2011.

3. Hartley & Zisserman, Multiple View Geometry in Computer Vision, Cambridge University Press; 2 edition, 2004.

REFERENCE BOOKS:

1. Machine vision, Jain, Ramesh and Rangachar Kasturiand Brian G.Schunck;

McGraw-Hill ,Edition-1995.

 Introductory Computer Vision And Image Processing, Low, Adrian; McGraw-Hill, Edition-1991. Digital Image Processing, Gonzalez, Rafael C. and Richard E.Woods; Addison-Wesley, Edition: 3rd, Year:1998.

NATURAL LANGUAGE PROCESSING

Course Code:	23CSE123	Course Type	PCC		
Teaching Hours/Week (L: T: P: S)	3+0+0+0	Credits	03		
Total Teaching Hours	40	CIE + SEE Marks	50+50		
Course Objectives:					
1. To understand the basic conce					
	-	language processing.			
2. To study the semantics and pa	aradigms.				
3. To understand the algorithms	used in NLP				
4. To know the implementation of	of NLP in pyth	on.			
	UNIT-I		1		
Introduction: What is Natural Lange	uage Processi	ng, Motivation, Words -			
Regular Expressions and Automata, \	Nords and Tra	nsducers, N-grams-Part–			
of-Speech Tagging, Hidden Markov	Models, Maxir	num Entropy Model.			
Syntax:Syntactic Parsing, Statistical Parsing, Features and Unification-					
Languages and Complexity, Languag	e Modelling.				
	UNIT-II				
Semantics and Pragmatics:Semantic	s and Pragma	atics: The Representation			
of Meaning, Computational Seman	tics, Lexical S	emantics: Computational			
Lexical Semantics, Computational Dis	scourse.				
Applications:Applications, Informatic	on Extraction,	Question Answering and	15 Hours		
Summarization, Dialogue And Conver	rsational Ager	nts, MachineTranslation.			
	UNIT-III		·		
NLP Using Python : Language Pro	cessing and	Python - Accessing Text			
Corpora and Lexical Resources-Pro	cessing Raw	Text-Writing Structured			
Programs-Categorizing and Taggir	ng Words-Lea	arning to Classify Text-	10 Hours		
Extracting Information from Text-Ca	se Study.				
Course Outcomes: At the end of the	course stude	nt will be able to			

N NITTE

1.	Analyze the natural language text to extract it into different parts of speech.
2.	Understand the syntax and the features of natural language text with respect to languages.
3.	Analyze the text to understand the various semantics and pragmatics
4.	Apply information retrieval techniques to natural language text.
5.	Implement the NLP concepts using python.

Program Outcomes→	1	2	3	4	5	6	7	8	PSC	D↑
↓ Course Outcomes									1	2
1				1					1	
2				1					1	
3				1					1	
4				1					1	
5	2	1		1	3				2	3

TEXTBOOKS:

1.	Allen, James, Natural Language Understanding, Second
	Edition,Benjamin/Cumming, 1995.
2.	Jurafsky, D. and J. H. Martin. Speech and language processing: An
	Introduction to Natural Language Processing, Computational Linguistics,
	and Speech Recognition, Second Edition, Prentice Hall, 2008.
3.	Steven Bird, S., Klein, E., Loper, E, Natural Language Processing with Python-
	Analyzing TextwiththeNaturalLanguageToolkit, O'ReillyMedia, 2010.

CRYPTOGRAPHY AND NETWORK SECURITY

Course Code:	23CSE124	Course Type	PCC
Teaching Hours/Week (L: T: P: S)	3+0+0+0	Credits	03
Total Teaching Hours	40	CIE + SEE Marks	50+50

1.	To understand the requirements of information security.
2.	To understand the various fronts and the corresponding cryptographic
	techniques.
3.	To understand the importance of various authentication techniques and its
	applications.
4.	To understand the implementation of the cryptographic techniques.

	Deemed to be University	Sullabus of M. Tash (Computer	•
5.	To understand the ap common forms of th	oplications of the security techniques and the stud e security threats.	dy of the
		UNIT-I	
Foun	dations of Cryptograp	ohy and Security: Ciphers and Secret Messages;	
Secu	rity Attacks and S	ervices. Conventional Symmetric Encryption	
Algo	rithms: Theory of I	Block Cipher Design; FeistelCipher Network	
Struc	tures; DES and Tripl	e DES; Modes of Operation (ECB, CBC, OFB,	
CFB);	Strength(orNot)of DES	S; Rijndael (AES).	
Mod	ern Symmetric Encrypt	ion Algorithms: Blowfish; Key Distribution. Public	16 Hours
		umbers and Testing for Primality; Factoring Large	
Num	bers; RSA; Diffie-Hellm	nan; KeyExchangeAlgorithm;	
		UNIT-II	
Hash	es and Message Dige	sts: Message Authentication; MD5; SHA; Digital	
Signa	atures: Certificates, U	ser Authentication; Digital Signature Standard	
(DSS	andDSA). Authenticat	tion of Systems: KerberosV4 and V5; X.509	
Auth	entication Service.		
Ellipt	ic curve cryptography	, Electronic Mail Security: Pretty Good Privacy	14 Hours
(PGP)	; S/MIME. IP andWel	b Security: IPSec and Virtual Private Networks;	
Secu	re Sockets and Transpo	ort Layer (SSL andTLS).	
	·	UNIT-III	
Elect	ronic Commerce Se	curity: Electronic Payment Systems; Secure	
Elect	ronic Transaction	(SET);CyberCash, iKey Protocols; Digital	10 Hours
Wate	rmarking and Stega	anography, Intrusion detection, Viruses And	
Worr	ns,Firewalls.		
Cour	se Outcomes: At the e	end of the course student will be able to	
1.	Analyze and design o	classical encryption techniques and block ciphers.	
2.	Understand and anal	yze public-key cryptography, RSA and other publ	ic-key
	cryptosystems such a	as Diffie-Hellman Key Exchange, ElGamal Cryptosy	vstem, etc
3.		anagement and distribution schemes and des	
	Authentication Proto	-	<u>.</u>
4.		nash and MAC algorithms, and digital signatures.	
5.		ication security schemes, such as PGP, S/ MIME, II	PSec, SSL.

	Program Outcomes→	1	2	3	4	5	6	7	8	PSC	D↑	l
	↓ Course Outcomes	1								1	2	1
	1	3		3	2				2	3		1
	2	3		3	2				2		2	I
	3	2		1	2				2		2	1
	4	3		1	1				2		1	1
	5	3			1				2		1	L
TEXT	BOOKS:											
1.	William Stallings, Cryptograp	hy a	and	Netv	vork	c See	curit	y, Th	nird E	dition	, Pea	arson
	Education,2003.											
REFE	RENCE BOOKS:											
1.	Charlie Kaufman, Radia Perlm	nan,	Mik	e Sp	pecir	her,	Net	work	s Secu	ırity: F	Priva	te
	Communication In a Public W	/orlo	d, Se	econ	d Ec	ditio	n, P	ears	on Ed	ucatio	on A	sia,2002.

	CLO	UD COMPU	TING							
Cou	ırse Code:	23CSE131	Course Type	PCC						
Tea	ching Hours/Week (L: T: P: S)	0+3+0+0	Credits	03						
	al Teaching Hours	40	CIE + SEE Marks	50+50						
Cour	se Objectives:									
1.	To learn the components of cl technologies.	oud computir	ng and storage networkin	g						
2.	To comprehend the concepts of virtualization.									
3.	To understand the different types of virtualization.									
4.	To learn about the characteris	tics of cloud o	computing and cloud infra	astructure						
	and									
	management of the cloud									
		UNIT-I								
Class	sic data center and its elements	, Challenges a	and benefits.Virtualization	I						
of co	ompute,storage and network. D	efinition of c	loud computing. Steps ir	ı						
trans	sitioning to cloud- consolidation	, automation,	IT as a service.							
Com	pute – Physical and logical com	ponents. Stor	rage –Media and options	,						
) and concept ofLUN.Network– I	•								
	age networking technologies- D	,		t						
	d storage.Business continuity Recovery –Overview,method	–Need,Termi	nologies,solutions.Backup	15 Hours						

Sullabus of M Tach (Computer	r
deduplication. Replication- Overview, consistency, local and remote	
replication technologies,	
Data center management.	
Compute Virtualization – Challenges of x86 hardware virtualization,	
Hypervisor- Type 1 and Full, para and hardware assisted virtualization. Virtual	
machine,VM disk files BIOS files and swap files,virtual machine hardware-	
CPU, memory, disk, networkinterface another devices. Resource	
Management.VMFS,	
Physicaland virtual machine conversion-benefits, options process	
UNIT-II	
Storage virtualization – LVM, NAS volume management- AVM, storage	
pool, Block and file level virtualization, Thin provisioning and automated	
storage tiering Network virtualization – Networking in VDC, Virtual NIC,	
Switch, router, VLAN and	
VSANtechnologies,VLASNtaggingmode	
s- VST,ESTandVGT.PrivateVLAN,Networktrafficmanagement,NIC	
teaming,NetworkI/Control,Multipathing.	
Application and Desktop virtualization - Application virtualization – different	
layers, user profile virtualization, application streaming and encapsulation,	15 Hours
benefits. Desktop virtualization- methods -client based and computer	
based.	
Business continuity in Virtual Data center-Fault tolerance mechanism,	
clustering, protecting network. Backup inVDC-	
approaches, array based backup of VM, Image based backup, Deduplication in	
VDC, Replication and migration, host based and storage array based, VM	
migration Drivers for cloud computing, Gridandutility	
Computing,virtualization,SOA.	
UNIT-III	

(Deeme	ed to be University)										1		
Chara	cteristics of Cloud com	nput	ing,	Clou	bu	ser	vice	of	fferin	g			
exam	ples,economics of cloud of	com	puti	ng–	colc	cati	on,	ma	nage	d			
servic			-	-					odels				
					-	-							
public	c,private,hybrid and commun	ity o	clou	d. C	louc	Se	rvice	e mo	dels	_			
Saas,	Saas, Paas andlaas Examples.												
Cloud	l infrastructure and Mana	iger	nent	: –	Cl	oud	in	frast	ructu	re			
frame	work, Cloud OS, cloud	se	ervic	es,s	ecur	ity	inf	rastr	uctui	re,			
Stake	holders for cloud service	- 9	servi	ce	pro	vide	r, k	oroke	er ar	nd			
consu	imer. Monitoring and	ma	anag	em	ent–	serv	vice	р	ortfol	io	10 Hours		
	gement,catalog managem		5					•	uratio	חר			
	gement, change manage	men	τι	ncic	ient	ar	IC	ava	liadili	ty			
mana	gement.												
Migra	tion to cloud – Migrating th	ne e	xisti	ng a	appl	icat	ions	, Mi	gratio	on			
consid	derations- cost saving, inter	ope	rabil	ity,	SLA	and	d tra	ansp	areno	cy,			
securi	ity and compliance			-						-			
	· · ·												
Course	Outcomes: At the end of the	e co	urse	stu	den	t wil	l be	able	e to				
1.	Define the components of clo	oud	com	puti	ng a	and	stor	age	netw	orking			
t	echnologies.												
2 .	llustrate the concepts of virtu	ualiz	atio	n									
3. (Comprehend the different typ	oes o	of vi	rtua	lizat	ion							
4. I	llustrate the characteristics o	f the	e clo	ud o	com	puti	ng						
5 . [Demonstrate the managemer	nt of	clo	ud i	nfra	stru	ctur	е					
		1	2	3	4	5	6	7	8		_		
	Program Outcomes→			0	-					PSO ↓	2		
	↓ Course Outcomes	2 2		<u></u> 2	2	2					<u> </u>		
	2	3		3	3	3				2 3 3	3		
	3	3		3	3	3					3		
	4	3		3	3	3				3			
	5	3		3	3	3				3 3	3		
TEXTB	OOKS:												
1.	John Rittinghouse, Cloud	con	nput	ing	-	Imp	lem	enta	tion,	manage	ement		
	and security,CRCpress	,1st	edit	ion,	200	9.							
	· · · ·												

	Sullabus of M. Tech (Computer
2.	Joshy Joseph & Craig Fellenstein, GridComputing, IBMPress, 2007.
3.	Toby Velte, Anthony Velte, Robert Elsenpeter, Cloud Computing, A Practical
	Approach,TataMcGraw-Hill, 2009.
4.	Prabhu, Gridand Cluster Computing, Prentice - HallofIndia, 2007.
REFE	RENCE BOOKS:

1. Dan C Marinescu, Cloud Computing Theory and Practice , Elsevier (MK) 2013.

BUSINESS INTELLIGENCE

23CSE132	Course Type	PCC
3+0+0+0	Credits	03
40	CIE + SEE Marks	50+50
	3+0+0+0	3+0+0+0 Credits

1.	Identify various sources of data and identify the methods to process them.
2.	Explain the ETL process and carry out the ETL process for a given data set.
3.	Design a suitable schema for a given problem.
4.	Illustrate the concepts of data mining and Demonstrate the Classification and
	clustering methods.

UNIT-I

 INTRODUCTION TO BUSINESS INTELLIGENCE: Types of digital data – Structured, semi structured and unstructured – sources, characterizes, challenges; Introduction to OLTP, OLAP and Data Mining; BI Definitions & Concepts; BI Framework, Who is BI for, BI Users, BI Applications; BI Roles & Responsibilities, Need for data warehouse – definition, data mart, Approaches for data warehouse, ETL(Extraction Transformation Loading)
 Basics of Data Integration: Concepts of data integration; Need and advantages of using data integration; Introduction to common data integration approaches;
 Introduction to data quality: data profiling concepts and applications, Introduction to SSIS Architecture, Introduction to ETL using SSIS tool.

(D	Jeemed to be University	
A Mu	Iltidimensional Data Model - Concepts of dimensions, facts, cubes,	
attrib	utes, hierarchies, star and snowflake schema; Data Warehouse	
Archit	tecture. Introduction to data and dimension modeling,	
multi	dimensional data model, ER Modeling vs. multidimensional modeling;	
Introc	duction to business metrics and KPIs- Measure, metrics, KPIs and	
perfo	rmance management, salient attributes of a good metric, SMART test.	
Introc	duction to enterprise reporting – perspectives, standardization and	
prese	entation, balanced scorecards. Concepts of dashboards- types, steps,	
Appli	cations of Data mining and Case studies of BI.	
	UNIT-III	15 Hours
Data	Mining—On What Kind of Data? Data Mining Functionalities—What	
	of Patterns Can Be Mined? Mining Association rules: Basic concepts,	
	ent itemset mining methods.	
-	-	
	sification And Prediction: Issues regarding Classification and Prediction,	
	fication by Decision tree induction, Bayesian classification, prediction.	10 Hours
	er Analysis - What is Cluster Analysis? Types of data in cluster Analysis,	
Partit	ioning Methods, hierarchical clustering Methods.	
Cours	se Outcomes: At the end of the course student will be able to	
oourt		
1.	Identify the sources of data based on its type for a business applicatio	n and
	apply OLTP, OLAP operations.	
2.	Apply the knowledge of BI operation to determine various roles in a B	
	application and design the ETL process for handling the data from a g	iven
	application.	
3.	Relate the data warehousing concepts for a real time business applica	tion to
	model a star, snowflake schema for a multi-dimensional data of a give	en
	problem.	
4.	Explain data quality and profiling methods, identify the quality of the	data
	using data profiling techniques. Apply the measures and metrics to th	
	design an	
	enterprise report.	
5.	Apply the concepts of mathematics and computer algorithm to illustra	ate the
	data mining concepts using association rules.	

	Program Outcomes→	1	2	3	4	5	6	7	8	PS	O↓	
	↓ Course Outcomes									1	2	
	1	3		2	2				2	2	2	
	2	3 3		2	2	2			2	2	2	
	3 4	3		2	2	Ζ			2	2	2	
	5	3		2	2	2			2	3	3	
TEXT	BOOKS:											
1.	And the second											
	India,2011											
2.	Larissa T Moss and ShakuAtre	e — E	Busir	ness	Inte	ellige	ence	e Roa	idma	p: Th	e Co	mplete
	Project Life cycle for Decision Support Applications, Addison Wesley											
	Information											
	TechnologySeries,2003.											
3.												
	Techniques", Morgan Kaufmann Publishers, 2000 (ISBN: 1-55860-489-8).											
	BIG D											
Cou	rse Code:	23	3CS	E133	3	Cοι	ırse	Тур	Э		P	CC
Teac	ching Hours/Week (L: T: P: S)	3-	+0+0)+0		Credits					03	3
	I Teaching Hours	40	0			CIE + SEE Marks						0+50
Cours	se Objectives:											
1.	Study and comprehend in dep	oth t	the	fund	ame	enta	l iss	ues t	pehin	d the	Bia	Data
	problem.											
2.	Understand various Big Data t	ech	nolo	paie	s an	d di	ffere	ent N	loSO	L dat	abas	es.
	Learn MongoDB NoSQL datab			5.5		J. 01						
3.	Understand various Big Data t			paie	s an	d Ha	ado	op Co	amc	onent	ts sud	ch as
	HDFS,MapReduce. Learn Map			•								
4.	Determine various techniques				-		-	such	as S	park	Pia a	nd Hive
			UN		.9 0		3.0	Jaci			<u>9</u> u	

(Deemed to be University)	_
Introduction to Big Data: Types of digital Data, Characteristics of Data,	
Evolution of Big Data, Definition of Big Data, Challenges with Big Data, What	
Is Big Data? Why Big data? Traditional BI versus Big data.Big Data Analytics:	
What is Big Data Analytics? Why this sudden Hype around Big Data	
analytics? Data Science, Terminologies used in Big Data environments	
Introduction to NoSQL: Where it is used, Types of NoSQL databases, Why	
NoSQL, Advantages of NoSQL,	
Introduction to MongoDB: What is MongoDB? Why MongoDB? Using JSON,	15 Hours
Creating or generating a unique key, Data types in MongoDB, MongoDB	15 HOUIS
Query Language: Insert method, Save	
method, Update method, Remove method, Find method, Dealing with Null	
values, Count, Limit, Sort, Skip.	
UNIT-II	
Introduction to Hadoop : Introducing Hadoop, need of Hadoop, limitations	
of RDBMS, RDBMS versus Hadoop, Distributed Computing Challenges,	
History of Hadoop , Hadoop Overview, Use Case of Hadoop, Hadoop	
Distributors, HDFS (Hadoop Distributed File System), Processing Data with	
Hadoop, Managing Resources and Applications with Hadoop YARN (Yet	
another Resource Negotiator).	
Writing Hadoop MapReduce Programs: Understanding the basics of	
MapReduce, Introducing Hadoop MapReduce,Understanding the different	15 Hours
Java concepts used in Hadoop programming, Writing a Hadoop MapReduce	
example, Understanding several possible MapReduce definitions to solve	
business problems.	
SPARK: Spark applications, Jobs, stages and Tasks, Resilient Distributed	
Datasets(RDD), Anatomy of SPARK Job Run; SPARK on YARN	
UNIT-III	
Hadoop Ecosystem: Understanding Hadoop subprojects: Mahout, Apache	
HBase, Hive, Pig, Apache Sqoop, Apache Zookeeper, Apache Solr, Ambari.	
HBase: What is HBase? Storage Mechanism in HBase, Features of HBase,	
HBase and RDBMS, HBase and HDFS.	
Introduction to Pig: What is Pig? Pig on Hadoop, Pig Philosophy, Pig Latin	
overview; Pig Data Types; Running Modes of Pig; Execution Modes of PIG,	10 Hours
Relational operators, EVAL function, Complex data types.	
Introduction to Hive: What is Hive? Architecture; HIVE Data Types; HIVE File	

Format; Hive Query Language(HQL).

Course Outcomes: At the end of the course student will be able to

- **1.** Outline the theory of big data, and explain applications of big data.
- 2. Get the idea of NoSQL databases, different types of NoSQL datastores.
- Analyse the technological foundations for Big data with hadoop and design of hadoop distributed file system.
- **4.** Understand the concept of MapReduce programmig and Spark workflow.
- **5.** Understand the need of Big Data Analytics and Analyze Hadoop Ecosystem

Program Outcomes→	1	2	3	4	5	6	7	8	PSO ↓	
↓ Course Outcomes									1	2
1	3		2					2	1	1
2	3		2		2			2	1	1
3	3		2	2	2			2	2	2
4	3		2	2	2			2	3	3
5	3		2		2			2	1	1

TEXTBOOKS:

- SeemaAcharya, SubhashiniChellappan, "Big Data Analytics", 1st Edition, Wiley, 2015.
- **2.** Vignesh Prajapati, "Big Data Analytics with R and Hadoop", Packet Publishing 2013.
- 3. Tom White, Hadoop: The Definitive Guide, 4th Edition, O'Reilley, 2012.

REFERENCE BOOKS:

- 1.V1.Boris lublinsky, Kevin t. Smith, Alexey Yakubovich, "Professional
Hadoop Solutions", Wiley, ISBN: 9788126551071, 2015.
- 2. Chris Eaton, Dirk derooset al., "Understanding Big data", McGraw Hill, 2012.
- **3.** E. Capriolo, D. Wampler, and J. Rutherglen, Programming Hive, O'Reilley, 2012.
- 4. Lars George, HBase: The Definitive Guide, O'Reilley, 2011.
- 5. Alan Gates, Programming Pig, O'Reilley, 2011

E Books / MOOCs/ NPTEL

1. https://www.upgrad.com/big-data-analytics-

	VITTE eemed to be University)	Sullahue of M. Tach (Computer
2.	https://v	www.coursera.org/courses?query=big%20data%20analytics.
3.	https://v	www.edx.org/micromasters/big-data

SOCIAL AND WEB ANALYTICS

Cou	rse Code:	Course Type	PCC					
Tea	ching Hours/Week (L: T: P: S)	3+0+0+0	Credits	03				
Tota	al Teaching Hours	40	CIE + SEE Marks	50+50				
Cour	se Objectives:		·					
1.	To understand social media, w	veb and social	media analytics, and the	ir potentia				
	impact.							
2.	To model and visualize the social network.							
3.	3. To understand the evolution of the social network.							
4.	To mine the interest of the use	er.						
	•	UNIT-I						
Intro	duction to Web and Social Ana	lytic: Overvie	w of web & social media	a				
(Web	o sites, web apps, mobile apps a	nd social med	ia), Impact of social media	a				
on b	usiness, Social media environm	ent, , How to	leverage social media fo	r				
bette	er services, Usability,user exper	rience, custon	ner experience, custome	r				
senti	ments, web marketing, conv	ersion rates,	ROI, brand reputation	ı,				
comp	petitive advantages.							

Introduction- Introduction to Web - Limitations of current Web – Development of Semantic Web – Emergence of the Social Web – Statistical Properties of Social Networks -Network analysis - Development of Social Network Analysis - Key concepts and measures in network analysis -Discussion networks - Blogs and online communities - Web-based networks. Need of using analytics, Web analytics technical requirements., current analytics platforms, OpenSources licensed platform,choosing right specifications & optimal solution,Web analytics and a Web Analytics 2.0 framework, Data

Mining, Data Mining Techniques-Association, Classification, Clustering.

UNIT-II

(Deemed								
	odeling and Mining Communities							
-	tructured data, unstructured data, metadata, Big Data and Linked							
Data), N	Iodeling And Visualization- Visualizing Online Social Networks - A							
Taxono	my of 26 Visualizations - Graph Representation - Centrality-							
Clustering - Node-Edge Diagrams - Visualizing Social Networks with Matrix-								
Based Representations- Node-Link Diagrams - Hybrid Representations -								
Modelling and aggregating social network data – Random Walks and their								
Applica ⁻	tions –Use of Hadoop and Map Reduce - Ontological representation							
of socia	l individuals and relationships. Mining Communities- Aggregating	15 Hours						
and rea	asoning with social network data- Advanced Representations -							
Extracti	ng evolution of Web Community from a Series of Web Archive -							
Detectir	ng Communities in Social Networks - Evaluating Communities – Core							
Method	s for Community Detection & Mining - Applications							
of Com	munity Mining Algorithms - Node Classification in Social Networks							
	UNIT-III							
Text an	d Opinion Mining- Text Mining in Social Networks -Opinion							
extraction	on – Sentiment classification and clustering - Temporal							
sentime	nt analysis - Irony detection in opinion mining - Wish analysis							
- Produ	ct review mining – Review Classification – Tracking sentiments							
towards	topics over time. Tools for Social Network Analysis- UCINET –	10 Hours						
PAJEK –	ETDRAW – StOCNET – Splus – R – NodeXL – SIENA and RSIENA							
– Real w	vorld Social							
	ks (Facebook- Twitter Etc.)							
Course	Outcomes: At the end of the course student will be able to							
1. []	nderstand social modia, web and social modia analytics, and their po	tontial						
	nderstand social media, web and social media analytics, and their por	CIUdi						
	impact.							
	lentify the need of using analytics and explain data mining techniques.							
	ecognize types of data and visualize the social network.							
	etermine the evolution of social networks.							
5. Ex	plain text mining and mine the opinion of the user.							
	Program Outcomes→ 1 2 3 4 5 6 7 8 PSO↓							
	↓ Course Outcomes	!						

Sullahus of M Tach (Computer

	med to be University)								
	1 2 3 2 2 1 2 3 3 1 2 2 1								
	3 2 3 2 3 4 3 3 2 2								
	5 2 3 2 1 2 2 3								
	BOOKS:								
	 MatthewA.Russell, Mining Social web,O'Reilly;2 edition, 2013, ISBN-13:978- 1449367619. 								
2.	Charu C Aggarwal, Social Network Data Analytics, Springer; 2014, 978-1489988935								
	Peter Mika, "Social Networks and the Semantic Web", 1 st edition, Springer, 2007.								
4.	BorkoFurht, "Handbook of Social Network Technologies and Applications",								
	1st edition, Springer, 2010.								
REFER	RENCE BOOKS:								
1.	Hand, Mannila, and Smyth. Principles of Data Mining. Cambridge, MA: MIT								
	Press, 2001.ISBN:026208290X.								
2.	Avinash Kaushik, Web Analytics 2.0: The Art of Online Accountability and Science								
	of								
	Customer Centricity, John Wiley & Sons; Pap/Cdr Edition, 2009.								
3.	GuandongXu, Yanchun Zhang and Lin Li, "Web Mining and Social Networking –								
	Techniques and applications", 1st edition, Springer, 2011.								
4.	Giles, Mark Smith, John Yen, "Advances in Social Network Mining and								
	Analysis", Springer, 2010.								
5.	Ajith Abraham, Aboul Ella Hassanien, VáclavSnáel, "Computational Social								
	Network								
	Analysis: Trends, Tools and Research Advances", Springer, 2009.								
6.	Toby Segaran, "Programming Collective Intelligence", O' Reilly, 2012. 8.								
	Sule Gündüz-Öğüdücü, A. Şima Etaner-Uyar, "Social Networks: Analysis								
	and Case								
	Studies'', Springer, 2014.								
	Hand, Mannila, and Smyth," Principles of Data Mining", Cambridge, MA: MIT								
7.	nana, manina, ana sinyar, " nincipies of Bata mining", cambrage, m.e. mi								
7.	Press, ISBN: 026208290X, 2001.								
E Bool									
	Press, ISBN: 026208290X, 2001.								
E Bool	Press, ISBN: 026208290X, 2001. ks / MOOCs/ NPTEL								

PARALLEL COMPUTING ARCHITECTURE

	urse Code:	23CSE201	Course Type	PCC
	ching Hours/Week (L: T: P: S)	4+0+0+0	Credits	04
	al Teaching Hours rse Objectives:	50	CIE + SEE Marks	50+50
Cou	ise Objectives.			
1.	Know the principles of compu	ter design and	l way in which arithmetic	operations
	are carried out in a processor			
2.	Understand the concepts like in	nstruction sch	eduling (dynamic and sta	tic), branch
	prediction, out-of-order exect	ution with res	spect to pipelined and s	superscalar
	processors.			
3.	Comprehend various Cache or	otimization teo	chniques and discuss the	hardware
	and software support for VLIW	/ and EPIC sys ⁻	tems.	
4.	Identify the concepts of High I	Performance C	Computing, Distributed-N	lemory
	Parallelism and Shared-Memo	,		
		UNIT-I		
	damentals of Computer Design			
Mea	suring, reporting and summarizing	ng performano	ce, quantitative principles	5
	omputer design.			
Com	puter Arithmetic: Introduction, E		es of Integer Arithmetic,	10 Hours
Com Floa	iputer Arithmetic: Introduction, E ting Point: Floating-Point Mu		es of Integer Arithmetic,	10 Hours
Com Floa	puter Arithmetic: Introduction, E	ultiplication,	es of Integer Arithmetic,	10 Hours
Com Floa Divis	iputer Arithmetic: Introduction, E ting Point: Floating-Point Mu	ultiplication, UNIT-II	es of Integer Arithmetic, Floating-Point Addition	10 Hours
Com Floa Divis Insti	nputer Arithmetic: Introduction, E ting Point: Floating-Point Mu sion and Remainder. ruction Level Parallelism, Its	UNIT-II Exploitation	es of Integer Arithmetic, Floating-Point Addition and Limits on ILP:	10 Hours
Com Floa Divis Insti	puter Arithmetic: Introduction, E ting Point: Floating-Point Mu sion and Remainder. Fuction Level Parallelism, Its I poduction To Pipelining, the ma	UNIT-II Exploitation a jor hurdle of	es of Integer Arithmetic, Floating-Point Addition and Limits on ILP:	10 Hours
Com Floa Divis Insti Insti Intro	aputer Arithmetic: Introduction, E ting Point: Floating-Point Mu sion and Remainder. Fuction Level Parallelism, Its Poduction To Pipelining, the ma ards, How is pipelining implemen	UNIT-II UNIT-II Exploitation a ijor hurdle of ited.	es of Integer Arithmetic, Floating-Point Addition and Limits on ILP: pipelining-pipeline	10 Hours
Com Floa Divis Instr Instr haza	aputer Arithmetic: Introduction, E ting Point: Floating-Point Mu sion and Remainder. Fuction Level Parallelism, Its poduction To Pipelining, the ma ards, How is pipelining implement and its exploitation: Concepts	UNIT-II Exploitation a ijor hurdle of nted. and Challeng	es of Integer Arithmetic, Floating-Point Addition and Limits on ILP: pipelining-pipeline ges, Basic compiler	10 Hours
Com Floa Divis Instr Instr haza ILP tech	aputer Arithmetic: Introduction, E ting Point: Floating-Point Mu sion and Remainder. Tuction Level Parallelism, Its I oduction To Pipelining, the ma ards, How is pipelining implement and its exploitation: Concepts niques for exposing ILP, Reduc	UNIT-II Exploitation a njor hurdle of nted. and Challeng	es of Integer Arithmetic, Floating-Point Addition and Limits on ILP: pipelining-pipeline ges, Basic compiler ost with prediction,	10 Hours
Com Floa Divis Insti Insti haza ILP tech	puter Arithmetic: Introduction, E ting Point: Floating-Point Mu sion and Remainder. ruction Level Parallelism, Its poduction To Pipelining, the ma ards, How is pipelining implement and its exploitation: Concepts niques for exposing ILP, Reduction rcoming data hazards with dyna	UNIT-II Exploitation a ijor hurdle of nted. and Challeng cing branch co amic schedulin	es of Integer Arithmetic, Floating-Point Addition and Limits on ILP: pipelining-pipeline ges, Basic compiler ost with prediction, ng, hardware based	10 Hours
Com Floa Divis Insti Insti haza ILP tech	aputer Arithmetic: Introduction, E ting Point: Floating-Point Mu sion and Remainder. Tuction Level Parallelism, Its I oduction To Pipelining, the ma ards, How is pipelining implement and its exploitation: Concepts niques for exposing ILP, Reduc	UNIT-II Exploitation a ijor hurdle of nted. and Challeng cing branch co amic schedulin	es of Integer Arithmetic, Floating-Point Addition and Limits on ILP: pipelining-pipeline ges, Basic compiler ost with prediction, ng, hardware based	, 10 Hours
Com Floa Divis Insti Insti haza haza tech over spec	puter Arithmetic: Introduction, E ting Point: Floating-Point Mu sion and Remainder. ruction Level Parallelism, Its poduction To Pipelining, the ma ards, How is pipelining implement and its exploitation: Concepts niques for exposing ILP, Reduction rcoming data hazards with dyna	UNIT-II Exploitation a ijor hurdle of nted. and Challeng cing branch c amic schedulin Itiple issues ar	es of Integer Arithmetic, Floating-Point Addition and Limits on ILP: pipelining-pipeline ges, Basic compiler ost with prediction, ng, hardware based nd static scheduling,	, 10 Hours
Com Floa Divis Instr Intro haza ILP tech over spec expl	puter Arithmetic: Introduction, E ting Point: Floating-Point Mu sion and Remainder. ruction Level Parallelism, Its oduction To Pipelining, the ma ards, How is pipelining implement and its exploitation: Concepts niques for exposing ILP, Reduct rcoming data hazards with dyna culation, exploiting ILP using mu	UNIT-II Exploitation a ijor hurdle of nted. and Challeng cing branch c amic schedulin Itiple issues ar scheduling, n	es of Integer Arithmetic, Floating-Point Addition and Limits on ILP: pipelining-pipeline ges, Basic compiler ost with prediction, ng, hardware based nd static scheduling, nultiple issue and	, 10 Hours
Com Floa Divis Insti Insti haza ILP tech over spec expl spec	aputer Arithmetic: Introduction, E ting Point: Floating-Point Mu sion and Remainder. Fuction Level Parallelism, Its boduction To Pipelining, the ma ards, How is pipelining implement and its exploitation: Concepts niques for exposing ILP, Reduct coming data hazards with dyna culation, exploiting ILP using mu oiting ILP using Dynamic s	UNIT-II Exploitation a ijor hurdle of nted. and Challeng cing branch c amic schedulin Itiple issues ar scheduling, n	es of Integer Arithmetic, Floating-Point Addition and Limits on ILP: pipelining-pipeline ges, Basic compiler ost with prediction, ng, hardware based nd static scheduling, nultiple issue and	10 Hours

	Determed to be University Stullabula of M. Tach (Computer	n			
Title:	Memory Hierarchy Design, Storage Systems: Review of basic				
conce	epts; Cross cutting issues in the design of memory hierarchies;				
Case	study of AMD Opteron memory hierarchy.				
Hard	ware and Software for VLIW and EPIC: Introduction: Exploiting				
	uction-Level Parallelism Statically, Detecting and Enhancing Loop-Level	10Hours			
	lelism, Scheduling and Structuring Code for Parallelism, Hardware				
	ort for Exposing Parallelism: Predicated Instructions, Hardware Support				
for					
Com	piler Speculation, The Intel IA-64 Architecture and Itanium Processor.				
	UNIT-IV				
Intro	duction to High Performance Computing: What is high performance				
comp	outing?				
-Mot	ivation, Applications,Challenges.				
HPC	Computer architecture models: SIMD, MIMD,SPMD;				
HPC	Communication models: Shared Address Space vs. Message Passing.				
Distri	ibuted-Memory Parallelism: Parallel Algorithm Design,	10 Hours			
	Parallel Programming with MPI, The Message				
Passi	ng Programming Model, blocking vs. Non-blocking communications,				
MPI p	program Anatomy & communicators, MPI				
prog	ram to Parallel Matrix Multiplication				
	UNIT-V				
Share	ed-Memory Parallelism: Basic Patterns in Pthreads, Mutual				
Exclu	sion in Pthreads, Basic Patterns in OpenMP, Mutual Exclusion in				
Oper	nMP.				
Hybri	ids and Accelerators: Hybrid Architectures, MPI+ OpenMP - Use				
MPI	and OpenMP in the same application, Introduction to GPGPU	10 Hours			
comp	outing with CUDA, Coprocessors - Overview of Intel's Xeon Phi				
archi	tecture, introduction to programming Intel's XeonPhi.				
Cour	se Outcomes: At the end of the course student will be able to				
1.	Comprehend the fundamental principles of computer design and topi	cs of			
Comprehend the fundamental principles of computer design and topics of computer arithmetic.					

3.	Analyze various techniques to improve cache performance and Identify the hardware and software needed for VLIW and EPIC architecture.											
4.	Identify and explore the concepts of high performance computing and distributed memory parallelism.											
5.	Realize the shared memory parallelism and GPU programming											
	Program Outcomes→	1	2	3	4	5	6	7	8	PSC	D↑	
	↓ Course Outcomes									1	2	
	1	2		3	3	3			2	3		
	2	2		3	2	2			2	2		
	3	2		3	2	2			2	2	2	
	4 5	3		2	3	3			2	3	2	
TEXT	BOOKS:	0	<u> </u>	~	0	0			2	U	2	
1	JohnL.HennesseyandDavidA.P Approach, 4th Edition, Elsevie			n, Co	omp	uter	rArcl	hitec	ture,	A Qu	antita	ative
2	Niranjan N. Chiplunkar and R India,2020.	aju	K., Ir	ntro	duct	ion	to P	arall	el Co	mput	ing. \	Wiley
3	Michael J.Quinn, Parallel Prog	ram	min	a in	Cw	vith	MPI	and	Oper	ا, MP	McGr	aw-
	HillHigher Education 2003.				-				1	,-		
4	-	t					.	lat		1 : 1	- 6 -	
-	JasonSandersandEdwardKand			AD	′Еха	mpi	e:An	intr	oauc	tion t	o Gel	neral-
	PurposeGPU Programming, 20	010.	,									
1.	AnanthGrama,Introduction to	par	allel	cor	npu	ting	, Ad	diso	n-We	sley 2	Indec	d.,2003.
2.	VictorEijkhout,Introductiontol	High	ו-Pe	rfori	man	ceS	cien	tific	Comp	uting,	2011	•
3.	http://web.stanford.edu/class,	/cm	e213	3/leo	cture	e.htr	ml:					
	MPI,OpenMP,CUDAandXeonP											
		шþ	logi	aiiii	mig	j.						

Sullahue of M Tach (Computer

exploit ILP.

OPERATING SYSTEMS AND VIRTUALIZATION							
Course Code:	23CSE202	Course Type	PCC				
Teaching Hours/Week (L: T: P: S)	4+0+0+0	Credits	04				
Total Teaching Hours	50	CIE + SEE Marks	50+50				

Sullabus of M. Tech (Computer	r			
1. To introduces Virtualization, operating systems fundamental concepts technologies	and its			
2. To provides skills to write programs that interact with operating system components	ns			
 such as Processes, Thread, Memory during concurrent execution To provide the skills and knowledge necessary to implement, provision administer server and desktop virtualization 	ning and			
UNIT-I				
Computer system architecture a layered view with interfaces – Glenford Myer, Monolithic Linux Hybrid Windows10 kernels Layered architecture of operating system and core functionalities, Process Operations, States, Context switching, Data Structures (Process Control Block(PCB), Process	10 Hours			
Scheduling: Multilevel Feedback Queue, Multiprocessor Scheduling, Deadlocks and its detection				
UNIT-II				
Memory - Introduction, Address Spaces, Memory API, Address Translation, Paging-Faster Translations (TLB), Smaller Tables. Virtual Memory System inx86				
Concurrency - Introduction, Thread Models, Thread API, Building Evaluating a Lock, Test And Set, Two phase lock, Classical problems handling using semaphore. Persistence- File Organization: The i-node, Crash Consistency, file security.	10 Hours			
UNIT-III				
Virtual Machines - Process and System VMs Taxonomy of VMs, Types of				
Virtualization, Hardware Emulation, Full Virtualization with binary translation, Hardware assisted, Operating System Virtualization, OS assisted	10 Hours			
/Para virtualization.				
UNIT-IV	1			
Mass storage structures: storage device management, swap-space				
management. Implementing file system: file system concepts, file system				
structure and operations., Hypervisor - Type 1, Type 2, Para virtualization,	10 Hours			
Server Virtualization, Desktop Virtualization.				
UNIT-V				

Security: Program threats, System and network threats. Protection: Principles of protection, role based access control, Mandatory access control. Overview VM portability- Clones, Templates, Snapshots, OVF, Hot And Cold Cloning Protecting Increasing Availability, LightWeight Virtual machine: Container /Docker.

10 Hours

Course Outcomes: At the end of the course student will be able to

- **1.** Study operating system layers and kernel architectures
- 2. Design various techniques for process management
- **3.** Construct various address translation mechanism
- **4.** Perform process threading and synchronization
- Study various methods of virtualization and perform desktop and server virtualization
- 6. Classify the light-weight virtual machines with dockers and containers
- Develop programs related to the simulations of operating systems and virtualization concepts

Program Outcomes→	1	2	3	4	5	6	7	8	PSC	D↑
↓ Course Outcomes									1	2
1	2	3	1				1	3	1	1
2	3	3				1		3		1
3	3	3	2					2	2	
4	3	3		2				3	2	
5	3	3	2	2	2			3	1	3

TEXTBOOKS:

- Thomas Anderson, Michael Dahlin, Operating Systems: Principles and Practice, Second Edition, Recursive Books,2014
- Matthew Portnoy, Virtualization Essentials, John Wiley Sons Inc; 2nd Edition, 2016

3. REFERENCE BOOKS

	RENCE BOOKS.
1.	William Stallings, Operating Systems: Internals and Design Principles, 8thEdition
2.	A.Silberschatz and P.Galvin. Operating System Concepts. Eight Edition, John
	Wiley Sons, 2008
3.	Smith, Nair, Virtual Machines: Versatile Platforms for Systems and Processes,
	Morgan Kaufmann Publishers(2005)

Parallel Computing Lab											
Cours	e Code:	23CSE203	Course Type:	PCC Lab							
Teach	ing Hours/Week (L: T: P: S):	0+0+2+0	Credits:	01							
Total 1	Feaching Hours:	2	CIE + SEE Marks:	50+50							
Course	Course Objectives:										
 1. т	1. To develop OpenMP programs.										
	o develop CUDA programs.										
4.	o profile parallel programs.										
	LIS	t of Experime	Ints								
1.	OpenMP Sample Programs	Time estimati	on								
2.	Develop a sample program	using Executi	on Environment Routir	nes and write							
	interesting observations by	comparing va	arious routines								
3.	Develop a program using fo	llowing const	truct and describe scer	nario for the							
	need of construct Parallel Co	onstruct									
4.	Determining the Number of	Threads for a	a parallel Region Work	-sharing							
	Constructs		1 5	5							
5.	Loop construct Sections cor	struct Single	construct Schedule cla	use Static							
	Dynamic Guided										
6.	Data Environment Construct	ts Shared Cla	use Critical Construct R	Reduction							
	Clause										
	Master Construct No Wait C	lause Barrier	Construct Atomic Cons	struct							
7.	Analysis through any one of	f profiling too	ls (ITAC/VTune/EEP/IIF	?)							
	Experimental setup										
8.	Parallelizing given serial pro	gram into pa	rallel								
9.	Analyzing parallel programs										
10.	CUDA programming										
11.	Write a CUDA C/C++ progra	am that add t	wo array of elements a	and store the							
	result										
	in third array										
12.	How to Reverse Single Block	k in an Array (using CUDA C/C++								
13.	CUDA C program for Matrix	addition and	Multiplication using S	hared memory							
14.	Write CUDA C/C++ program	n for Vector A	Addition. Modify your p	program so							
	that it can add two vector o	f arbitrary size	е								

Course Outcomes: At the end of the course student will be able to

- **1.** Develop shared memory parallel programs using OpenMP directives.
- **2.** Develop distributed memory parallel programs using MPI APIs.
- **3.** Develop GPU parallel programs using CUDA-C APIs.
- **4.** Profile parallel programs using VTune
- 5. Analyze parallel programs

Program Outcomes→	1	2	3	4	5	6	7	8	PSC	D↑
↓ Course Outcomes									1	2
1	2	2	2	3	3	2		2	3	2
2	2	2	2	3	3	2		2	3	2
3	2	2	2	3	3	2		2	3	2
4	2	2	2	3	3	2		2	3	2
5	2	2	2	3	3	2		2	3	2

REFERENCE BOOKS:

- Niranjan N. Chiplunkar and Raju K., Introduction to Parallel Computing. Wiley India,2020.
- David Kirk and Wen-Mei W.Hwu, Programming Massively Parallel
 Processors: A Hands-on Approach, 2010.
 - Jason Sanders and Edward Kandrot, CUDA by Example: An Introduction to General-Purpose GPU Programming, 2010.

E Resou	urces
1.	http://web.stanford.edu/class/cme213/lecture.html: MPI, OpenMP, CUDA
	and Xeon Phi programming.
2	Introduction to MPI (SHARCNET). Online:

- https://www.youtube.com/watch?v=RoQJNx5npF4
- 3 Introduction to MPI programming, by Hristo Iliev, HPC Group, RWTH Aachen University. Online:
 - https://www.youtube.com/channel/UCtdrEoe46tD2lvJJRs_JH1A/videos
- 4 Introduction to OpenMP Tim Mattson (Intel). Online:
- https://www.youtube.com/playlist?
- list=PLLX-Q6B8xqZ8n8bwjGdzBJ25X2utwnoEG
- 5 CUDA Training Resources by NVIDIA. Online:
 - https://developer.nvidia.com/educators/existing
 - courses

Cou	rse Code:	23CSE204	Course Type:	pe: PCC Lab									
Tead	ching Hours/Week (L: T: P: S):	0+0+2+0	Credits:	01									
Tota	I Teaching Hours:	2	CIE + SEE Marks:	50+50									
Cour	se Objectives:												
1.	To study basics of linux comm	To study basics of linux commands and execution of shell scripts.											
2.	To study various scheduling al	gorithms and	bankers algorithms.										
3.	To analyse various dynamic m	emory allocati	on algorithms.										
4.	To implement various page re	placement alg	orithms.										
	Lis	st of Experime	nts										
1.	 Study of Basic Linux Comma 	ands											
2.	5		Looping, Multi-level bra	nchina)									
3.				-									
	creation												
4.	· Simulation of CPU schedulir	ling algorithms (FCFS, SJF, Priority and Round Robir											
5.	Simulation of Banker's algorithm to check whether a given system is in safe												
	state or not. Also check whe	ether addition	ner addition resource requested can be granted										
	immediately												
6.	• Parallel Thread managemer	ent using pthread library. Implement a data											
	parallelism using multi-thre	ading											
7.	· Dynamic memory allocation	n algorithms -	First-fit, Best-fit, Worst-fit	algorithm									
8.	• Page Replacement Algorith	hms FIFO, LRU and Optimal											
9.	Virtualization Setup: Type-1, Type-2 Hypervisor												
1	0. Implementation of OS / Ser	ver Virtualizati	on										
Cour	se Outcomes: At the end of the	course studer	nt will be able to										
1.	Study various shell scripts and	command usa	age.										
2.	Design various scheduling algorithms.												
3.	Construct memory allocation a	algorithms bas	ed on first fit, best fit and	worst fit									
	algorithms.												
4.													

Sullabus of M Tash (Computer

Program Outcomes→	1	2	3	4	5	6	7	8	PSC	C↑	
↓ Course Outcomes									1	2	
1	2	3	1				1	3	1	1	
2	3	3	1			1		3		1	
3	3	3	2	2				3	2		
4	3	3		2				3	2		

Course Code:	23CSE205	Course Type	RETP
Teaching Hours/Week (L: T: P: S)	0:0:4:0	Credits	2
Total Teaching Hours	52	CIE	100
Теас	ching Departm	ient:	
Course Objectives: The research pur	poses are		
To foresee future problems the second s	nrough pursui	t of truth as a "globa	l centre of
excellence for intellectual cre	ativity".		
• To respond to current social	demands, and	d to contribute to th	e creation
and development of scientifi	ic technologie	s with the aim of re	alizing an
affluent society and natural e	environment fo	or humanity.	
• At the same time, the cou		•	ducational
resources and an excellent	educational e	nvironment through	n frontline
research.			
• To Understand professional	writing and	communication cor	texts and
	•		
genres, analyzing quantifial		-	ning, and
constructing finished profess	ional worknla	re documents	

The students are expected to carry out Mathematical modeling/Design calculations/computer simulations/Preliminary experimentation/testing of the research problems identified during Research Experience through Practice-I carried out in the first semester.

At the end of the second semester, students are expected to submit a full research paper based on the Mathematical modelling/ Design calculations/computer simulations/Preliminary experimentation/testing carried out during second semester.

The research paper prepared based on the work carried out by the PG Student is evaluated for 50 marks and 20 minutes presentation on the research work carried out will be evaluated

for 50marks jointly by the examiners.

Course Outcomes: At the end of the course student will be able to

N	(Deemed to be University)		C,	7]] ว	huc	റ്	י ז <i>ו</i> ר	أمم	n(Cr	mni	itar	
1.	Create a model/prototype through fabrication, simulation, data analysis,											
	Experimentation for the proposed problem.											
2.	Analyse and validate the results obtained.											
3.	Compose a technical paper as	pe	r the	e giv	en f	orm	nat.					
	Program Outcomes→	1	2	3	4	5	6	7	8	PS	C↓	
	Program Outcomes→	1	2	3	4	5	6	7	8	PS	-	
	↓ Course Outcomes									1	2	
	1	3	2							3	2	
	2	3	2			3			-	2		
	3	3	2						3		1	
REFE	RENCE BOOKS:											
1.	The Undergraduate Research	Hai	nd b	ook	. Gii	na V	Visk	er · 2	018			

DISTRIBUT	ED OPERATII	NG SYSTEM	
Course Code:	23CSE211	Course Type:	
Teaching Hours/Week (L: T: P: S):	3+0+0+0	Credits:	03
Total Teaching Hours:	40	CIE + SEE Marks:	50+50
Course Objectives:			
1. To understand the concept of	of a distributed c	operating system.	
2. To know about the distribute	ed file system an	d shared memory.	
3. To understand the security is	sues in distribut	ed systems.	
4. To make a case study of som	ne real time syste	ems.	
	UNIT-I		
Distributed System management: Ir	ntroduction, Res	ource management,	
Task Assignment Approach, Load-	Balancing Appr	oach, Load-Sharing	
Approach, Process management in	a Distributed Er	vironment, Process	
Migration, Threads, Fault Tolerance	2.		
Distributed Shared Memory: Introd	uction, Basic Co	ncepts of DSM,	
Hardware DSM, Design Issue	in DSM Syste	ems, Issue in	15 Hours
Implementing DSM Systems, He	terogeneous ar	nd other DSM	
Systems, Case			
Studies.			
	UNIT-II		1

Distributed File System: Introduction to DFS, File Models, Distributed File	
System Design, Semantics of File Sharing, DFS Implementation, File Caching	15Hours
in DFS, Replication in DFS, Case studies. Naming: Introduction, Desirable	

features of a good naming system, Basic concepts, System- oriented
names, Object-locating mechanisms, Issues in designing human-oriented
names, Name

caches, Naming and security, Case study:Domain name service.

UNIT-III	
Security in distributed systems: Introduction, Cryptography, Secure	
channels, Access control, Security Management, Case studies	
Real-Time Distributed Operating Systems: Introduction, Design	
issues in real-time distributed systems, Realtime communication,	
Real-time scheduling, Case study: Real-time communication	10 Hours
in MAR.	

Course Outcomes: At the end of the course student will be able to

1.	Explain the DS concepts.
2.	Explain the working of distributed shared memory.
3.	Demonstrate the application of a distributed file system.
4.	Explain the security issues in distributed systems.
5.	Make a case study of distributed systems.

Program Outcomes→	1	2	3	4	5	6	7	8	PSO ↓	
↓ Course Outcomes									1	2
1	3		3	3	3				3	
2	3		3	3	3				3	
3	3		3	3	3				3	
4	3		3	3	3				3	
5	3		3	3	3				3	

TEXTBOOKS:

 Pradeep. K. Sinha: Distributed Operating Systems: Concepts and Design, PHI, 2007.

REFERENCE BOOKS:

1. Andrew S. Tanenbaum: Distributed Operating Systems, Pearson Education, 2013.

DEEP LEARNING

DE		NG				
Course Code:	23CSE212	Course Type	PCC			
Teaching Hours/Week (L: T: P: S)	3 Hours	Credits	03			
Total Teaching Hours	40	CIE + SEE Marks	50+50			
Teaching Departmen	t: Computer S	cience & Engineering				
Course Objectives:	-					
1. Understand the context of neu	ural networks	and deep learning				
2. Understand the data needs of	deep learning]				
3. Have a working knowledge of neural networks and deep learning						
4. Explore the parameters for ne	ural networks					
	UNIT-I					
Introduction: What is Deep Learnin	g? What are	Neural Networks? Neural				
networks basics: cost functions, l	hypotheses a	nd tasks; training data;				
maximum likelihood-based cost, c	ross entropy,	MSE cost; feed-forward	15 Hours			
networks; MLP,						
sigmoid units; neuroscience inspirat	ion;					
Neural Networks Training: Learning	g in neural ne	etwork: output vs hidden	ı l			
layers; linear vs nonlinear networks;	Backpropagat	tion: learning via gradient	:			
descent; recursive chain rule (bad	ckpropagatior	n); if time: bias-variance				
tradeoff, regularization; output uni	ts: linear, soft	max; hidden units: tanh,				
RELU; Deep						
learning strategies: GPU training, reg	gularization, R	LUs, dropout.				
	UNIT-II					
Convolution Neural Networks: Invar	riance, stabilit	y, Variability models				
(deformation model, stochastic mo	odel), Scatteri	ng networks, Group				
Formalism, Properties of CNN repr	resentations: i	nvertibility, stability,				
invariance, covariance/invariance:	capsules an	d related models,				
Connections with other models: dict	ionary learning	g, LISTA, localization,	15 Hours			
regression, Embeddings (DrLim), inv	erse problems	s, Extensions to non-				
Euclidean domains.						
	UNIT-III					
Deep Neural Networks for Sequence						
for language modelling and other ta	asks, GRUs and	LSTMs for machine	10 Hours			
translation, LSTM, GRU						
	- احتقاد معين م	nt will be able to				
Course Outcomes: At the end of the	e course stude					

1. Identify the deep learning algorithms which are more appropriate for various types of

learning tasks in various domains.

- 2. Implement deep learning algorithms and solve real-world problems.
- **3.** Execute performance metrics of Deep Learning Techniques.
- **4.** Explore the parameters for neural networks.
- **5.** Apply the CNN and RNN for solving the engineering problems.

Program Outcomes→	1	2	3	4	5	6	7	8	PSO↓	
↓ Course Outcomes									1	2
1	3								3	
2			3	2					3	3
3	3		2		3					3
4	3		2							3
5	3	1	2	2	3					3

TEXTBOOKS:

 Ian Goodfellow, YoshuaBengio, Aaron Courville. Deep Learning, The MIT Press, 2016.

REFERENCE BOOKS:

- Duda, R.O., Hart, P.E., and Stork, D.G., Pattern Classification, Wiley-Interscience.
 2nd Edition. 2001.
- Theodoridis, S. and Koutroumbas, K., Pattern Recognition. Edition 4, Academic
 Press, 2008.
- **3.** Russell, S. and Norvig, N, Artificial Intelligence: A Modern Approach, Prentice Hall

Series in Artificial Intelligence. 2003.

- **4.** Bishop, C. M., Neural Networks for Pattern Recognition, Oxford University Press. 1995.
- 5. Hastie, T., Tibshirani, R. and Friedman, J., The Elements of Statistical Learning, Springer. 2001.

E Books / MOOCs/ NPTEL

1.http://cs224d.stanford.edu/syllabus.htmlhttps://www.cs.colorado.edu/~mozer/Teaching/syllabi/DeepLearningFall2017

OBJECT ORIENTED DESIGN

NITTE	Svllahu	s of M. Tach (Comp	11tor			
Course Code:	23CSE213	Course Type	PCC			
Teaching Hours/Week (L: T: P: S)	3 Hours	Credits	03			
Total Teaching Hours	40	CIE + SEE Marks	50+50			
Course Objectives:			·			
1. Identify the heuristics of the o	bject-oriente	d programming				
2. Explain the fundamentals of C	OP					
3. Examine fine object-oriented	relations					
4. Explain the role of Physical Object-Oriented Design,						
5. Make use of Heuristics in The Use of Heuristics in Object-Oriented Design						
	UNIT-I		- 1			
The Motivation for Object-Oriented	Programming	, Classes and Objects: ⁻	The			
Building Blocks of the						
Object-Oriented Paradigm, Topolog	nies of Action	-Oriented Versus Ohie	ect-			
Oriented Applications, The Relation	-		15 Hours			
	ships between	in classes and objects				
Inheritance Relationship	UNIT-II					
Multiple Inheritance, The Association	_	Class-Specific Data				
•	•	, class specific Data	15 Hours			
and Behavior, Physical Object-Orien	-					
The Relationship Between Heuristics	UNIT-III	The Lice of	10 Hours			
·						
Heuristics in Object-Oriented Design	1					
Course Outcomes: At the end of the		nt will be able to				
Course Outcomes. At the end of the						
1. Identify and make use of the l	pouristics in o	hiect-oriented program	omina			
	of OOP and th	le role of Physical objec	ct oriented			
design.						
3. To examine the object-oriente	ed relations be	etween heuristics and p	patterns.			
Dro group Outerman	1 2 3 4	ч 5 6 7 8 р	<u>201</u>			
Program Outcomes→		, 0 0 / 0 P	SO↓ 2			
↓ Course Outcomes						
2	2 1 1 3 2 1	2 1 1 2 1 1	-			
3	3 2 1		1			
TEXTBOOKS:						
1. Object Oriented Design Heur	istics, Arthur J	Riel, Addison-Wesley	1996.			
REFERENCE BOOKS:						

N	NITTE
U	(Deemed to be University)

- 1. Elements of Reusable Object- Oriented Software
 - **2.** John Vlissides Pearson Object Oriented Modeling and Design with UM
 - Paperback, Michael R. Blaha)

DISTRIBUTED SYSTEMS

Course Code:	23CSE214	Course Type	PCC
Teaching Hours/Week (L: T: P: S)	3 Hours	Credits	03
Total Teaching Hours	40	CIE + SEE Marks	50+50

 To learn the principles, architectures, algorithms and programming models used in

distributed systems.

- **2.** To examine state-of-the-art distributed systems, such as Google File System.
- **3.** To design and implement sample distributed systems.

UNIT-I

Overview of distributed system – examples of distributed systems: client - server architecture – WWW peer to peer – Napster –Bit torrent - mobile and ubiquitous computing –System Model: Physical model – architectural model – fundamental models

External data representation- marshalling – un-marshalling- Message passing- group communication: Publish-subscribe system – message queues – shared memory approach. Remote procedure call – distributed objects-communication between distributed objects – RMI – JSON-RMI

Process – Events- states – partial and total ordering – Synchronizingphysical clock synchronization- Christians algorithm- Berkeley algorithm – NTP – logical clocks – scalar and vector clock – lamport logical clock for partial and total ordering – consistent cut – inconsistent cut – global states – lamport global snapshot algorithm.

U	(Deemed to be University)		Cu,	llah	110 /	\f \	ſТ	boh		mnu	tor	
Distr	ibuted deadlock – Resource a	lloca	tion	mo	del ·	rec	quire	emer	nts ai	nd		
perfo	ormance metrics - classification	on of	dist	ribut	ted	dead	dloc	k de	tectio	on		
algor	rithm – Lamport - Haas- Misr	a Edg	je ch	asin	ig di	strik	oute	d de	eadlo	ck		
detection algorithm. Distributed Mutual exclusion – requirements and												
performance metrics of distributed mutual exclusion algorithm-												
Distributed mutual exclusion algorithm: token based –Raymond tree									1	5 Hours		
algorithm– quorum based : mekawa' svoting algorithm message												
based – Ricart												
Agrawala algorithm – Election – ring based election – bully election												
algorithm – Multicast communication.												
			UNI	T-III								
Optir	mistic and pessimistic transac	tions	-Tw	o – I	phas	se co	omn	nit p	rotoc	ol		
– thr	ee phase commit protocol –	Trans	actio	on r	ecov	very	- R	eplic	ation	—		
fault tolerant services- the gossip architecture- Name services: DNS –												
Direc	tory Services: X.500 protocol	– Dist	ribu	ted	file S	Syste	em -	-File	servi	ce	1	0 Hours
Archi	itecture- NFS - GFS –Distribut	ed lo	ckin	g m	echa	nisr	n- C	Distri	bute	b		
share	ed memory – Sequential and I	Releas	se co	onsi	sten	су						
						••						
Cour	se Outcomes: At the end of t	ne co	urse	stu	den	t wii	be	able	to			
1.	Identify the core concepts o	f dist	ribu	ted	svste	-ms	the	way	/ in w	hich «	sevei	al
	machines orchestrate to cor				•							
	scalable way.	rectry	301	vcp		CIIIS			ncici	it, itii	abic	
2.	,	nc ha		nnli	od +	ho c	000	onto	ofdi	ctribu	itad	systems
	Examine how existing system	115 113	ive a	hhi	eut	ne C	UNC	epts		รแมน	neu :	systems
3.	designing large systems.	<u>alan</u>	6.0 m		c) /c+	ome						
	Apply these concepts to dev	reiop	San	ipie	syst	ems	•					
	Program Outcomes-	, 1	2	3	4	5	6	7	8	PS	O↓	
	↓ Course Outcomes	-								1	2	
	1	3	2	1					1	2	2	
	2 3	3	1	1					1	2	2	
L	<u>ک</u>	3	2						I	∠	<u> </u>	

TEXTBOOKS:

 Randy Chow and Theodore Johnson, "Distributed Operating Systems and Algorithms", Addison - Wesley, - Fourth Impression - 2012.

REFERENCE BOOKS:

	Syllabur of M Tach (Computer
1.	G. Coulouris, J. Dollimore , and T. Kindberg , "Distributed Systems : Concepts
	and
	Designs", 5th edition, Addison Wesley, 2011.
2.	Mukesh singhal and N.G. Shivaratri, "Advanced Concept sin Operating
	Systems, Distributed, Database, and Multiprocessor Operating Systems ", 1st
	edition, McGraw Hill, 1994.
3.	Vijay K. Garg, "Elements of Distributed Computing ", 1st edition, Wiley & Sons
	2002.

	ADVANCED) SOFTWAR	RETESTING					
	urse Code:	23CSE221	Course Type	PCC				
	ching Hours/Week (L: T: P: S)	3 Hours	Credits	03				
	al Teaching Hours	40	CIE + SEE Marks	50+50				
Cou	rse Objectives:							
1.	To Explain the overview of test	ting technique	e and create test plans , te	st Cases				
and test Scenarios								
2.	2. To Generate test Scripts, test requirements specification and test plan for given							
	project							
3.	3. To Illustrate the use of functional testing , non functional testing and develop							
	test							
	cases in object-oriented testing							
4.	To Make use of various moder	n engineering	g testing tools and technic	ques for				
	automation testing							
5.	To Evaluate the software quali	ty using empi	rical software testing proc	ess				
		UNIT-I		T				
Over	view of Testing Techniques–Cre	ating Test Pla	ans and Test Cases – Test					
Scen	arios – Test Data							
– Te	est Scripts, Test Requirements	Specificatio	n and gathering –					
Crea	ting TRS and Test Procedure	Pre-Planning	g Activities: Success					
Crite	ria/Acceptance Criteria, Test O	bjectives, As	sumptions, Entrance	15 Hours				
Crite	eria/Exit Criteria							
Test	Planning: Test Plan, Requiremen	nts/Traceabilit	y, Estimating, Scheduling,					
Staff	ing, Approach, Test Check Proce	dures						

Post-Planning Activities: Change Management, Versioning (change control/change management / configuration management) Software Test Management : Risk and Testing - Test Organization – Test progress monitoring and control. UNIT-II Functional Testing: Automated Unit Testing – Test Plan & Scripts – Creating Automated Test Procedures and Reports – Integration Testing – Order of Integration – Creating & Maintaining Tested Databases- Test Metrics Non-Functional Testing : Performance Testing – Load Testing – Endurance Testing Scalability Testing –Internationalization Testing – Performance Analysis and Reporting, Developing Test Cases in Object-oriented Testing - Object-**15 Hours** oriented Testing Methods: Fault-based Testing, Scenario based Testing -Challenges. Creating an environment supportive of software testing – Building Software Testing Process – Selecting and Installing Software Testing Tools – Building Software Tester Competency. UNIT-III Automated Testing Tools – Functional Testing - Rational Functional Tester – Selenium – Cucumber - JUnit, Performance Testing Tools - Rational Performance Tester – HP Loadrunner, Test Management Tools - Quality Center, Performance Center Reports and Control Issues – Types of Review – Component of Review Plans - Reporting Review Results - Evaluation of 10 Hours Software Quality, Test Process Optimization, Empirical Software Testing and Analysis, Mobile Testing, SOA Testing, Data Warehouse Testing, Cloud Testing, BigData Testing, WebApps Testing, IoT Testing. Course Outcomes: At the end of the course student will be able to 1. Explain the overview of testing technique and create test plans, test Cases and test Scenarios 2. Generate test Scripts, test requirements specification and test plan for given project 3. Illustrate the use of functional testing, non functional testing and develop test

- cases in object-oriented testing
- **4. Make** use of various modern engineering testing tools and techniques for automation testing

N NITTE

	eemed to be University)											
5.	Evaluate the software quality	usir	ig ei	mpii	ical	soft	twar	e tes	sting	proce	ess	
	Program Outcomes→ 1 2 3 4 5								8	PS	O↓	
	↓ Course Outcomes									1	2	
	1	3		3		2				2		
	2	3		3		2				2		
	3	3		3		3				2		
	4	2		3		2				2		
TEVT	5 BOOKS:	2		3		2				2		
1.	Srinivasan Desikan, Gopalasw practices ",Pearson Educatic	-	•		h "	Sof	twar	e Te	sting	– Prii	ncipl	es and
2.	Nick Jenkins "A Software Tes 2008. Scott W. Ambler "The with UML 2.0" Third Edition,	e Ok	oject	t Pri	mer	: Ag	ile I	Mod	el-Dri	iven I	Deve	-
REFE	RENCE BOOKS:			-								
1.	"Software Testing – An ISTQ	(B-B	CS (Certi	fied	Tes	ter l	Foun	datio	n Gu	ide"	, Third
	Edition,BCS,2015											
E Boo	ks / MOOCs/ NPTEL											
1.	https://www.coursera.org/spo	ecia	lizat	ions	/sof	twa	re-te	estin	g-aut	tomat	tion	
2.	https://onlinecourses.nptel.ac	c.in/	noc	19_c	s71,	/pre	viev	V				
3.	https://nptel.ac.in/courses/10)610	515	0								

Co	urse Code:	23CSE222	Course Type	PCC			
Теа	aching Hours/Week (L: T: P: S)	3+0+0+0	Credits	03			
Tot	tal Teaching Hours	40	CIE + SEE Marks	50+50			
1. Know the architecture of GPUs.							
1.	Know the architecture of CDU	c					
2.	Understand the execution and	d memory mo	del of CUDA and Open	CL.			
2. 3.	Understand the execution and Understand the Programming		•	CL.			
		Model of CU	DA and OpenCL.	CL.			

(Deemed to be University)											
Heterogeneous Architecture and	Pai	ralle	l Co	omp	utin	ig:	Intro	ducti	ion to	c	
parallel programming, Introduction to heterogeneous architecture-GPU in								n			
particular. Introduction to GPU computing, Why GPU, evolution of GPU								J			
pipeline and general purpose computation on GPU, GPU architecture case							e				
studies:NVIDIA G80,GT200, Fermi, AMD Radeon, AMDFusion APU etc.											
							ן 16 Hour	S			
Execution Model: Features CUDA and OpenCL, Comparison CUDA and											
OpenCL, Thread organization, Kernel, error handling, and execution in CUDA							1				
and OpenCL. UNIT-II											
					. (<u> </u>		_	
Programming Model: CUDA Introduction, basics of CUDA C, Complete											
CUDA structure, basic details of API						CL OV	vervi	ew, C)penC	L	
basic specification, OpenCL C langu	age,	Veo	tori	zatio	on.						
Memory Model: Introduction to memory model and GPU interaction with								^າ 14 Hour	s		
CPU, Memory model of CUDA	A a	nd	Ор	enC	L,	Mer	nory	Hie	erarch	y	
(local/register, shared global) an	d	optiı	miza	tior	ıs,	men	nory	opt	imized	d	
programming, coding tips.											
		UNI	T-III								
Tools And Programming: Introdu	ctio	n to	o in	stall	atio	n a	nd	comp	oilatio	n	
process, usage of tools, profiler a	nd o	debu	ugge	er. C	UD.	A b	y Exa	ample	es and	d 10 Hour	s
OpenCL by Examples, Future Directi	ons	•				-					
Course Outcomes: At the end of the	e co	urse	stu	den	t wil	l be	able	to			
1. Explain the architecture of GP	Us										
2. Describe the execution mode	of	CUD	A a	nd C	Dper	nCL					
3. Illustrate the programming m	ode	l of	CUE	DA a	nd (Эреі	nCL				
4. Explain the memory model of	CU	DA a	and	Орє	enCL	-					
5. To develop GPU programs on	CU	DA a	and	Оре	enCL	fra	mew	orks			
				-							
Program Outcomes→	1	2	3	4	5	6	7	8	PSC	D↓	
↓ Course Outcomes									1	2	
1	3	2	2	3	3	2		2	3	2	
2 3	3	2	2	3	3	2		2	3 3	2	
4	3	2	2	3	3	2		2	3	2	
5	3	2	2	3	3	2		2	3	2	
TEXTBOOKS:											

	Svillabue of M Toch (Computer
1.	David Kirk and Wen-Mei W.Hwu, Programming Massively Parallel Processors: A
	Hands-on Approach, 2010.
2.	Jason Sanders and Edward Kandrot, CUDA by Example: An Introduction to
	General- Purpose GPU Programming, 2010.
3	Niranjan N. Chiplunkar and Raju K., Introduction to Parallel Computing. Wiley
	India,2020.
REFE	RENCE BOOKS:
	T.Mattson, et al. Patterns Of Parallel Programming, Addison Wesley, 2005
2.	NVIDIACUDAProgrammingGuideV3.0,NVIDIA
3.	Benedict R. Gaster, Timothy G. Mattson and James Fung, OpenCL Programming
	Guideby Aaftab Munshi, 2011.
4.	Benedict Gaster, David R. Kaeli, Lee Howes and Perhaad Mistry,
	HeterogeneousComputingwith OpenCL,
	2011.
5.	GPUGems3,H. Nguyen(ed.),Addison Wesley, 2007.
6.	GPUGems 2,M. Pharr(ed.),Addison Wesley, 2005.
7.	NVIDIA and
	OpenCL:http://www.nvidia.com/content/cudazone/download/
	OpenCL/NVIDIA_Open CL_Programming Guide.pdf
8.	http://www.nvidia.com/content/cudazone/CUDABrowser/do
9.	Open CL at
	Khronos:http://www.khronos.org/developers/library/overview/
	opencl_overview.pdf http://www.khronos.org/registry/cl/specs/opencl-
	1.0.48.pdf
10	http://developer.amd.com/zones/OpenCLZone/courses/pages/Introduction-
	OpenCL Programming2010.
11	http://developer.amd.com/gpu/amdappsdk/documentation/pages/Tutorialopen
	CL
	.aspx

ANALYSIS OF COMPUTER NETWORKS						
Course Code:	23CSE223	Course Type	PCC			

N	NITTE

1.To2.Tostr	eaching Hours Dbjectives: o understand and analyze the ansporting the voice packets. o understand the efficient sha	-	CIE + SEE Marks	50+50
1. To tra 2. To stu	o understand and analyze the ansporting the voice packets.	-	ie available resources in	
2. To	ansporting the voice packets.	-	ae available resources in	
2. To	ansporting the voice packets.	-		
2. To sti				
sti	Understand the efficient sha			
-		iring of the ch	annel among the compe	ling flow
	eams. analyze the stream session i	n spacific to c	latorministic natwork and	lycic
4. To	analyze the stream session i	•		19515.
	•	•	•	
	understand the dynamic ba	UNIT-I	ng in elastic traffic.	
ntroduc	tion: Two examples of analy		ransport of packet voice	
	hievable throughput in ar			
	nce of quantitative mo		the Engineering of	
Гelecom	munication Networks.	-		15 Hours
Multiplex	king: Network performance	and source	characterization; Stream	า
sessions	in a packet network: Delay g	uarantees; Ela	stic transfers in a packet	
network;	Packet multiplexing over Wi	reless networ	ks.	
		UNIT-II		1
	Sessions: Deterministic Netw	-	•	
	nultiplexer models: Universal	•		
	work Calculus; Scheduling; A	• •	a packet voice example;	
	on setup: The RSVP approac			
	essions: Stochastic Analysis		, , , , , , , , , , , , , , , , , , ,	
-	Stochastic traffic models			45 Hour
	s; Little' s theorem, Brun		••	
•	xer analysis with stationary	, 0		
	th approach for admission co		ation to the packet voice	
-	; Stochastic analysis with sha	-		
ratfic; N	lultihop networks; Long-Rang	ge-Dependen UNIT-III	t traffic.	
Adaptive	Bandwidth Sharing for Elasti	•••••	tic transfers in a Network [.]	
-	parameters and performance			
	ontrol; Window-Based Contro	-		10 Hours
	s Adaptive Window Protoco		•	

Course Outcomes: At the end of the course student will be able to

- **1.** Explain and analyze the efficient usage available resources in transporting the voice packets.
- **2.** Illustrate the efficient sharing of the channel among the competing flow streams.
- **3.** Analyze the stream session in specific to deterministic network analysis.
- **4.** Analyze the stream session in specific to stochastic analysis.
- **5.** Explain the dynamic bandwidth sharing in elastic traffic.

Program Outcomes→	1	2	3	4	5	6	7	8	PSO↓	
↓ Course Outcomes									1	2
1	3		2	2				3		3
2	3	2						2		3
3	3	2						2	2	
4	3		2					1	2	
5	3	2						1	1	

TEXTBOOKS:

1. Anurag Kumar, D. Manjunath, Joy Kuri: Communication Networking and

Analytical Approach, Elsevier, 2004.

REFERENCE BOOKS:

1. M. Schwartz: Broadband Integrated Networks, Prentice Hall PTR, 1996.

 J. Walrand, P. Varaiya: High Performance Communication Networks, 2nd Edition, Morgan Kaufmann, 1999.

IMAGE PROCESSING AND ANALYSIS							
Cou	irse Code:	23CSE224	Course Type	PCC			
Tea	ching Hours/Week (L: T: P: S)	3+0+0+0	Credits	03			
Tota	al Teaching Hours	40	CIE + SEE Marks	50+50			
Cour	se Objectives:			· · ·			
1	1						
1.	Explain the concept and steps included in Digital Image Processing. Describe						
	Image Sampling and Image Quantization techniques and Apply the knowledge						
	of 4-8 and M pixel adjacency to illustrate some basic relationships between						
	pixels						
2.	2. Explain Frequency domain, illustrate Smoothing Frequency-Domain Filters and						
	Sharpening frequency-Domai	n Filters.					
3.	Comprehend different methods, models for video processing and motion						

N	NITTE
U	(Deemed to be University)

(Deemed to be University)	
estimation	
4. Apply the process of image enhancement for optimal use of resources.	
UNIT-I	I
Image Basics Basic steps of Image processing system - Pixel relationship-	
Image TransformsImage Enhancement- Spatial filtering, Frequency	
Domain filtering – Image Segmentation – Image Compression. Binary object	
feature - Area, Centroid, Axis of Least Second Moment, Projections, Euler	
Number, Thinness Ratio, Eccentricity, Aspect Ratio, Moments, Boundary	15 Hours
Descriptors - Chain Code, Freeman Code, and Shape Number, Signatures,	
Fourier Descriptors. Histogram-based (Statistical) Features, Intensity	
features- Hough	
transforms.	
UNIT-II	
Concepts and classification: statistical, structural and spectral analysis, Co-	
occurrence matrices - Edge frequency - Multiscale texture description -	
wavelet domain approaches, Texture categorization and Texture	
segmentation.	
Colour Image Processing – Gray Level to Color Transformations Histogram	
Processing- Color	
Image Smoothing and Sharpening Color Noise Reduction Color-Based	15 Hours
Image Segmentation Color Edge Detection Patterns and pattern class,	
Bayes' Parametric classification, Feature Selection and Boosting,	
Template-Matching – based object recognition, Scene and Object	
Discrimination, Object Modelling, Model based object recognition	
UNIT-III	1
VIDEO PROCESSING:	
Basic Concepts and Terminology, Monochrome Analog Video, Analog	
Video Raster, Blanking Intervals, Synchronization Signals, Spectral Content	
of Composite Monochrome Analog Video, Color in Video, Analog Video	
Standards, NTSC, PAL, SECAM, HDTV, Digital Video Basics: Advantages of	
Digital Video, Parameters of a Digital Video Sequence, The Audio	
Component.	
Analog-to-Digital Conversion : Color Representation and Chroma	
Subsampling: Digital Video Formats and Standards, The Rec. 601 Digital	
Video Format The Common Intermediate Format The Source Intermediate	

Video Format, The Common Intermediate Format, The Source Intermediate

Format,

Video	o Compression Techniques and	Sta	nda	rds,	Vid	eo (Com	pres	sion			
Stand	dards, Codecs, and Containers,	Vide	eo P	roce	essir	ng ir	n MA	ATLA	B, Rea	ading		10 Hours
Video	o Files,											
Proce	essing Video Files, Playing Vide	o Fi	les, '	Writ	ing	Vide	eo F	iles,	Probl	ems		
-												
Cour	se Outcomes: At the end of the	e co	urse	stu	den	t wi	ll be	able	e to			
1.	Explain the concept and step	os ir	ncluo	ded	in ſ	Diait	al I	mage	- Pro	cessir	na [Describe
	Image Sampling and Image C					•					-	
							•		• •			•
	of 4-8 and M pixel adjacence	y to	5 111	JStra	ate	som	ер	asic	relation	onsni	ps i	Jetween
-	pixels											
2.	Explain Frequency domain, ill				othi	ing l	Frec	lueno	:y-Do	main	Filte	ers and
	Sharpening frequency-Domai	n Fi	Iters									
3.	Comprehend different metho	ds, ı	mod	lels	for \	/ide	o pr	oces	sing a	and m	notio	วท
	estimation											
4.	Apply the process of image en	han	cem	ent	for	opti	mal	use	of res	Source	es.	
		1	2	3	4	5	6	7	8			1
	Program Outcomes→	{ '	2	5	4				0	PS (0↓ 2	-
	↓ Course Outcomes											_
	2	3		2	2					3	2	-
	3	2	2	2						2	3	-
	4	2	3			3			2	2	3	-
техт	BOOKS:											
1.		age	and	Vid	eo F	roc	essi	ng U	sing I	MATL	AB″	, Wiley-
	IEEE, Press,2011	-						-	-			-
2.	Rafael C. Gonzalez and Richa	rd E	. Wo	bod	5, "	Diai	tal I	maa	e Pro	cessir	na″	, Third
	Ed., Prentice- Hall, 2008.					5		5			5	
REFE	ERENCE BOOKS:											
1.		eerii	ng: F	Proc	essi	ng, /	Ana	lysis	and L	Jnder	star	nding",

	Stillabur of M. Tech (Computer
	Tsinghua University Press, 2009
2.	Mark Nixon and Alberto S. Aquado, "Feature Extraction & Image Processing for
	Computer Vision", Third Edition, Academic Press, 2012
3.	Bogusław Cyganek, "Object Detection and Recognition in Digital Images:
	Theory and
	Practice", Wiley, 2013
4.	Chanamallu Srinivasa Rao, Samayamantula Srinivas Kumar, "Content Based
	Image Retrieval Fundamentals & Algorithms - Basics, Concepts, and Novel
	Algorithms", Lap
	Lambert Academic Publishing, 2012

	BLOCKC	HAIN TECH	NOLOGY	
Cou	rse Code:	23CSE231	Course Type	PCC
Tead	ching Hours/Week (L: T: P: S)	3+0+0+0	Credits	03
	al Teaching Hours	40	CIE + SEE Marks	50+50
Cours	se Objectives:			
1.	Understand conceptual workir	ng of block ch	ain technology	
2.	Devise the block chain techno	logy to innova	ate and improve business	processes.
3.	Get the idea of working with E	thereum and	Smart Contracts in Block	Chain
	Environment.			
4.	Solving real-world problems u	sing Remix ID	E and Truffle	
5.	Describe and illustrate the ide	a of Hyperled	ger Fabric.	
		UNIT-I		1
Intro	duction: What Is the Blockchain?	? What is Bitco	oin? The Connected World	
and	Blockchain: The Fifth Disrupt	ive Computin	ng Paradigm. How does	
block	chain work ? How does blo	ckchain accu	mulate blocks? Tiers of	
block	chain technology, Features of a	i blockchain, T	ypes of blockchain.	
Block	chain Currency: Technology Sta	ack: Blockchai	n, Protocol, Currency, The	
Doub	ble-Spend and Byzantine Gen	erals' Comp	outing Problems, How a	
Crypt	tocurrency Works.			
Bene	fits and limitations of blockcl	hain : Techni	cal Challenges, Business	
Mode	el Challenges, Scandals and Pub	lic Perception	, Government Regulation,	15 Hours
Priva	cy Challenges for Personal Red	cords, Overall	: Decentralization Trends	
Likely	/ to Persist.			

	ensus: Consensus mechanism, Types of consensus mechanisms, ensus in blockchain, CAP theorem and blockchain	
_	UNIT-II	
	ntralization: Decentralization using blockchain, Methods of	
	ntralization, How to decentralize, Computing power and	
dece	ntralization, DO, DAO,DAC,DAS,Dapps,	
Ether	eum and Smart Contracts: Definition, Ricardian contracts, Deploying	
smar	t contracts on a blockchain, Ethereum Blockchain, Ethereum Network,	
Com	ponents of the Ethereum, ecosystem, Ether cryptocurrency, Introducing	
Solid	ty, Global Variables and Functions, Expressions and Control Structures,	15 Hours
Writi	ng Smart Contracts, Truffle Basics and Unit Testing, Debugging	
Conti	racts	
Remi	x IDE: Programs execution.	
	UNIT-III	
goals Com	rledger: Fabric,The reference architecture, Requirements and design of Hyperledger Fabric, Membership services, Blockchain services, ponents of the fabric, Chain code implementation, The application el, Consensus in Hyperledger Fabric, The transaction life cycle in	10 Hours
Нуре	rledger FabriC.	
Cour	se Outcomes: At the end of the course student will be able to	
Cours	Se Outcomes. At the end of the course student will be able to	
1.	Explain the block chain technology	
2.	Illustrate the significance of Consensus and working of cryptocurrency.	
3.	Develop block chain-based solutions and write smart contract using Re	emix IDE
	and Ethereum frameworks.	
4.	Build and deploy block chain application using Truffle Suite.	
5.	Create and deploy a block chain network using Hyperledger Fabric SD	
1		

	Program Outcomes→	1	2	3	4	5	6	7	8	PSC) ↓	
	↓ Course Outcomes									1	2	
		2								1	2	
	2	2		3						1	2	
	3	2		<u> </u>	2	2				3	2	
	4	2		3		3				2	3	
	5	2	2	3		3			2	2	3	
	BOOKS:											
1.	1. Melanic Swan, "Block Chain: Blueprint for a New Economy", O' Reilly, 2015.											
2.	Imran Bashir, "Mastering	g Bl	ock	Chai	n:	Dis	trib	uted	Lec	lger		
	Technology, Decentr	aliza	atior	n an	d Sr	nart	Cor	ntrac	ts Exi	olaine	d″,	Packt
	Technology, Decentralization and Smart Contracts Explained", Packt											
	Publishing.											
3.	Ritesh Modi, "Solidity Progra	amr	ning	Ess	enti	als:	A Be	eginr	ner's	s Guic	le to	Build
	Smart Contracts for Ethereum	n an	d Bl	ock(Chai	n",	Pac	kt Pı	ublish	ning		
REFE	RENCE BOOKS:											
1.	Anshul Kaushik, "BlockChain	an	d Cr	yptc	o Cu	rren	cies	", K	hann	a Pub	lishi	ng
	House, Delhi.											
2.	Salman Baset, Luc Desrosier	rs, N	Vitin	Ga	ur,	Petr	· Nc	votr	ny, A	nthon	у О	′ Dowd,
	Venkatraman Ramakrishna,	"На	nds	-On	Bloo	ck C	hain	with	n Hyp	erled	ger:	Building
	Decentralized Applications w	vith	Нур	berle	edge	er Fa	abrio	: and	d Co	mpose	er",	Import,
	2018.											
3.	Josh Thompsons, "Block Cha	ain:	The	Bloo	ckCł	nain	for	Begi	nners	-Guid	e to	Block
	chain Technology and Levera	ging	g Blo	ockC	hair	n Pro	ogra	mm	ing″			
4.	Daniel Drescher, "BlockChair	n Ba	sics	", F	Apre	ss; 1	lst e	ditic	on, 20	17.		

	SPEE		SSING	
Cou	Irse Code:	23CSE232	Course Type	PCC
	ching Hours/Week (L: T: P: S)	3+0+0+0	Credits	03
	al Teaching Hours	40	CIE + SEE Marks	50+50
Cour	se Objectives:	1		1
1.	Understand the fundamentals	s of speech pro	ocessing.	
2.	Study the models of speech p	processing.		
3.	Explain the linear predictive co	oding.		
4.	Illustrate the application of sp	eech processi	ng.	
	•	UNIT-I		
Intro	duction, Fundamentals of Digit	al Speech Pro	cessing, Digital mod	dels
for th	ne speech signals, Ti	me domaiı	n models	for 15Hours

INI	NITTE
C	(Deemed to be University)

(Deemed to be University)		20	nan	110 /	AT A	/	Δnn		mniitai	•		
speech processing,	speech processing, Digital											
representation of the speech w	vaveform	, sho	ort te	erm	Fou	rier	anal	ysis.				
	UNIT-II											
Iomomorphic speech processing, Linear predictive coding of speech:												
Introduction, Basic principles	oduction, Basic principles of LP analyse, Computation of gain for the											
model, solution of LPC equa	del, solution of LPC equation, Comparison between the methods of											
solution of the	ition of the											
LPC analysis equation, the prediction error signal.												
		UNI	T-III						1			
Linear predictive coding of sp	eech: Fre	que	ncy	dom	nain	inte	erpre	tatio	n of LP			
analysis, Relation of LP an	alysis, R	elati	ons	be	twe	en	vario	ous	speech	10 Hours		
parameters, applications												
Digital speech for man machir	ie commu	unica	atior	ı by	voi	ce						
Course Outcomes: At the end	of the co	urse	stu	den	t wil	l be	able	e to				
1. Explain the fundamenta	ls of spee	ch p	roce	essir	ng.							
2. Understand the various r	nodels of	spe	ech	pro	cess	ing.						
3. Infer the linear predictiv	e coding.											
4. Illustrate the application	of speed	h pr	oces	ssing	g.							
			0				-					
Program Outcor	nes→ ¹	2	3	4	5	6	7	8	PSO ↓			
↓ Course Outcomes									1 2	2		
1	1		2	2					1			
3	1		2	2								
4	1		2	2					1			
TEXTBOOKS:												
1. Digital Processing of Sp	eech Sig	nals,	Law	ren	ce R	R. Ra	bine	r , Ro	onald W.	Schafer,		
Pearson												
REFERENCE BOOKS:												
1. Speech and Audio Sign	al Proces	sing,	A.R	. JA'	YAN	I, P⊦	11					
2. Speech and Audio Proc	essing, A	pte S	Shail	a D,	Wi	ley l	ndia	Pvt.	Ltd			

SOFTWARE ENGINEERING AND MODELING										
Course Code:	23CSE233	Course Type	PCC							
Teaching Hours/Week (L: T: P: S)	3+0+0+0	Credits	03							
Total Teaching Hours	40	CIE + SEE Marks	50+50							

Course Objectives:

1. To explain the overview of fundamentals of software process models and									
principles of engineering concepts related to requirements and architectures									
2. To describe the process of modeling, distributed architecture, software									
validation and reuse									
3. To establish the foundation on object oriented design principles and patterns									
4. To recognize the importance of software testing and describe the intricacies									
involved in software maintenance.									
5. To analyze the process of software reuse and explain the importance of									
distributed software engineering.									
UNIT-I	'								
Software Process Models and Principles									
Software Process Models: Waterfall, V-model, Spiral iterative and									
Incremental- Component- based development, Fourth Gen Techniques,									
Introduction to Agile Software Development, Agile Principles and Practices,									
Extreme Programming									
Modelling Requirements 15 Ho	urs								
Software Requirements Engineering, Software Architecture: Architectural									
Tactics and Patterns- Architecture in the Life Cycle: Architecture and									
Requirements.									
UNIT-II									
Modelling Design									
Designing Architecture. Object Oriented Design, Design principles DFD,									
UML tools, OOD metrics, Overview of Design Patterns									
Software Validation									
Introduction to Software Verification Validation, levels of testing, types of									
testing, Black box design techniques, White box design techniques, 15Hou	urs								
statement coverage, decision coverage, condition coverage, Static Review									
process. Functional non- functional testing. Software Maintenance -									
Software Maintenance, Software Configuration Management.									
UNIT-III									

Software Reuse

Reuse based Software Engineering Approaches, supporting software reuse application frameworks Commercial-Of-The-Shelf(COTS) systems: COTS Solution Systems, COTS Integrated Systems. Component-Based Software Engineering (CBSE) Components, Component Models, CBSE Processes: CBSE for Reuse, CBSE with Reuse, Component-based Development: **Distributed Software Engineering**

Distributed Software Engineering, Distributed system characteristics, Design Issues, Middleware Client-Server Computing, Client-Server Interaction, Architectural Patterns for Distributed Systems: Master/Slave, Two-tier, Multi-tier, Distributed component, and Peer-to- Peer Software as a Service (SaaS) Key elements Implementation factors, Configuration of a system offered as a service.

Course Outcomes: At the end of the course student will be able to

1.	Explain the overview of fundamentals of software process models and principles
	of engineering concepts related to requirements and architectures
2.	Describe the process of modeling, distributed architecture, software validation
	and reuse
3.	Establish the foundation on object oriented design principles and patterns
4.	Recognize the importance of software testing and describe the intricacies
	involved in software maintenance.
5.	Discuss the process of software reuse and explain the importance of distributed
	software engineering.

Program Outcomes→	1	2	3	4	5	6	7	8	PSO↓	
↓ Course Outcomes									1	2
1	2	3	2		2			2		2
2	2	3	2		2			2		2
3	2	3	2		2			2		2
4	2	3	2		2			2		2
5	2	3	2		2			2		2

TEXTBOOKS:

 Roger Pressman, Software Engineering: A Practitioner' s Approach, 7th Edition, McGrawHill,2010.

REFERENCE BOOKS:

	Stillaburg of M. Tach (Computer							
1.	Ian Sommerville, Software Engineering, 9th Edition, , Addision-Wesley, 2010.							
2.	Len Bass, Paul Clements, Rick Kazman, Software Architecture in Practice, 3rd							
	Edition, , Addison- Wesley Professional, 2012 (SEI Series in Software							
	Engineering).							
3.	Robert E. Filman, Tzilla Elrad, Siobhn Clarke, Mehmet Aksit ,Aspect-Oriented							
	Software Development, Addison-Wesley Professional, 2004.							
4.	Martin Fowler, Refactoring: Improving the design of existing code, Addison							
	Wesley,							
	1999. 5. Robert C. Martin , Agile Software Development, Principles, Patterns, and							
	Practices, Pearson, 2011.							
5.	Ian Sommerville, Software Engineering, 9th Edition, , Addision-Wesley, 2010.							
E Boo	oks / MOOCs/ NPTEL							
1.	https://www.coursera.org/specializations/software-engineering							
2.	https://nptel.ac.in/courses/106105182							

	W	EB SERVICE	S					
Со	urse Code:	23CSE234	Course Type	PCC				
Tea S)	ching Hours/Week (L: T: P:	3+0+0+0	Credits	03				
Total Teaching Hours40CIE + SEE Marks								
Cours	se Objectives:							
1.	To provide a basic conceptu architectures.	al understand	ing of web enterprise					
2.	• To explore distributed remote communication.							
3.	To understand the basic cor	cepts of Servi	ce Oriented Architectur	e.				
4.	To explore XML, web service	es, web service	security and its implen	nentation.				
5.	To understand micro service	es and enterpri	se application patterns					
		UNIT-I	•••••	-				
Web /	Architecture: MVC, middleware	e - Design con	siderations, Issues in					
web a	application design: Security iss	ues and intero	perability issues (WS-					
).				15 Hour				
RPC, Java RMI, message queuing, Data Serialization - MQTT, RabbitMQ,								
JMS-	JSON - AVRO, Thrift, protocol	buffer.						
		UNIT-II						
Introc	ducing SOA- SOA triangle, laye	ered architectu	re of SOA, BPO -	15 Hours				

			Qu	dlah	110	مf ا	лт	'aah	(Γ_{Δ})	mniite	١r	
Busin	ess Process Outsourcing - We	eb se	ervi	ce co	omp	osit	ion a	and				
coord	lination.											
Web	service creation and accessir	ng -	WS	DL,	SOA	ΑΡ, L	JDD	I, XII	NS, J	SON-		
	JSON-WSP, REST- full web	5										
	Services - RDF, RDFS, OWL, SPARQL											
	UNIT-III											
Evolu	Evolution, Modeling services, Integration, Deployment, Testing,											
Moni	toring, Security. Implementa	tion	o of	[;] mio	cro	serv	vices	. Co	ncur	rency	10 He	ours
patte	rns, Session state patterns. W	eb s	erv	ice s	ecui	rity -	- pro	otoco	ols.			
	Course Outcomes: At the end of the course student will be able to											
Cours	se Outcomes: At the end of the	ne co	ours	se st	ude	nt w	ill b	e abl	e to			
1.	To identify increasing work on		- 1: -			44		о т _е	l.		t .a.al	
	To identify issues in web applications architecture 2.To apply distributed											
2	communication techniques											
2.	To apply Service oriented a			ure	to p	rovi	de s	ervic	es to	compo	onents	
	using communication proto	ocol	S									
3.	To build service oriented a	chit	ecti	ure f	or g	iven	арр	olicat	tion 5	5.To de	ploy, te	st
	and monitor micro services											
4.	To identify appropriate ent	erpr	ise	appl	icati	ion p	batte	erns				
5.	To implement different wel	o sei	rvic	es ar	chit	ectu	res					
6.	To identify issues in web ap	plic	atic	ons a	rchi	tect	ure 2	2.To	apply	y distrik	outed	
	communication techniques											
7.	To apply Service oriented a	rchi	tect	ure	to p	rovi	de s	ervic	es to	compo	onents	
	using communication prote									·		
	Program Outcomes→	1	2	3	4	5	6	7	8	PSO	t	
	↓ Course Outcomes	1								1	2	
	1	3		2						3	2	
	2 3	3		2		3				3	2	
	4	3		2		3				3	2	
	5	3		2						3	2	
	BOOKS:								<u> </u>			
1	J.D.Meier,Alex Homer," W		ppl	icati	on A	۱rch	tect	ture o	guide	e, Patte	rns and	l
	Practices", Microsoft 2008	3.										
REFE	RENCE BOOKS: ThomasErl," Service-Orier	ntad	۸re	hita	ctur	a. C.		anto	Tech	nology	and	
•					ciul	e. C		εμιs,	rech	noiogy	, anu	
	Design", Pearson Education	אור, 2	2005	י.								

	Sullabus of M. Tech (Computer
2	Andrew S. Tenenbaum, Marteen Van Steen," Distributed Systems, Principles
•	and Paradigms", Second Edition, Pearson, Prentice Hall,2007.
3.	Sam Newman," Building Microservices", O' Reilly,2015.
4	Martin Fowler, David Rice, Matthew Foemmel, Edward Hieatt,
•	RobertMee,RandyStafford," Patterns of Enterprise Application
	Architecture", AddisonWesley,2002.7.Sacha Krakowiak," Middleware
	Architecture with Patterns and Frameworks", 2009
5	Leonard Richardson, Sam Ruby, "Restful Web Services", O'Reilly Media;
· ·	First Edition edition (May 15, 2007)
6	Ben Smith," Beginning JSON", Apress,2015
7	Mark O' Neill ," Web services security", McGraw Hill,2003
8	KapilPant, "BusinessProcessOrchestrationforSOAusingBPMNandBPEL",
•	Р
	ackt publishing,2008
10	GustavoAlonso,FabioCasati,HarumiKuno,VijayMachiraju, WebServices-
•	Concepts, Architectures and Applications", Springer Verlag, 2004

MOOC Course							
Course Code:		Course Type	PCC				
Teaching Hours/Week (L: T: P: S)	3+0+0+0	Credits	03				
Total Teaching Hours	40	CIE + SEE Marks	50+50				

- Any MOOC course that is having contact hours in the range of 35-45 has to be selected.
- The selected subject is to be approved by the DPGC.
- The MOOC course is to be completed during the time frames of the running semester.
- Student must pass the exam and produce the certificate of clearing the exam.

Audit Courses

DATA ANALYTICS USING R PROGRAMMING

NITTE (Deemed to be University)	Sullahue e	of M. Tech (Commu	itor
Course Code:	23CSEAP1/2	Course Type	PCC
Teaching Hours/Week (L: T: P: S)	3+0+0+0	Credits	03
Total Teaching Hours	40	CIE + SEE Marks	50+50

- Introduction to R: Handling Packages in R: Installing a R Package, Input and Output

 Entering Data from keyboard Printing fewer digits or more digits,
- R Data Types, R Variables, R Operators, R Decision Making, R Loops.
- R-Function, R-Strings, R Vectors, R List, R Matrices, R Arrays.
- Data Frames, Expand Data Frame, Loading and handling Data in R
- R-CSV Files, R -Excel File
- Descriptive Statistics: Data Range, Frequencies, Mode, Mean and Median
- Standard Deviation Correlation Spotting Problems in Data with Visualization
- R –Pie Charts
- R Histograms

Full stack Web Development								
Course Code:	23CSEAP1/2	Course Type	PCC					
Teaching Hours/Week (L: T: P: S)	3+0+0+0	Credits	03					
Total Teaching Hours	40	CIE + SEE Marks	50+50					

- Requirement analysis and design
- Front end development
- Backend design and development

MOOC Course								
Course Code:	23CSEAP1/2	Course Type	PCC					
Teaching Hours/Week (L: T: P: S)	3+0+0+0	Credits	03					
Total Teaching Hours	40	CIE + SEE Marks	50+50					

Internet of Things (IoT) Concepts and Applications

Cou	rse Code:	23CSE101	Course Type	PCC				
Теас	hing Hours/Week (L: T: P: S)	4+0+0+0	Credits	04				
Tota	l Teaching Hours	50	CIE + SEE Marks	50+50				
Cours	e Objectives:							
	Ι							
1.	Explore the IoT concept and Applic	ations						
2.	Describe Security and Privacy Fram	nework issues in IoT						
3.	Explain the IoT Architectures and re	equirements, smart o	office use case					
4.	Discuss the market aspects of IoT							
5.	Explain the cloud services to IoT							
		UNIT-I						
Stan Secu	Internet of Things Global Standardization - State of Play – Introduction, IoT Vision, IoT Standardization Landscape, Dynamic Context-Aware Scalable and Trust-based IoT Security, Privacy Framework – Introduction, Main Concepts and Motivation of the Framework, A Policy-based Framework for Security and Privacy in Internet of Things							
Inte	rnet of Things Global Standardizat	UNIT-II	- Introduction IoT Vision IoT	13				
	dardization Landscape, Dynamic Con							
	ity, Privacy Framework – Introductio -based Framework for Security and P		-					
		UNIT-III		10				
Introdu Archite	calable Integration Framework for Heterogeneous Smart Objects, Applications and Services – Introduction, IPv6 Potential, IoT6, IPv6 for IoT, Adapting IPv6 to IoT Requirements, IoT6 Inchitecture, DigCo Integration with the Cloud and EPICS, Enabling Heterogeneous Integration, IoT6 mart Office Use-case							
	UNIT-IV							
Dep	Internet of Things Applications - From Research and Innovation to Market Deployment – Introduction, OpenIoT, Icore, Compose, SmartSantander, Fitman, OSMOSE8							
		UNIT-V		ı				
	ghts on Federated Cloud Servic oduction, Federated Cloud Ser	•	0	6				

Course Outcomes: At the end of the course student will be able to

1.	Demonstrate understanding of IoT Concept and Applications
2.	Analyze Security and Privacy Framework issues in IoT
3.	Apply IoT Architecture and requirements in understanding use cases
4.	Analyze the market aspects of IoT
5.	Apply cloud services to IoT

	Program Outcomes→	1	2	3	4	5	6	7	8	PSO↓	
	↓ Course Outcomes									1 2	
		3		1		1			1	4	
	2	<u> </u>		1		1			1		
	3	1		1		1			1		
	4	1		1		1			1		
	5	3		1		1			1	1	
	1: Low, 2: Medium, 3: High										
TEXTE	BOOKS:	, <u> </u>			.,	<u></u>	-				
1.	 Internet of Things From Research Innovation to Market Development, Dr, Ovidiu Vermesan SINTEF Norway, Dr. Peter Friess, EU Belgium, River Publishers, Aalborg 										
2	Reference Books:										
	The Definitive Guide to By Syed Zaeem Hosai					Thi	ngs	for E	Busin	ess, 2nd	Edition,
	E-Books / Online Resour	ces	<u>s:</u>								
	http://www.internet-of-things-research.eu/pdf/IoT- From%20Research%20and%20Innovation%20to%20Market%20Deplo yment_IERC_Cluster_eBook_978-87-93102-95-8_P.pdf, http://www.internet-of-things- research.eu/pdf/Digitising the Industry IoT_IERC_2016_Cluster_eBo ok_978-87-93379-82-4_P_Web.pdf										
	MOOC:										
	Stanford:https://www.class-central.com/mooc/6748/coursera- introduction-to-architecting-smart-iot-devices										
	https://www.class-central.com/mooc/4338/coursera-introduction-to-the-internet-of-things-and-embedded-systems							-to-the-			